Hierarchical Region Based Stereo Matching

Laurent Cohen Laurent Vinet Peter T. Sander
André Gagalowicz
INRIA
Domaine de Voluceau-Rocquencourt, B.P.105
78153 Le Chesnay Cedex, France
tel: 39 63 53 66

March 28, 1995

Proceedings of Computer Vision and Pattern Recognition

San Diego,June 1989

Abstract

Stereo matching is the process of determining correspondences between en-
tities in related images. Often, this i1s treated as two quite independent sub-
processes: segmentation, followed by matching. In this paper, we treat these
processes as naturally related, in that partial matching results are fed back to
the segmentation and both proceed simultaneously in a cooperative fashion.
We consider regions as the primitives to be matched, since we feel that many of
the shortcomings inherent in approaches based on points or lines can be over-
come by taking more developed entities. Our implementation is based upon
maintaining a hierarchy of segmented regions in each image, corresponding to
analysis at differing scales. The selection of a particular segmentation in each
image at a scale appropriate to each region is validated with reference to the
optimal matching region in the other image. We present examples of our meth-
ods applied to a synthetic image (incorporating colour), and to natural office

scenes.



1 Introduction

Vision enables a system to interact richly with its environment. A fundamental
task solved with facility by biological systems is the visual discrimination of
objects and their situation (shape/location) in space, and one of the strategies
evolved for the job is stereo vision. Similarly, stereo is one of the methods of
choice for equipping autonomous robots with visual perception. In this paper
we present a novel approach to the combined problem of image segmentation
and object distance computation based on interaction between a segmentation
component and a stereo component. We believe the combination to be better
than the parts taken individually.

Two distinct subproblems are involved in the determination of the distance
of an object by means of stereo: the matching problem and the depth compu-
tation proper. Given a stereo pair of images, the matching problem consists
of associating entities from the left image with entities in the right image.

Stereo matching with points and lines as the entities has become a well
developed industry. In this paper, we investigate region based matching as
we feel that many of the shortcomings inherent in other approaches can be
overcome by taking more developed entities. To cite but two examples: mis-
matches over pairs of line elements are to be expected frequently due to the
lack of features available for distinguishing between segments; and occlusion
effects are relatively more severe when applied to points or segments than to
regions. We consider only the matching problem—we are not concerned with
the depth computation here, but see [12].

The quality of discreteness of regions is determined by the segmentation
of the image. Since no satisfactory method of deriving ‘the’” segmentation yet
exists, we do not commit ourselves rigidly to any particular segmentation prior
to the matching process. That is, segmentation and matching are not indepen-
dent sequential processes, but rather, partial matching results are fed back to
the segmentation and both proceed simultaneously in a cooperative fashion.
We make minimal use of special-purpose @ priori information about, for ex-
ample, image formation and object formation, but make good use of available
information by considering the segmentation of the pair of images together.
While we effect stereo matching over homogeneous regions, we incorporate in-
formation about discontinuities by integrating edge detector results into our
region segmentation algorithm. The problem of obtaining a semantically valid
segmentation (one whose regions correspond to perceptually meaningful enti-

ties) by simple homogeneity measures over groups of pixels remains open.



The basic idea developed in this paper is that, since objects in the world
being imaged give rise to events in both stereo images (modulo occlusions and
border effects), segmentation in each image should be carried out in conjunc-
tion with segmentation in the other, thus, hopefully, producing a more reliable
segmentation in both. Of course, a ‘vicious circle’ can arise in that cooper-
ative segmentation presupposes matching, and matching is dependent on a
prior segmentation. We propose breaking the circle by iteratively using partial
segmentation results to suggest tentative matches, which then feed back into
the segmentation procedure, and so on.

The paper is organized as follows. The following section briefly presents
some related work in image segmentation and stereo matching, and §2 gives
an overview of our methods. Section 3 is the segmentation component. Sec-
tion 4 is the region-based matching algorithm, which explains the feedback of

matching to segmentation, and presents our results.

