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Abstract. We present an overview of part of our work over the past
few years on snakes, balloons, and deformable models, with applications
to image analysis. The main drawbacks of the active contour model being
its initialization and minimization, we present three approaches that help
to avoid being trapped in a local minimum of the energy. We introduced
the balloon model to extract a contour being less demanding on the initial
curve. In a more recent approach, based on minimal paths and geodesics,
we find the global minimum of the energy between two points. A third
approach is defined by a hybrid region-based energy taking into account
homogeneity of the region inside the contour.

§1. Introduction

Active contour models, introduced by Kass, Witkin and Terzopoulos [15], and
many variations on these deformable models have been studied for almost a
decade and used for many applications. Using deformable models and tem-
plates, the extraction of a shape is obtained by giving an initial guess and
through minimization of an energy composed of an internal regularization
term and an external attraction potential (data fitting term), illustrated for
example in [4,20,15,14,2,1]. Since the relevant shapes in medical images are
usually smooth, the use of such models is particularly interesting for locating
structures found in biomedical images and tracking their nonrigid deforma-
tion. We began using snakes for detecting the contour of Left Ventricular
cavity of the heart in MR Images [10].

The main drawbacks of the active contour model being its initializa-
tion and minimization, we present three approaches that help to avoid being
trapped in a local minimum of the energy, making initialization easier. We
defined the balloon model [10,11] to extract the closed contour of an object
being less demanding on the initial curve. This model was used as a first
approach to make 3D reconstruction from cross sections [11]. A simplified
3D model was introduced as a stack of 2D balloons deforming simultaneously
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[14]. To recover more general 3D surfaces in 3D medical images, the snake and
balloon model was generalized to 3D and implemented with a finite element
method in [14]. The normal inflation force appeared later as the basic evolu-
tion equation for many models with a moving front [5,18,25]. We also used
recently a front evolution approach to find efficiently the global minimum of
the snake energy [9]. A third approach making active contours less sensitive to
initialization takes into account homogeneity of the region defined inside the
curve. It combines edge and region terms, similar to Mumford-Shah energy
[13]. Another way to make the algorithms more robust is to use parametric
models like superquadrics or hyperquadrics. Once a global match with a rough
shape is obtained, we have introduced ways to refine the shape given by the
parametric model [8,3]. We also introduced a new mathematical formulation
of some two-step iterative algorithms for deformable models, like deformable
templates or B-spline snakes [17,2], using auxiliary variables [12].

§2. Active Contour Models or Snakes

We are looking for a plane curve v(s) = (x(s), y(s)) minimizing energy:

v E(v) = /0 [wr[[v'()II* + wa[o” (s)I|* + P(v(s))]ds. (1)

This energy models mechanical properties that are between an elastic string
(first order) and a more rigid rod or spline (second order). The minimization
of the potential P attracts the curve to the interesting features in the image.
In the original model [15], it is based on the gradient of image I : P(v) =
—||[VI(v)||%. In [11], we defined an attraction potential from a binary image
of previously extracted edge points, using Gaussian convolution or a distance
map potential. In the latter case, P(v) = f(d(v)) is a function of the Chamfer
distance to edges. The attraction acts as a zero length string that links a point
of the curve and a data point [14]. Related to robust statistics, f can be chosen
bounded, in order to allow the string linked to the data to break [12]. We see
in Figure 2 an example of distance map.

Starting from an initial estimate, we solve the evolution equation with
fixed, free or periodic boundary conditions:
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where F' = —VP is the attraction force towards contours. This equation is
equivalent to making a gradient descent of the energy converge to a minimum
of (1).

In the 3D case [14], we model a surface that has physical properties
between an elastic membrane (first order, like food wrapping plastic paper)
and a thin plate (second order, for example projection transparencies).

The equations are solved using finite differences or finite elements. In
any case, we can always write the iterative scheme in matrix form as

(Id+ 1AV = (V=L rF(VEY),



Fig. 1. MRI Image of the heart: Evolution of the balloon.

where V' represents the vector of unknowns (nodes or degrees of freedom) of
the discrete curve at iteration ¢.

§3. Balloon Model: Inflation Pressure Force

Usually, to make the curve converge to the right solution, the user has to
provide an initial guess that is rather close to it. To make the curve converge
to the solution, even when it is not close to it, we introduced the “Balloon
model” [10]. We add a pressure force pushing outwards like inflating a
“balloon”. This gives the curve a more dynamic behavior

Fballoon = kﬁ(s)a (2)

where 7i(s) is the unit normal vector to the curve at point v(s). The curve be-
haves like a balloon which is inflated. It is stopped by a strong edge but avoids
the curve being “trapped” by spurious isolated edge points. This makes the re-
sult much less sensitive to the initial conditions. Since by inflating the model,
the size of the curve increases, it may be necessary to increase the number
of discretization nodes. This may be obtained by making reparametrization
every few iterations, defining regularly spaced nodes.
We remark that this force derives from the inside area energy

Eirea = _k/ dA
instderegion

that measures the area inside the region bounded by the curve. Minimization
of such energy corresponds to get a region as large as possible. This is obtained
by a pressure force in the outward normal direction.

We show an example of the balloon evolution in Figure 1. Starting from
almost any curve inside the object permits the recovery of the whole boundary
by inflating the curve like a balloon. This avoids the need for an initialization
close to the solution.

