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Abstract

Variational Methods have been frequently used for surface reconstruction and contour extraction

(snakes). We present a surface reconstruction method where we assume the surface composed of two

regions of di�erent types of smoothness. One region of the surface models a \lake" (constant height

region with uphill borders). It is surrounded by the other background region which is reconstructed

using classic surface regularization.

The boundary between the two regions, represented by a closed curve is determined with the

help of an active contour model. Then the surface is reconstructed by minimizing the energy terms

in each region. Minimizing a global energy de�ned on the couple of unknowns { boundary curve

and surface{ permits to introduce other forces on the curve. The surface reconstruction and contour

extraction tasks are then made together.

We have applied this model for segmenting a synthetic Digital Terrain Model (DTM) image which

represents a noisy mountain and lake.
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1 Introduction

Surface reconstruction from noisy data is a fundamental problem which has produced a signi�cant amount

of work since many years. Most approaches to surface reconstruction are based on a variational formulation

of the problem (see for example [9, 2, 15, 16, 12, 7] and references there). This gives a model of the surface

regularity and constraints. Usually the constraints are de�ned by di�erent types of data and the regularity

is the same all over the surface. When regularization is uniform, discontinuities are reduced or removed.

Many authors have proposed models to introduce discontinuities in the surface or to smooth the surface

adaptively (as in [16, 3, 14, 1]).

We propose a model which corresponds to the particular case when the surface can be segmented into two

regions of di�erent regularities. One region models a \lake" surface while the other models the background.

The lake region is de�ned to be horizontal, with uphill borders and its boundary locates on tangent plane

discontinuities. The surface function on this region is constant. On the background, the surface is smoothed

using a classic �rst order regularization. As in other models dealing with discontinuities, the problem is that

these are unknown. In our model, we assume that the discontinuity set is a closed curve which delimit the

\lake" region. Our regularization formulation leads us naturally to locate this curve using an active contour

model or \snake" (see [10, 5]). In a �rst approach, we determine the boundary with a classic snake with

a potential adapted to the sought type of borders. We then calculate the surface in each region using the

energy minimization.

A second approach consists in considering a global energy de�ned on the couple of unknowns{surface

and boundary. This makes appear a new force acting on the snake to minimize the surface reconstruction

energy.

Our model combines the two problems of surface reconstruction and contour detection using either two

separate variational formulations or one global energy to minimize. While we limited ourselves to two

connected regions, this could be applied to regions with many connected components using many snakes.

We present results obtained on a synthetic Digital Terrain Model (DTM) representing a lake and moun-

tains. We added noise to the original image to show how the reconstruction behaves. In Fig. 2, we show a

3D plot of these images.

In Sections 2 and 3 we give the necessary background for surface reconstruction and active contour

models. We then de�ne our model in Section 4.

2 Energy-minimizing Surface Reconstruction

2.1 General Approach

Regularization techniques, �rst introduced as Tikhonov's stabilizers, have been extensively used in vision

research (see for example [9, 15, 7] and references there).

Regularization of the problem of surface reconstruction u(x; y) given data d(x; y) is obtained by mini-

mizing the following energy:

E(u) =

Z

f(u(x; y)� d(x; y))

2

gdxdy + �

2

Z

kruk

2

= E

data

(u) + E

reg

(u) (1)

We minimize simultaneously two terms which correspond to the desired properties:

� a criteria of the faithfulness to the data d; and

� a regularizing term containing derivatives of the function.
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The solution u minimizing the energy is a uniformly smoothed version of the data d. Coe�cient �

appears to be a scale factor of the smoothing of the surface. Using a �nite di�erence discretization with

the image grid as nodes gives an iterative low pass �lter of the image. We show the result of this uniform

smoothing on our DTM image in Fig. 2.

2.2 Dealing with discontinuities. Mumford & Shah Energy

The regularizing term �

2

R

kruk

2

dxdy has the same smoothing e�ect all over the surface. Large variations

of elevation in the surface, corresponding to discontinuities between two regions, are attenuated or removed

by the smoothing. To avoid this problem, we can either make parameter � depend on position (x; y) (as in

[16, 8, 3] for example), or introduce discontinuities with penalty (as in [14, 1, 2]).

