
1A New Approach of Vector Quantization Applied toImage Data Compression and Texture Detection.
Laurent D. COHENINRIA, Domaine de Voluceau,RocquencourtB.P. 105, 78153 Le Chesnay Cedex, France.Proceedings of 9th International Conference on PatternRecognition, Rome, 1988ABSTRACTThis paper describes a new method based on Vector Quantization (VQ). Instead of quantizingblocks of the image by the vectors, the vectors are �rst rescaled to be the closest to the block.We are looking for the most representative patterns of the image, two blocks having the samepattern if they are similar after translation and scaling in gray grey levels. A new way of VQ isalso introduced using a little image which captures all the useful information instead of separatedquanta. The vectors to consider in the codebook become the set of all the possible blocks obtainedby scanning a blocksize mask along the rows of this little image. This can be applied to pictureencoding and texture detection.



21 IntroductionSeveral approaches of image data compression are related to the decomposition of an image or asub-block in a well chosen base of the vector space of the matrices . Compression is then obtainedwhen the image can be decomposed on a small number of vectors of the base. Most of the timeit means that the orthogonal projection of the image on a vector space of small dimension gives asu�ciently good approximation.The transform applied to the matrix is the �rst of the three operations which form the generalscheme of image data compression as presented in [2] :Mapper-Quantizer-Coder. The role of the mapper is to make the two other operations moree�cient.For example for orthogonal transforms, the image is decomposed in a base which usually repre-sents di�erent scales of frequencies. The goal is to �nd for a given family of images, a base such thatall the images of this family can be well approached by giving only information on a small numberof coordinates of the decomposition. This means that the total energy is concentrated on the �rstvectors of the base. The optimal base which packs the maximum average energy into the �rst kvectors of the base for all k is the Karhunen-Loeve transform. Although it is optimal, it is usuallydi�cult to compute and is often approached by other unitary transforms such as Cosine,Fourier orHadamard transforms ( see [6] and [4]).In predictive methods, the image is approached by its orthogonal projection in the space gen-erated by the constant image and space translations of the original image. Assuming a Markovianmodel on the image justi�es that only the projection on small translations are kept.In this paper we want to �nd for a given image a set of vectors su�cient to project the sub-blocks of the image in the two dimensional vector spaces generated by two vectors among this setof computed vectors to minimize the mean square error. It turns out from study of orthogonaltransforms that the mean of a block is the component with the most important energy. Fromthis remark we only consider in this paper the two dimensional vector space generated by theconstant vector (all coordinates equal to 1) and one vector among the set of computed vectors.This corresponds to scale changes in the grey level values. This has e�ect to describe by the samepattern two blocks that are similar but which have di�erent luminance.The idea is to use vector quantization to determine the best vectors, that is the most represen-tative vectors of the image. That means that we want to minimize the average Euclidean distancebetween a sub-block of the image and the set of two dimensional spaces. So each sub-block isencoded by the index of the most similar vector in the list and the two coe�cients of the projectionof the sub-block in the correspondent vector space. The set of vectors can either be a list of distinctvectors or the family of sub-blocks of a little image. In the latter case we compute a little imagewhich contains the most representative patterns of the original image.This technique is particularly e�cient when the image is formed of repeated patterns which havedi�erent luminance levels. The algorithm extracts then from the image the caracteristic elementsit is composed of. Thus we obtain a description which gives on one hand the patterns which are