1.1 Related work

There exists a natural complementarity between edge based methods and re-
gion based methods for image segmentation. Region based methods seek ho-
mogeneity among pixels according to certain criteria (generally based on grey
level statistics). Pixels which satisfy given criteria are grouped together into
regions on the assumption that intra-object grey levels are approximately con-
stant. A popular region segmentation method is the quadtree based split-
and-merge algorithm [14] and its variants (see [18] for an early survey). The
resultant square blocks of pixels are generally merged with adjacent blocks
on the basis of homogeneity criteria to produce the final segmentation into
irregularly shaped regions.

Image segmentation by region growing using multiple predicates has been
proposed by [11], although for a single level only.

Not much has been published on the integration of edge detection and
region growing techniques, although see [6, 8].

In [16], we can find some mathematical basis for the use of region growing
techniques using homogeneity predicates.

Stereo matching has been done on the basis of the raw image grey levels by
correlation techniques [9], and by matching entities or features extracted from
the images separately (we refer the reader to the surveys [2, 10]). The most
commonly used features are points representing estimated edge elements. Line
elements may also be used [1]; the only references we are aware of for the use

of regions as features are [4, 5].



In most approaches, with the exception of ‘stereo snakes’ [15], feature ex-
traction proceeds independently of and preceeds the stereo matching. In con-
trast, our method depends in an essential fashion on the interaction between

segmentations in both the stereo images and matching between them.

2 Overview

Here, we present a brief overview of our system; following sections fill in the
details.

As mentioned above, our aim is for segmentation to proceed cooperatively
with stereo matching. Segmentation by merging and splitting regions in the left
image should depend on what matches have been found with the right image,
and vice-versa. Some of the computation can be done independently, however,
prior to any matching. In particular, if a number of (candidate) segmentations
of the images are computed for a range of parameters and organized in a tree
structure, then merging/splitting regions just amounts to moving up/down in

the tree. Thus, the complete procedure consists of two steps:

1. computing, independently for each image, fine to coarse hierarchical can-

didate segmentations;

2. determining a final segmentation, choosing for each pixel the most ap-
propriate region level among the candidates, cooperatively with region

based stereo matching between the images.

2.1 Segmentation

Let us recall what we mean by a segmentation S = {Ry, Ry,...} of a set £
defined by a predicate P (as in [14]):

1. S is a partition of F,
2. P(R;) is true for all ¢,
3. if ¢ # j then P(R; U R;) is false.

A hierarchical segmentation is a sequence Sg, S, ..., 5,, where each level S;is a
segmentation defined by predicate P* and which contains the previous S;_y, i.e.,
VR € S;_y, R € S; such that R C R. Note that each segmentation level may
result from the successive application of several predicates, Pj, 7=1,2,...,n;,

say.



The pseudo code in Fig. 1 gives the organization of the segmentation step.
The outer while loop computes (potential, or candidate) segmentations for
an entire range of parameter values in both images, arranged in the form
of two trees (hierarchical graph structures). Level 0, at the bottom of the
hierarchy, consists of fine segmentations, i.e., small regions, with increasing

levels producing progressively larger regions.

set lowest level segmentation parameters;
while (segmentations halt criterion not satisfied)
set initial predicate P;
while (not all predicates already applied)
compute MC, list of pairs of adjacent regions
ordered by cost of merging according to P
while (MC not empty)
if (P(regions of head of MC) is true)
merge regions;
MC «— tail of MC;
set next predicate P;

set next segmentation level parameters;

Figure 1: The organization of the segmentation process.

The middle while loop indicates that various predicates determine the
merge criteria at each level, and the predicates are applied to produce merges
pairs of adjacent regions in the inner loop. An example of such a predicate

might be based on the mean grey-level intensities of regions
Prean(Ri, Rj) = (Jmean(R;) — mean(R;)| < tmean) -

A segmentation depends on the order of the merges. To avoid having the
order depend on the image traversal strategy, obviously unsatisfactory, we
carry out the merges in order of increasing cost, according to the appropriate

predicate.

2.2 Cooperative matching

We stress the distinction between computing the graphs representing multiple

levels of segmentation of the images (step 1 above), which is done indepen-



dently in each image, and commitment to a particular set of regions as the
resulting segmentation (step 2), which is done while stereo matching. Step 2
of the process then amounts to computing node cut sets [18], see Fig. 2, through
the graphs by mapping pixels to nodes, and this is done cooperatively with
the partial results of stereo matching.