We will describe the Mumford & Shah Energy-minimizing segmentation and take it as a starting point

for a simpli�ed formulation in our particular case. The authors of [14, 2] introduce a penalty term at each

point where a discontinuity is detected, instead of its contribution to E

reg

. This set of discontinuities is also

an unknown of the problem and an argument of the energy. The energy becomes:

E(u;B) =

Z

R

(u� d)

2

+ �

2

Z

R�B

kruk

2

+ � l(B) (2)

where R represents the image domain, and B is a set of boundary points where discontinuities of u are

admitted. The last term l(B) is the length of this set of contours. The constant � can be interpreted as

a contrast detection factor since a point will choose to be in B depending of the lower cost either of the

gradient contribution in E

reg

or paying a penalty �.

The regularizing e�ect operates only inside the regions bounded by B. Thus u is piecewise regular and

can be discontinuous along B. On the other hand the penalty term has a regularizing e�ect on the shape of

the boundary B. This is the advantage of taking a penalty term versus modifying only � locally.

This energy being non convex, Blake and Zisserman introduced the graduated non convexity- GNC

(details can be found in [1, 2]). A problem in the GNC approach is that the boundary B is not always a set

of closed curves.

A simpli�ed version of this problem was proposed in [14] for a one dimensional signal and in [13, 11] for

images. There, the function u is supposed piecewise constant and the gradient term is removed. The energy

is then:

E

c

(u;B) =

Z

R

(u� d)

2

+ � l(B) (3)

where function u is constant inside each region de�ned by boundary B. When B is given, the function which

minimizes E

c

is easy to �nd. It is equal on each region to the mean value of the data d in this region. Then

the minimization is made only on B using a region merging approach. This ensures closed contours but the

regularity of these curves is not good enough.

Therefore we propose a model between the two previous approaches using active contours for the bound-

ary. In the next section we give a brief de�nition of active contour models.

3 Active Contour Model

We �rst recall some de�nitions and formulate the mathematical problem. For a complete description see

[10, 5, 6].

The deformable contour model is a mapping in a space of admissible deformations A:

[0; 1]! R

2
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s 7! v(s) = (x(s); y(s))

and a functional E

snake

. This functional represents the energy of the model which will be minimized and

has the following form:

E

snake

: A ! R

v 7! E

snake

(v) =

Z

1

0

w

1

kv

0

(s)k

2

+ w

2

kv

00

(s)k

2

+ P (v(s))ds

where v

0

and v

00

denote derivatives of v and where P is the potential associated to the external forces. The

potential is computed as a function of the image data according to the desired goal. If we want the snake to

be attracted to edge points, the potential should depend on the gradient of the image. In the following, the

space of admissible deformations A is restricted by periodic boundary conditions to produce closed curves.

If v is a local minimum for E

snake

, it satis�es the associated Euler-Lagrange equation:

(

�(w

1

v

0

)

0

+ (w

2

v

00

)

00

+rP (v) = 0

+periodic boundary conditions.

(4)

In this formulation each term appears as a force applied to the curve. A solution can be viewed either as

realizing the equilibrium of the forces in the equation or reaching the minimum of the energy.

Thus the curve is under control of two types of forces:

� The internal forces (the �rst two terms) which impose the regularity of the curve. The constants w

1

and w

2

impose the elasticity and rigidity of the curve.

� The image force (the potential term) pushes the curve to the signi�cant lines which correspond to the

desired attributes. It is de�ned by potential P (v) = �krI(v)k

2

: Here, I denotes the image. The curve

is then attracted by the local minima of the potential, which means the local maxima of the gradient,

i.e. edges.

Other forces can be added to impose constraints de�ned by the user. We will also make use of the in
ation

force de�ned in [5]. This in
ation force permits to be less demanding of the initialization and to give a

simpler initial curve.

After formulating the evolution problem (see [5] using �nite di�erences with time step � and space step

h) we obtain an iterative scheme of the form

(I + �A)v

t

= (v

t�1

+ �F (v

t�1

)); (5)

where I denotes the identity matrix.