3the closest to the structure of the image and on the other hand their distribution along the image.The new aspect of this method is to project a vector into the direction of a quantum insteadof merely comparing the vector to the quantum. This is equivalent to scaling in the range of greylevels. The scaling can also be made in the space directions. This idea is related to theory ofwavelets introduced by Y.Meyer ([5]) and Scale-Space decomposition of A.Witkin ([9]). In eithercase the idea should be to take the most important components of the decomposition.This allows us to �nd only one pattern to describe objects which are similar after scaling orafter any of a set of admissible transformations.2 Vector Quantization.2.1 The classical algorithm.VQ is a generalization of scalar quantization. Here the normed space V where we want to quantizeis a �nite dimensional space instead of the scalar range. Vectors of V represent sub-blocks of theimage.Let us recall what is quantization in mathematical terms: Suppose V is a normed space andX (the set of taken values) is a subset of V . We are looking for a \smaller" subset Q (the set ofquanta) of V such that every element in X can be represented by an element of Q. This processwhich associate to each element in X an element in Q is the quantization. To be useful, we needat the same time the set Q to be as small as possible, to have few data to encode, and the sumof the quadratic errors, that is the distances between elements of X and their quanta in Q, to beminimal. Let us assume the dimension of a block is n1 � n2. The image size is N1 � N2 and itis divided into blocks which are the elements of the set X of vectors to be quantized. So we arelooking for a \smaller" subset Q (the set of quanta) of blocks such that every element in X can berepresented by an element of Q. The distance between two blocks usually chosen is the Euclideannorm. We have a set of test vectors x1; :::; xn which are used to �nd the best quanta, that is theblocks q1; :::; qp which minimize the MSE :e =Xs kxs � q (xs)k2 :where q(xs) is the quantum associated with xs.It is equivalent to �nd the set of optimal quanta or to separate the xi's into clusters. For thatwe use the Dynamic Cluster Algorithm (see [7] for a general survey of this algorithm).The algorithm is based upon two remarks :1. when the di�erent groups of xi's are determined, the best quanta are the average values ofthe xi's in each group.2. When the quanta are given, the xi's quantized by a quantum qi are those that are closer toqi than to any other quantum.



4Consequently, the algorithm divides into the following steps :1. The quanta q1; :::; qp are initialized.2. For i between 1 and n, we associate to xi the quantum which is the closest to it. So the xi'sare separated into p clusters.3. We choose in each cluster a new quanta to represent the group.4. We go back to step 2 if we want a more precise quantization.2.2 Variations and comments.Let us analyse the steps one by one :1. The initialization is rather important since the process can become stationary by reachinga local minimum of the quadratic error which is not the desired result. The initializationcan be done in di�erent ways. The more simple is to take at random p values for the qi'seither among the xi's or among the corresponding range of values. We can also take a multidimensional uniform quantization in this range of values. But for an extra e�ort work we canobtain a much better initialization by a splitting algorithm (see [3]).Another method of initialization is introduced in [8] but it is used there by itself as the wholealgorithm. The idea is to �ll the table of quanta as we read the sequence of test vectors. Wechoose at the beginning a threshold t of the admissible error.� The �rst quanta is the �rst vector of the training sequence.� Suppose that at some step we read the test vector xi and have already de�ned k quanta(k � p). As before we then look for the closest quantum in the already existing list. Ifnone of them are close enough to xi (that is the least distance is greater than t) andthere is one more quantum to be de�ned (k < p) then we set qk+1 = xi else we attributeto xi the closest quantum and refresh it by a weighed average of the old quantum andxi.This method has the advantage to take only the number of quanta we really need and to passonly once over the sequence of test vectors.2-3. As remarked at the beginning of the section the best quanta for a cluster to minimize thequadratic error is the mean of its elements. But it can happen that some values are not asclose to its quantum as the rest of its group. This value moves the quantum from the othervalues of the group and a solution should be to select the best values in a group to determinethe quantum of this group.