The region based stereo matching associates regions in the left graph with
regions in the right which are likely to be images of the same physical object.
Since image formation parameters can differ, the same segmentation parameter
is not guaranteed to give similar results in both images. Thus, matching may
occur across levels of segmentation. The algorithm appears in Fig. 3.

Beginning at the the top (coarsest) level of segmentation, region L of the
left image matches region R of the right whenever

max S(L,]%) = R,

ReA
where A is the set of regions of the right image eligible to match L, and
s(L, R) a measure of similarity between regions (the precise formulation is in
§4). If L at some level fails to find its match in the other image, then its
descendents in the segmentation hierarchy are added to the list of regions to
be matched. Whenever a match is found, then both matched regions and all

their descendents are no longer considered open for matching.

3 Segmentation

Edge detection and region growing are two intimately related aspects of image
segmentation, yet are rarely used together. In this paper, we exploit their
natural complementarity to enhance the segmentation.

A fundamental tenet of this paper is that segmentation in the pair of stereo
images should be done cooperatively, this is, segmentation in the left should
take into account segmentation in the right, and vice-versa. In the interests
of algorithm efficiency, we pre-compute segmentations at various granularities
and store them in a hierarchical region adjacency graph structure [13, 11].
Thus, for a region at a given level, splitting it into subregions or merging it
with other regions just involves changing levels in the graph structure.

We present here the creation of the segmentation hierarchies, which can be
carried out independently in each image. All segmentation levels are considered
equally valid in that we make no decision here as to which level segmentation
a pixel belongs. As described in §4, it is the interaction between images which

decides the ultimate segmentation.



[[done on Mac

Figure 2: Schematic diagram of the hierarchical region graph structures. The se-
quence of segmentations for the left image shows the parent-child relationship be-
tween regions at different levels. The arrows between regions of the left and right

images shows that matching may take place between different levels.



set L = {regions of coarsest segmentation of left image};
set R = {regions of coarsest segmentation of right image};
while (L or R has changed)
for (every region in L)
determine eligible regions in R;
for (every eligible region R)
compute similarity s(L, R);
while (Mmarer, Religible to match 15(L, R)) sufficient
match [, R;
remove [ and all relatives from L;
remove K and all relatives from R;
for (every L € L)
add descendents to L;
for (every R€ R)
add descendents to R;

Figure 3: The organization of the process to find a match in the right image for

regions of the left image. Everything is similar for regions of the right image.

3.1 Edge detection

Edge detection estimates how strongly image pixels correspond to regions of
intensity change, based on the assumption that such changes in the image
correspond to relevent physical events. The Canny edge detector [3], approxi-
mated as the first derivative of a Gaussian, satisfies the three desirable criteria
of low probability of missing an edge, good localization, and low probability
of multiple responses per edge. We use an improved implementation of this
edge operator [7] from which to estimate image contours. The contours act
as barriers in the merging process: neighbouring pixels are prevented from
merging across contours, see §3.2.3. Figure 4 shows a simple example of how

edge information can improve the segmentation.

3.2 Region growing

Both images are segmented independently into a hierarchy of candidate, or

potential, segments, but with no commitment to any particular one. Thus, we



without contours: 1004g_s2
with contours: 1002g_s2
contours: 1002g_c

or the synthetic glass

Figure 4: Comparison of the use of edges in the segmentation algorithm. top: (left)
original; (right) without using edges. bottom: (left) with exclusion of edge pixels,
note the green region at the bottom which contains long edges in its interior; (right)

avoids passing through edges for merging two regions.

produce fine to coarse segmentations Sy, S1,...,95,. Segmentation proceeds
‘upwards’ (fine to coarse) from an initial level by merging neighbouring regions

satisfying homogeneity conditions (§3.2.3).

3.2.1 Initialization by quadtree operations

The region merging algorithm, described in the next section, may begin with
pixel-sized regions. For reasons of efficiency, however, we begin with initial re-
gions created by standard quadtree operations [17]. This simple pre-processing
allows a substantial reduction in the number of initial regions.

Essentially, we utilize the first part of the merge algorithm in [14]. Let the
image pixels be (ij) and define square blocks of four ‘pixels’ at various levels
by

B, = (ij)
B, = BijiUB i, UBa UBH

where ¢; = 21, 51 = 27.
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Then the four blocks B!~} . BI=L - BI=t  BI=L . are considered merged

11,510 a4+l Fi,n 41 Fa a4
into Bf i whenever
9.