A correct choice for parameters is guided by numerical analysis considerations. We want the coe�cients

within the rigidity matrix A to have similar orders of magnitude. In [5], we obtain good results when the

parameters are of the order of h

2

for w

1

and h

4

for w

2

, where h is the space discretization step.

4 Mountain and lake reconstruction

4.1 Constraints De�nition

Our work is motivated by the application to reconstruction of Digital Terrain Model (DTM) images where

we know the presence of a lake. In our examples, we limit ourselves to the case of only one lake but the case

of many lake-like regions can be dealt the same way.

A lake surface is characterized by the following geometric properties:
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1. there is a tangent discontinuity at the boundary;

2. the surface is horizontal;

3. the boundary is at a higher level than the lake.

In such a case, we would like to have a surface function u obtained by segmentation into two regions:

� the interior of the lake L, which is a constant region,

� the background (R� L) which has to be smoothed.

We thus de�ne our solution using an intermediate model between (2) and (3) where we have to �nd:

� a closed boundary B separating the lake and background,

� the level of the lake u

0

; this is the constant value of u inside the curve,

� the smoothed data u outside the lake, preserving the constraint that the border is at a higher level

than the lake.

4.2 Separate Energy Minimizations

We describe in this section a simple approach where we determine �rst the boundary and then, for this given

boundary, calculate u inside and outside the curve. The three following subsections correspond to items 1

to 3 in the �rst enumeration of Section 4.1.

4.2.1 Boundary Finding

We are looking for the boundary of the lake using an active contour model attracted by the discontinuities

of tangent plane (item 1.).

Active Contour Model. The boundary B is supposed smooth and locates on the edge of the lake.

It is parameterized by v(s) = (x(s); y(s)). We use an active contour model locating a closed curve v(s)

minimizing the energy:

v 7! E

snake

(v) =

Z

1

0

w

1

kv

0

(s)k

2

+ w

2

kv

00

(s)k

2

+ P (v(s))ds

The initial curve is manually given inside the lake and then in
ated as in [5]. The potential P has to be

chosen such that the minima of P correspond to lake-like boundary. This boundary is usually called a ramp.

A classic step edge detector does not exactly �t this kind of edges and we de�ne the potential accordingly.

Lake edge Detection. Classic edge detectors are adapted to �nd step edges. This corresponds to a

gray-level discontinuity, while a lake edge corresponds to a tangent plane discontinuity. Double directional

derivative in the direction of the image gradient detects tangent plane discontinuities (see Fig. 1). We thus

de�ne the attraction Potential by P (v) = �k

@

2

I(v)

@V

2

k

2

: where V = rI is the gradient vector direction. The

directional derivative of I in the direction V is de�ned by

@I

@V

=

V

kV k

:rI and the successive derivatives of I

are:

@I

@V

=

rI:rI

krIk

= krIk;

@

2

I

@V

2

=

rI:r(krIk)

krIk

(6)

Fig. 2 shows applications of this edge extractor on our image.
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c. Second derivative

b. First derivative: step edge

a. Lake edge

Figure 1: Successive derivations.

4.2.2 Constant Region

Since the lake is perfectly horizontal (item 2.), the inside region is reconstructed by a single elevation level

u

0

. As in the case of the energy in (3), we have to calculate only one value u

0

which gives a minimum error

on the inside lake region L for:

E

const

(u

0

) =

Z

L

(u

0

� d)

2

It is easy to see that the minimum is reached for the mean value on the region:

u

0

=

1

jLj

Z

L

d(x; y)dxdy where jLj =

Z

L

dxdy: (7)

4.2.3 Outside Region Reconstruction

In the outside region R � L, we only apply the \classic" regularization of section 2.1 to which we add a

boundary constraint (item 3.). The third item at the beginning of Section 4.1 demands the level at the

boundary to be higher than the lake level. This constraint, forcing the borders of the lake-region to go

uphill, is added in the energy.