54. We have to decide when to stop. We can remark that the mean square error has to decreaseat each step and since the number of regroupments is �nite, the quanta have to becomestationary. We can stop when there is no more variation of the quanta or the groups. If it istoo long we can stop when we reach a given value either for the mean square error or for itsvariation between two steps.2.3 VQ with projection.So far, the similarity between a vector and a quantum was measured by the Euclidean norm. Itmay happen that a quantum is exactly a translation of another or that two quanta are homothetic.This leads us to consider a di�erent way to compare a vector and the set of quanta.In this section we do not use a di�erent distance but instead of making the projection in theset of quanta, we project a vector in the set of vector spaces generated by each quanta. In factthe basic idea is to replace each vector by its projection in a small dimension vector space. Tobe interesting at the same time for compression rate and execution time we limit ourselves to twodimensional spaces. Furthermore as said in the introduction we impose the �rst vector to be theconstant vector since it is known that it concentrates generally the maximum energy. Visually thiscorresponds to consider as in the same class two patterns that are similar but have not the sameenlightment.Suppose a vector X and a quantum Q are given, we want to �nd the linear combination of Qwhich is the closest to X . If C is the constant vector with all components equal to 1, we call linearcombinations of Q the vector space generated by Q and C. We are looking for two coe�cients �and � which minimize the distance kX � �Q� �Ck.We know that this minimum is achieved when �Q + �C is the orthogonal projection of X inthe vector space generated by Q and C. So we have the two relations :(X � �Q� �C;Q) = 0(X � �Q� �C;C) = 0If X is any vector then we call mX its mean. That is mX = (X;C)(C;C) . By de�nition we have(X �mXC;C) = 0.From the second of the two equations of orthogonality we �nd that :mX � �mQ � � = 0:By replacing � by its value and using (X�mXC;C) = 0 and (Q�mQC;C) = 0, the �rst equationbecomes : (X �mXC � �(Q�mQC); Q�mQC) = 0which gives then � = (X �mXC;Q�mQC)kQ�mQCk2



6� = mX � �mQ:With these values of � and � we have :e = kX � �Q � �Ck2 = (X �mXC � �(Q�mQC); X �mXC)since X � �Q� �C is orthogonal to both Q and C.e = kX �mXCk2(1� (Q�mQC;X �mXC)2kX �mXCk2kQ�mQCk2 ):We see here that everything is expressed as a function of Q�mQC and X�mXC. So it makescomputation easier when possible if we have the vector and quantum centered to solve the problemsince we then have mQ = mX = 0. It means that we have to make the projection only in the vectorline generated by Q since X and Q are then already orthogonal to C.To simplify we are looking for quanta that are already centered and normed. Let us see howthe algorithm is modi�ed.� step 1 : Initialization. To initialize the quanta, we use any of the usual initialization proce-dures and then center and norm the quanta.� step 2 : To each vector we associate the quanta which gives the minimal error. To simplifythe computation we center the test vectors before we begin.� step 3 : refreshment of the quanta : If we want to keep on the spirit of the previous cases wehave to choose for a group the vector Q which minimizes the sum of distances to all vectorsof the group. For the simple Euclidean distance, the quantum to choose is the mean of thegroup. If we want to take the mean here we have �rst to scale all vectors of the group sothat they have contribution of the same range to the quantum. If we know the quantumQ , it is an intuitive result that the mean of the orthogonal projections of Q on the vectorlines corresponding to all the vectors of the group is exactly the direction of Q. This will beproven below. If we want a simple estimate of the optimal quantum, we can take somethingbetween the previous quantum and the mean of the projections on the vectors of the groupfor the previous quantum of that group.As usual we can decide to take into account only those vectors that have a distance smallenough.� step 4 : we can stop when there is no more change in the positions attributions or in theglobal error.Best quantum for a group of vectors.Suppose a group is formed of X1; :::; Xn and we want to �nd Q which minimizes the global error: e(Q ) = nXi=1 d(Xi; Q):