0

minmax’

mex I(4,§) —minl(i,j) <t
3 3

for some appropriate threshold of the image intensities I(¢, 7). Note that con-
tour information (see §3.2.3) is already incorporated at this level, so that blocks

are not merged when they are separated by sufficiently strong edge elements.

Figure 5 shows a typical region initialization produced by the quadtree merges.

1002g_q

Figure 5: top: original stereo pair;bottom: quadtree using contours.

3.2.2 Levels of segmentation

Since we haven’t found a principled way to set parmeters to produce ‘the’ seg-
mentation, we defer committing ourselves to a particular segmentation at this
stage, and generate instead a hierarchy of segmentations at various thresh-
olds. These are computed independently in each image, and are to be taken
as a pre-processing step. The determination of the actual segmentation occurs
in conjunction with stereo matching, and merging/splitting regions is then

equivalent to moving up/down in the region hierarchy.
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We begin with the square quadtree regions output from the initialization,
and choose fairly selective parameters ¢ (i.e., permitting only the most ob-
vious region merges). The initialization is not a segmentation in the sense
of §2.1 since it is not maximal. That is why the first level considered is the
segmentation completed from the initialization using some predicates Py.

The parameters are then progressively relaxed, as in the outer while loop
of Fig. 1, permitting more permissive merges, and the resolution of the seg-
mentations of the hierarchy moves from fine to coarse. For each characteristic
k, the progression of thresholds 9 < ¢; < --- < % controls the shape of the
segmentation graph, and is such that the levels become finer towards the top.
Generally, the ultimate {} are taken to be very large to permit all possible
region merges.

Table 1 shows the organization of the parameters of the various segmenta-
tion levels. Note that each level is created by the application of multiple merge

predicates to pairs of adjacent regions, as in the middle loop of Fig. 1.

predicate | threshold | segm level
Fy to
: : n coarse
Py tm
£y o
: : 1
P} t
£y o
: : 0 fine
Py (s
= 10 quadtree | initialization

Table 1: Successive predicates create various segmentation levels. The quadtree

level is the initialization, zero is the finest level, n the coarsest.

3.2.3 Merge conditions

The result of the initialization by quadtree merging is to segment the image
into square regions satisfying intensity homogeneity conditions. Grouping next

considers adjacent regions (rather than regions with a common quadtree parent
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as in the initialization). Adjacent regions Rﬁ,R; are merged into one region

whenever the predicate P} is true, where, given a cost-of-merging function C?,
Pk, Ry = (GRS R < 1)

Multiple merging predicates may be successively applied at each level, as

in Table 1. Our criteria are derived from simple image statistics, e.g., P}

minmax

and P! __ are based on the cost functions
Cﬁninmax(RiW Ré) = maX(Ri' U Ré) - mm(Rﬁ U Ré)

! (Ri»,Ré) = |mean(Ri»)—mean(Ré)|.

We consider edge elements as ‘special regions’ with the following properties

1. edge regions merge to other edge regions (to create linked edges), but

cannot merge to ‘normal’ regions;

2. an edge region separating two regions can prevent the merging of those

regions.

l

Thus, a merge between adjacent R, Ré is considered only if P!y _ is true,

7 dge

edge length(R!, R%) i
frontier length( R}, R%) < ledge | 1

Pl (B R = (

where frontier_length is the boundary length between the two regions (the
number of pixels where the regions are adjacent), and edge_length is the num-
ber of actual edge pixels that separate the two regions (pixels of edge regions
that are adjacent to both regions).

If we did not use this criteria, two similar regions (in the sense of predicates)
that are separated by an edge region and that have a small frontier_length
would be merged, leaving the edge region isolated inside the new region.

The grain of edge elements should be appropriate to the grain of the regions.
As the segmentation into regions becomes coarser, weak edges are converted
into normal regions and disappear by becoming merged into larger regions.
Thus, at the coarsest segmentations, only strong edges remain to constrain

the merges.