At each point on the boundary, we can de�ne n

s

, the normal to the external surface and and n

c

, the

normal to the boundary curve (which is in the horizontal plane by de�nition). The constraint that the

level outside the lake is higher than inside can be de�ned by the dot product (n

s

; n

c

) > 0. We impose this

constraint by adding to the energy to minimize the following term:

E

border

=

Z

�

(n

s

; n

c

)

2

(8)

where � corresponds to points of the boundary B determined by the \snake", such that dot product (n

s

,n

c

) is negative.
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We can show that using the discretization of the image grid, this dot product can be replaced by (u�u

0

)

where u is the point level outside and u

0

is the level of the lake.

The outside region energy becomes:

E

outside

(u) =

Z

R�L

f(u(x; y)� d(x; y))

2

gdxdy + �

2

Z

R�L

kruk

2

+

Z

�

(u� u

0

)

2

(9)

In this �rst approach, we minimize three energy terms one after the other. The �rst step determines the

boundary B (de�ned by v) and the others calculate the surface u. Results are shown in Figs. 3 and 3.

E

const

and E

outside

depend clearly in their de�nition of the detected boundary v minimizing E

snake

.

However, this dependence does not appear in the minimization since the boundary is determined in the �rst

step using the active contour model and does change afterwards. Therefore, in the next section, we de�ne

a global energy to minimize. This makes the surface terms interact with the active contour model.

4.3 Global Energy

We now consider the global energy:

E

g

(u; v) = E

snake

(v) +E

const

(u; v) + E

outside

(u; v)

= E

snake

(v) +

Z

L

(u

0

� d(x; y))

2

dxdy + (10)

Z

R�L

(u(x; y)� d(x; y))

2

dxdy + �

2

Z

R�L

kruk

2

+

Z

�

(u� u

0

)

2

We still minimize the energy successively with respect to the curve v and the surface u, but now take into

account the dependence on v of E

const

and E

outside

. This means that when we determine the boundary

curve v, other forces are added to deform the \snake".

Assuming we have an estimation of u everywhere ( using a smoothed version of d everywhere minimizing

the energy of (1)), we minimize the energy with respect to the boundary de�ned by curve v. We now have

a new global \snake" energy:

E

g

snake

(v) = E

snake

(v) +

R

�

(u� u

0

)

2

(11)

+

R

L

(u

0

� d)

2

dxdy +

R

R�L

(u� d)

2

dxdy + �

2

R

R�L

kruk

2

The �rst two terms correspond to the integral of some function on the contour. The other terms correspond

to the integral of a function either inside or outside this contour. To minimize the energy we have to calculate

the di�erential of each energy term since we deform the curve v in the direction opposite to the gradient of

the energy as seen in Section 3 and [5] for \snakes".

4.3.1 Curve Integral

This type of term already appears in the \snake" Potential energy:

E

curve

(v) =

Z

B

f(x; y)dB =

Z

l

0

f(v(s))ds (12)

The di�erential is the integral of the gradient of f :

dE

curve

(v):h =

Z

l

0

rf(v(s))h(s)ds (13)
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The corresponding force applied to the curve is F

curve

= �rf(v(s)) which is the direction of steepest descent

in f at each point of the curve. This force is already known for the attraction potential P pushing toward

contours.

This type of force also appears in the second term of E

g

snake

which is the constraint of E

border

=

R

�

(u�

u

0

)

2

=

R

B

((u�u

0

)

�

)

2

since � is the subset of point of B such that (u�u

0

) < 0 and (u�u

0

)

�

is the negative

part of (u�u

0

). De�ning P

border

(x; y) = ((u�u

0

)

�

)

2

, the corresponding force is F

border

= �rP

border

(v(s)).

4.3.2 Surface Integral

We have to calculate the di�erential of an energy of the type:

E

surf

(v) =

Z




f(x; y)dxdy (14)

where 
 is the region delimited by the curve v. Suppose h(s) is a small deformation of the curve v and 


1

is the deformed region. The di�erence of energy is:

E

surf

(v + h)�E

surf

(v) =

Z




1

f(x; y)dxdy�

Z




f(x; y)dxdy (15)

=

Z




1

�


f(x; y)dxdy�

Z


�


1

f(x; y)dxdy

When h is small the two regions 


1

�
 and 
�


1

are located around the boundary of 
 which we call B,

and it can be shown that the di�erential is:

dE

surf

(v):h =

Z

B

f(x; y)(n; h)dB (16)

where n is the external normal to the curve, this means directed outside 
. The corresponding force

F

surf

= �f(x; y)n can be interpreted as pushing the curve outwards when f < 0 and inwards when f > 0.