7Let us recall what happens with the Euclidean distance.In the classical case, d(X; Y ) = kX�Y k2 = (X�Y;X�Y ) Since we know that there is a minimum,we have at this minimum de(Q ) = 0; which means :de(Q )R = 2( nXi=1(Xi � Q); R); sonXi=1Xi = nQSo the best quantum is the mean of the vectors G.We can also see that : e(Q ) = nXi=1 kXi �Gk2 + nkG�Qk2which is minimal only for Q = G.Let us come back with the \projection" case.We have now d(X;Q) = Min�2RkX � �Qk2 = kX � (X;Q)Q;Q) Qk2. By de�nition of d we havee(�Q ) = e(Q ) so all the values are taken on the unit sphere which is compact and the minimumof e is achieved at a point Q on the sphere such that de(Q ) = 2�Q by the theorem of Lagrangemultiplicators. We have thus :e(Q ) = nXi=1(Xi; Xi)� nXi=1(Xi; Q)2 ; (Q;Q) = 1de(Q ) = �2 nXi=1(Xi; Q)Xi = 2�QTaking the scalar product with Q we have :� = � nXi=1(Xi; Q)2 = e(Q )� nXi=1(Xi; Xi)The last term being a constant we see that the minimum is achieved when �� is maximum. If weset AQ = nXi=1(Xi; Q)Xithen A is a linear symmetric operator and the best quanta is obtained for the direction of thegreatest eigenvalue. We see that for the direction of the best quanta, the sum of projections of Qon Xi's is in the same direction. We have e(Q ) = Pni=1(Xi; Xi)� (AQ;Q). We show that if Q0 isthe old quanta of the same group, the direction of steepest gradient at Q0 is a linear combinationof Q0 and AQ0 So the simple estimation we take is a direction between Q0 and AQ0.Suppose that the Xi can be written in the canonical base :Xi = pXi=1Xijej 1 � nwhere p is the dimension of the space in which theXi's are. If now we set Yj =t (x 1j; :::; xnj); 1 � p;then the matrix of A is tMM where M = [Y1; :::; Yp]. That is A is the Gram matrix of M , thematrix which columns are the Yi.



82.4 A quantizer instead of quanta.When we build a table of quanta from test vectors taken in the image, it may happen that sometest vectors are almost the same with a slight space shift. This has two e�ects, either the vectorsare close enough to be in the same class and then the quanta will not be very good, or the vectorswill be in two di�erent classes and then we must use two quanta for an information which is almostthe same. The problem is that the quanta must be used exactly as they are and all the quantaare independent. A way to solve this problem is to set the quanta di�erently. Instead of taking atable of quanta we use only one big quanta. Let us call it the quantizer. This will be a little imagewhich is assumed to collect all the information of the image the same way it was done for the listof quanta. But now we compare a vector to all the sub-blocks of the quantizer of the right size.We give to the quantizer a torus structure, that is we link the two horizontal edges and the twovertical edges together. So to each pixel of the quantizer corresponds a sub-block which has thispixel as left upper corner. The algorithm is then exactly the same as before.Figure 1: Principle of the quantizer.2b22b1 n2n1 2b1+b2 small quanta._ ...Let us say for example that blocks are 4�4 pixels and that the quantizer is 16�16 pixels. Thenwhen we want to quantize a 4 � 4 block of the image we look for the sub-block of the quantizerwhich matches the best. So we compare our vector to the 256 (4� 4) sub-blocks of the quantizerand choose the closest. So to each block of the image corresponds a sub-block of the quantizer.After we set this correspondence, we have for each sub-block of the quantizer a group of blocksof the image that match well with it. So each part of the quantizer is refreshed using the vectorsof its group. Since these parts overlap the refreshment of one sub-block has an in
uence on alloverlapping sub-blocks, that is 16 in our case. So everything happens as if the quantizer was splitinto 256 quanta with which we work as usual to form groups and then refresh the quanta. Theneach part of the quantizer is refreshed using the new de�ned quanta. The overlapping of quantamakes us take a mean at each pixel of the values at this position of all quanta that pass over it.Thus for each pixel we have to take into account the vectors of the groups which correspond to