Recently, much work has been done based on the evolution of a plane
curve subject to a normal force. This was either in a purely mathematical
framework or for various applications in image processing [21,22,5,18,6]. We



Fig. 2. Line image. From left to right: original, potential, minimal
action (random look up table to show the level set propagation starting
from the bottom left), minimal path between bottom left and top right.

also note the similarity between the evolution of a plane curve subject to a
pressure force (2) and a dilatation in mathematical morphology.

The current trend to define a deformable curve or surface is to use an
intrinsic geometric model [5,18]. The surface deforms as a front evolution in
the normal direction of the zero level set of a 3D function. This function
is “deformed” in order to make its zero level set follow the minimization
of the potential. These are called either geometric or geodesic deformable
models [6,7], implicit deformable surface [26], or bubbles [25]. This is an
efficient way to change the topology. Other models also permit the curve or
surface to change topology [24,19].

§4. Global Minimum using Geodesics

We now present an approach introduced in [9] which is based on normal front
evolution of level sets to find the global minimum of the energy.

The minimization problem we are trying to solve is slightly different from
(1). The reason we modified the energy is that we now have an expression
where the internal regularization energy is included in the potential term. We
can then solve the energy minimization in a way similar to that of finding the
shortest path between two points on a surface using the method developed in
[16]. The energy of the new model has the following form:

E(v) = / o’ (5)]1? + P(u(s))]ds = wL + / P(u(s))ds = / B(u(s))ds (3)

where P = P 4+ w. Here v is in the space of all curves connecting two given
points (restricted by boundary conditions): v(0) = pg and v(L) = p;1, where
L is the length of the curve. Contrary to the classical snake energy, here s
represents the arc-length parameter, which means that ||v’(s)||? = 1. This
makes the energy depend only on the geometric curve C and not on the pa-
rameterization. The regularization term with w now exactly measures the
length of the curve. To solve this minimization problem, we first search for
the surface of minimal action U starting at po = v(0). At each point p of the



Fig. 3. Road Image. From left to right: initial data; minimal action level
sets; path of minimal action connecting the two black points; many paths
are obtained simultaneously connecting the start point on the upper left
to 4 points.

image plane, the value of this surface U corresponds to the minimal energy
integrated along a path starting at py and ending at p:

vie) = v(iLI;f=p {/c Pds} . @

Applying ideas of [16] to minimize our energy (3), it is possible to formulate
a partial differential evolution equation describing the level set curves £ of U:

0L(s,t) 1,
5 = En(s,t), (5)

where P = P 4 w and 7i(s,t) is the normal to the closed curve L(.,t) :
S' — IR2. This evolution equation is initialized by a curve £(s,0) which is a
small circle surrounding the point pg. It corresponds to a null energy. This
evolution equation (5) is similar to a balloon evolution [11] with an inflation
force depending on the potential.

This equation is solved using the Eulerian formulation for curve evolution
introduced in [21] to overcome numerical difficulties and handle topological
changes. Minimal action U can also be found efficiently using the fast march-
ing method recently introduced by Sethian [23] as shown in [9].

The algorithm is thus composed of two steps. First, minimal action U
from pg is computed using front propagation starting from an infinitesimal
circle centered at py. Then a backpropagation is made, tracking the minimal
path by gradient descent on U starting from p; ending at pg. A synthetic
example is presented in Figure 2. We demonstrate the performance of the
proposed algorithm by applying it to an aerial road image in Figure 3. Since
road areas are lighter and correspond to higher gray levels, we chose P = —1.
Observe the way the level curves propagate faster along the path. We need
only two points while with a classical snake, a very close initialization is
necessary to avoid local minima (see [9]). Our approach can be used for
the minimization of many paths emerging from the same point in one single
calculation of the minimal action (Figure 3).



Fig. 4. Synthetic digital terrain model: above: original z = I(z,y) and
reconstruction z = u(z,y) with our energy; below: On the left, initial
curve is superimposed on an edge image obtained from I above. On the
two middle images, we see the snake superimposed on the potential ob-
tained from the edges. With the same initial curve on the left, a classic
snake is stopped (middle-left) while the region term pushes the curve to
the right boundary (middle-right). On the right, this is applied to two
constant regions simultaneously to detect brain ventricles.

§5. Region-based Energy

Active contour models only take into account the information along the curve.
This often stops the evolution of the curve, trapped in a local minimum. We
take into account here the fact that the contour is the boundary of an homoge-
neous region by the introduction of a hybrid energy composed of region-based
energy and boundary energy [13]. In [13] we used an active contour to detect
a curve of discontinuities in a digital terrain model of a mountain and lake.
The surface has to be smoothed and at the same time, we wish to recover the
lake as a constant elevation region bounded by discontinuities.

We thus defined the reconstruction of a surface (z = u(zx,y)) composed of
two different kinds of regions. One has a constant elevation ug inside region
L, the other is the background (R — L). The boundary curve B between
them is obtained with an active contour model v. This combines the two
problems of surface reconstruction with discontinuities and contour detection.
We minimize an energy that is function of the couple of unknowns (u,v):

Eg4(u,v) = Esnake(v)+/

L(Uo—f(:v,y))2dwdy+/ ((w=1)*+X*[[Vull*) (6)

R—L

The algorithm successively minimizes energy E, with respect to each of
the two variables u and v. When wu is given, minimization in v corresponds to



active contour evolution where new external forces are added that derive from
the surface terms since L depends on v. This allows the model to take into
account the fact that the level inside the region has to be homogeneous. This
avoids the curve being trapped by spurious edges (see Figure 4). Initialization
of the contour is made easier (see [13]). This property is not satisfied in
classical active contours, where the curve “sees” only what happens locally
along the curve and this may stop its evolution due to local minima.
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