In this way it is clear that the integral of f over 
 always decreases.

Back to our problem, the energy involving data d writes:

E

data

=

Z

L

(u

0

� d(x; y))

2

dxdy +

Z

R�L

(u(x; y)� d(x; y))

2

dxdy (17)

where L is the inside region of boundary B and R�L the outside region. The external normals are opposite

in these terms and the di�erential is:

dE

data

(v):h =

Z

B

f(u

0

� d)

2

� (u� d)

2

g(n; h)dB; (18)

where n is the external normal to the lake region L. The data force which is now added to the other forces

applied to the curve is

F

data

= �f(u

0

� d)

2

� (u� d)

2

gn (19)

This force pushes inwards when (u

0

� d)

2

> (u � d)

2

, which is the case if the level d is far from u

0

and

means that we are outside the lake. This helps correcting the boundary of the lake considering the data d

when the contour information is not su�cient. This also permits us to initialize the curve outside the lake.

Using a \classic snake" with initial curve outside the lake would not work in our case since there are many

edges that would stop the curve and would not allow it to reach the exact boundary. This was the reason

why we used previously an initial curve inside the lake. The force F

data

avoids this problem and makes the

curve go down the \hill" to the lake level.
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The other term with the gradient is not used since we already replaced it in the snake energy by the

potential P . We then have a force to attract the curve to high gradient values.

Beginning with a curve which is no more inside the lake, we apply the data force together with the other

snake forces to make it stabilize to the new boundary B. The interior elevation u

0

is computed between

iterations since a change of B makes u

0

di�erent. At the equilibrium, we determine the outside surface also.

The result is shown in Fig. 3. We remark that some parts of the boundary went downhill a little too much

due to the data force and regularization.

A second example is shown in Figs. 4 and 4. The method is applied to a synthetic image of the same

kind but where there is at one border of the lake a staircase like shape. This makes appear step edges close

to the contour of the lake and the snake may be stuck to these edges before it reaches the lake (see Fig.

4). But when the global energy is used, the inside surface energy term pushes the snake towards the lake

boundary passing through the step edges.

A further study of the parameters and may be their evolution with iterations should improve these

results.

5 Conclusion

We presented a surface reconstruction method based on a variational formulation. A new aspect of this

work is that we assume the surface is composed of two regions of di�erent smoothness. One is planar and

horizontal while the other is modeled by a membrane energy. This applies for a Digital Terrain Model which

represents a lake surface and the mountainous landscape around. The altitude inside the lake is constant

minimizing the error. The surface outside is smoothed using �rst order regularization.

The main contribution of this work is that we determine the surface together with the boundary of the

lake. This boundary is located on discontinuities of tangent plane and the altitude has to increase along

the external normal to the border. This contour, de�ned by a closed regular curve, is found �rst using an

active contour model (\snake") with external forces adapted to the geometric constraints of our surface and

depending also on the surface energy. The surface is calculated easily inside and outside the border using

the two surface models.

Although we used only one \snake" and two regions, this could apply to a surface with many lake-

like regions using many \snakes". As a future extension of this work, we plan to add in the model other

di�erential constraints to include the detection of a \river" like contour. We also wish to apply this method

to other types of surface reconstruction like in [4] where di�erential constraints on the surface normals were

used for surface extraction and reconstruction in 3D medical images.
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Figure 2: Original, noisy DTM; lake edge extraction; classical regularization.
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Figure 3: Contour Initialization and di�erent DTM reconstructions: with constraints on original and noisy

DTM, with global energy on noisy DTM.
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Figure 4: Original noisy DTM; result with global energy; initialization for global energy; contour stopped

by the �rst edges encountered when using a classic snake. the initialization is the same as in the previous

�gure.