9the 16 quanta that pass over this pixel. We can take the mean either on the refreshed quanta withsome weights or on the blocks of the image in each group that match to this position.Let us examine each step to point out the new aspects of the method.� step 1 : Initialization. To initialize the quantizer, as before we have the choice of takingrandom values in the same range as the image or a part of the image or the concatenationof little parts of the image chosen at random. When we take random values we can choosethem such that they have the same statistical properties as the original image.� step 2 : To each vector we associate the position in the quantizer which gives the closestblock.� step 3 : refreshment of the quantizer : we have to refresh each pixel separately. To de�ne anew value at a pixel we take the mean of all values at this pixel of vectors which passed overit. We can decide to take into account only those vectors that have a distance small enough.� step 4 : we can stop when there is no more change in the positions attributions or in theglobal error.This method is most useful for texture detection to capture a pattern which is bigger than theblock size. It has advantage to take less room than the equivalent number of quanta. the ratio isthe number of pixel per block. The results obtained are a lot better when we use this quantizerfor VQ with projection presented in the previous section. This implies the modi�cations of bothsections are necessary in the algorithm.3 Applications.3.1 Estimates of the compression rate.Let us see how much compression we obtain with VQ.As at the beginning of the section, we assume that we have an image of size N1 � N2 pixelsdivided into blocks of size n1 � n2. Each block is quantized and it is replaced by the index of thequanta of its class. So to rebuild the image we need to store the table of quanta and the list ofindexes and coe�cients. The rate in bits/pixel is :� = b+ cn1n2 + 2bqn1n2N1N2where we suppose that the number of quanta is p = 2b , so an index is coded on b bits and thatin the table of quanta each pixel is coded on q bits, and c is number of bit necessary to encode thecoe�cients.When we use a great quantum, the \quantizer", the part corresponding to the encoding of theimage is the same as before but the information about the quanta changes since it is divided bythe size of a block. we have : � = b+ cn1n2 + 2bqN1N2



10where 2b is still the number of quanta which is also the size of the quantizer.We shall see resultsin the next section.3.2 Texture detection.This method is interesting to be used on an image formed of repetitive patterns which are nottotally identical and that have di�erent luminance within the image. It can extract the usefulinformation in the quantizer and the total pattern can be found in the quantizer. Thus we obtaina description which gives us on one hand the patterns which are the closest to the structure of theimage and on the other hand their distribution through the image.The reconstruction is all the more precise that the set of admissible transformations is large.Here the only transformations used are scale changes in grey levels. It would also be interestingto consider scale changes in the plane of the image. In [1], the set of admissible transformationsincludes also rotations which angles are multiples of �4 . This means that a pattern is the same notonly for scale changes in grey levels but also for changes of orientation. This is particularly e�cientfor example for a �ngerprint where the whole image is composed of black and white stripes whichhave di�erent orientations. be reconstructed using a very small pattern of stripes.3.3 Texture synthesis.This method can be used to create images of the same texture as the original image. The idea isto imitate the distribution of the quanta in the original image. The original image is described bymeans of the quanta or quantizer and the set of indexes and coe�cients. To create an image wehave to simulate a model of repartition of the indices and a model of distribution of the coe�cients.This can be done by a predictive method using the transition probabilities between two indexesand coe�cients. It is better to �nd a distribution for blocks which overlap in the image. When wegenerate a distribution of indexes of blocks we �nd the coe�cients of scaling by maximization ofthe correlation of the overlapping parts of the previous computed block and the current quanta.The value at a pixel is then the average value of all the computed blocks that pass by it. This wasimplemented in one dimension in [1] with encouraging results.4 Results.We give examples of image coding below.�1 represents the part of the data to quantize the image. This is the �rst term of the expressionof � of the previous section. If we keep the same codebook for a set of images, this is the real rateto look at. 2b is the number of quanta or the size of the quantizer.To be interesting from the point of view of time computation and also to have a second termin � not too large, the value of b should be less than 8.For the �rst term to be small enough and ensure a minimum compression, the size of blocksshould be at least n1n2 = 4� 4 since c is about 10 to 16 bits to encode two real numbers.