3.2.4 Merge ordering

The order in which pairs of regions are merged has been shown to influence
the results of merging algorithms [18]. Thus, the inevitable order dependence

must be motivated by something more rigourous than just the image traversal
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strategy. We first associate a cost to merging each mergeable pair of adjacent
regions, and then merge regions in order of increasing cost. Once the list of
merge costs has been exhausted (perhaps up to some threshold), there is no
more to be done with the current predicate. We then consider the next predi-
cate, or, if all predicates have been applied to this level, relax the segmentation
parameters to permit more permissive merges, and carry out the above process
at the new segmentation level. This is repeated until the cost of region merges
becomes prohibitive.

The resulting segmentations at various granularities are shown in Fig. 6.

[1i002g_s[0. . . 3]

Figure 6: Levels of segmentation of the left image (fine to coarse from upper left to

lower right).

4 Region based stereo matching

The region based matching procedure exploits the hierarchical region graph
described in the previous section. It is during this matching process that
we make a committment to a particular segmentation level for each region.
Recall that the creation of the segmentations is effectively just a pre-processing
step and doesn’t change the fundamentals of the algorithm. Contrary to the

segmentation, which proceeds bottom-up (fine regions to coarse), matching
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begins at the top of the segmentation tree and works downwards. This makes
better use of larger regions where the matches are expected to be more reliable.

Let £, R be the sets of all the regions at the top (level n) of the segmentation
structures of the left and right images respetively. Given region L7 in the left
image, we consider a set of regions A? C R of the top level of the right image
which are admissible matches to L. The set A? could, in principle, be the
entire R, but when we are given the geometry of the cameras, we can restrict
A to regions whose centre of gravity is ‘close’ to the epipolar of the centre of
gravity of L?. In addition, we further restrict the regions of A" by imposing
rough size-similarity (based on the number of pixels) and circularity (based on
the first moments) constraints relative to L7.

For each R? € A7, we then compute a measure of overall similarity
s(Ly, RY) prsp (L7, RY),

for weight w, and various resemblance functions between regions

min(A,(L), A,(R))
max(A,(L), A,(R))

sp(L,R)=1—

A, 1s some attribute of a region, for example, intensity mean, intensity vari-
ance, spatial moment, etc. All pairs of matchable regions are stored in list
form by order of decreasing similarity. Note that the left region L; contributes
a pair to the list for each element of A;, and that these pairs are not necessar-
ily contiguous on the list since they are ordered by similarity. Matching then
proceeds simply down the ordered list of similar pairs. Once a region finds a
match, any other pairs of which it is a member are henceforth ignored, since
their constituents are, by construction, less similar. Pairs are considered in
order and removed from the list until the measure of similarity between the
next pair falls below a given threshold.

It is at the moment of matching that we finally make a definitive committ-
ment to a particular segmentation. Only when a region is finally matched, do
we consider that its pixels constitute a region in the sense of the final segmen-
tation. If it happened that all regions were matched at the coarsest level, that
is, all the measures of similarity were sufficient, there would be no reason to
go further and we would consider it the segmentation. This is (unfortunately)
unlikely to occur, hence we proceed iteratively, downward in the tree.

All regions which remain unmatched are split, that is, their children (pre-
viously computed) are all added to the region lists £, R and participate in the

further matching. These regions now undergo exactly the matching process
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described above. With the inclusion of a level of children, inter-level matching
becomes possible: s(L?, R) may indicate more similarity when R belongs to
some level other that n. Fach iteration descends one level in the segmentation
graph and adds children regions from the new region to the sets of matchable
regions. When the iteration is carried to the limit, it leads to testing the match-
ability of each unmatched region in the left image to each unmatched region
at any level in the right. Note that this is not the same as testing all regions
against all other regions, with its potential for combinatorial explosion, since
regions are eliminated from consideration once they become matched (along
with their parents and children).

Matching stops when there is nothing left to do, when no remaining pair of
admissible matches is sufficiently similar (and this is guaranteed to take place,
since there are finitely many regions and some are eliminated from considera-
tion at each iteration). It is also only now that we consider a final segmentation
to have taken place through the interaction due to the matching component
between the left and right potential segmentations. It may well be that the re-
sultant segmentations are incomplete in that not every image pixel is assigned
to a particular region, since not every region can necessarily be expected to find
a match. However, we have found that leaving some regions unmatched does
not detract from the overall quality of the results. It seems, in fact, preferable
to accept only reliable matches than to force the maximum number of matches

and accept matches of dubious quality.