11Figure Method block size 2b � �11 original 1 256 8 82 VQ 4� 4 256 1 0.53 PVQ 6� 6 256 1.2 0.64 QPVQ 5� 5 16� 16 1 15 QPVQ 6� 6 16� 16 0.6 0.66left PVQ 8� 8 256 2.3 0.376right VQ 4� 4 256 1 0.57 QPVQ 6� 6 20� 20 0.75 0.7Where VQ means classic Vector Quantization (section 2.1), PVQ means VQ with projection(section 2.3), QPVQ means VQ with projection and a quantizer (section 2.4).Figures 6 and 7 give an example of texture detection. The texture is extracted in the quantizeron the right of �gure 7. AcknowledgementsMost of this work was performed while the author was at SPAR. The author wishes to thankAndrew Witkin for suggesting this research, and Andr�e Gagalowicz for useful comments on a draftof this paper.
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13Appendix4.1 Best quantum for a group of vectors.Suppose a group is formed of X1; :::; Xn and we want to �nd Q which minimizes the global error :e(Q ) = nXi=1 d(Xi; Q):4.1.1 classical case.In the classical case, d(X; Y ) = kX�Y k2 = (X�Y;X�Y ) Since we know that there is a minimum,we have at this minimum de(Q ) = 0; which means :de(Q )R = 2( nXi=1(Xi � Q); R); sonXi=1Xi = nQSo the best quantum is the mean of the vectors G.We can also see that : e(Q ) = nXi=1 kXi �Gk2 + nkG�Qk2which is minimal only for Q = G.4.1.2 \projection" case.We have now d(X;Q) = Min�2RkX��Qk2 = kX� (X;Q)Q;Q) Qk2. By de�nition of d we have e(�Q ) =e(Q ) so all the values are taken on the unit sphere which is compact and the minimum of eis achieved at a point Q on the sphere such that de(Q ) = 2�Q by the theorem of Lagrangemultiplicators. We have thus :e(Q ) = nXi=1(Xi; Xi)� nXi=1(Xi; Q)2 ; (Q;Q) = 1de(Q ) = �2 nXi=1(Xi; Q)Xi = 2�QTaking the scalar product with Q we have :� = � nXi=1(Xi; Q)2 = e(Q )� nXi=1(Xi; Xi)The last term being a constant we see that the minimum is achieved when �� is maximum. If weset AQ = nXi=1(Xi; Q)Xi



14then A is a linear symmetric operator and the best quanta is obtained for the direction of thegreatest eigenvalue. We see that for the direction of the best quanta, the sum of projections of Qon Xi's is in the same direction. We have e(Q ) = Pni=1(Xi; Xi)� (AQ;Q). We show that if Q0 isthe old quanta of the same group, the direction of steepest gradient at Q0 is a linear combinationof Q0 and AQ0 So the simple estimation we take is a direction between Q0 and AQ0.Suppose that the Xi can be written in the canonical base :Xi = pXi=1Xijej 1 � nwhere p is the dimension of the space in which theXi's are. If now we set Yj =t (x 1j; :::; xnj); 1 � p;then the matrix of A is tMM where M = [Y1; :::; Yp]. That is A is the Gram matrix of M , thematrix which columns are the Yi.
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Figure 1 : Original Image
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Figure 2 : Classic VQ with 4 by 4 blocks on 8 bits.
Figure 3: VQ with projection. 6 by 6 blocks on 8 bits.
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Figure 4 : VQ with projection with the quantizer (section 2.4). 5 by 5 blocks.The quantizer is 16 by 16.
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Figure 5 : VQ with projection with the quantizer (section 2.4). 6by 6 blocks. The quantizer is 16 by 16.
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Figure 6 : Texture. The original is lower left.above is the quantized image with projection with 8 by 8 blockson 8 bits.on the right classic VQ with 4 by 4 blocks on 8 bits
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Figure 7 : Texture. The original is lower left.above is the quantized image with projection and quantizer with6 by 6 blocks. The quantizer is 20 by 20.The quantizer is shown on the right