5 Conclusions

Our approach to stereo image analysis, presented in this paper, is based on
three tenets, which address the basic problem of how to make use of as much
image information as possible. First, image segmentation and matching should
not be independent successive processes. There is information in each image
relevant to the analysis of the other, and this should be incorporated into
the segmentation as well as the matching step. Second, regions possess more
structural information which is stable to small changes of viewpoint than do
edges or points. Hence, we expect to make more stable matches by taking
regions as the primitive elements. Third, and related to the previous point,
edge- and region-based methods are naturally complementary, and should be
used together for segmentation; neither should be considered as an end in itself.
We have developed programs to test these assumptions, and we feel that the

results are indeed promising.
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au choix: i00[1-9][gd]-m*

Figure 7: Top: Matching regions. Bottom: resultant segmentation.
Acknowledgements

Rachid Deriche provided an implementation of the Canny edge operator. Fran-
cis Ledru created the synthetic office scene, and Olivier Faugeras supplied the

stereo pair of the office scene.

References

[1] Nicholas Ayache and Francis Lustman. Fast and reliable passive stereo-
vision using three cameras. In International Workshop on Industrial Ap-
plications of Machine Vision and Machine Intelligence, Tokyo, February
1987.

[2] Stephen T. Barnard and Martin A. Fischler. Computational stereo. Com-
puting Surveys, 14(4):553-572, December 1982.

[3] John Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698,
November 1986.



[4]

[10]

[11]

[12]

[14]

17

Jean-Pierre Cocquerez and André Gagalowicz. Mise en correspondence
de régions dans une paire d’images stéréo. In Machines el Réseaux Intel-
ligents, Paris, May 1987.

Jean-Pierre Cocquerez and Olivier Monga. Matching regions in stereo-

vision. In Proceedings of the Fourth Scandinavian Conference on Image

Analysis, Stockholm, 1987.

Edgar A. Cohen, Jr. Generalized sloped facet models useful in multispec-

tral image analysis. Computer Vision, Graphics, and Image Processing,

32:171-190, 1985.

Rachid Deriche. Using Canny’s criteria to derive a recursively imple-

mented optimal edge detector. International Journal of Computer Vision,

pages 167-187, 1987.

Rachid Deriche and Jean-Pierre Cocquerez. Extraction de composantes
connexes basee sur une detection optimale des contours. In Actes, Ma-

chines et Reseaux Intelligents, Cognitiva 87, Image FElectronique, volume

Tome 2, Paris, Mai 1987.

Richard O. Duda and Peter E. Hart. Pattern Classification and Scene
Analysis. Wiley, New York, 1972.

Olivier D. Faugeras. A few steps toward artificial 3 d vision. Technical

Report 790, INRIA, February 1988.

André Gagalowicz and Olivier Monga. A new approach to image segmen-
tation. In Proceedings of the Fighth International Conference on Pattern
Recognition, Paris, October 1986.

André Gagalowicz and Michel Peyret. Reconstruction 3d basée sur une
analyse en régions d’un couple d’images stéréo. In Proceedings of Pixim,

Paris, October 1989. In preparation.

J.J. Gerbrands and E. Backer. Split-and-merge segmentation of SLAR-
imagery: Segmentation consistency. In Proceedings of the Seventh In-

ternational Conference on Pattern Recognition, pages 284-286, Montréal,
July 1984.

S.L. Horowitz and T. Pavlidis. Picture segmentation by a directed split-
and-merge procedure. In Proceedings of the Second International Joint
Conference on Pattern Recognition, pages 424-433, 1974.



[15]

[16]

[17]

[18]

18

Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active
contour models. In Proceedings of the First International Conference on
Computer Vision, pages 259268, London, June 1987.

Jean-Michel Morel and Sergio Solimini. Segmentation d’images par méth-

ode variationnelle: une preuve constructive d’existence. Comptes Rendus
de 'Académie des Sciences, 1988.

Hanan Samet. The quadtree and related hierarchical data structures.
Computing Surveys, 16(2):187-260, June 1984.

Steven W. Zucker. Region growing: Childhood and adolescence. Computer
Graphics and Image Processing, 5:382-399, 1976.



