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ABSTRACT

We present an overview of part of our work on
snakes, balloons and deformable models since many
years. This includes 2D and 3D active contours, sur-
face reconstruction with discontinuities and paramet-
ric deformable models that constrain the shape of the
surface. We show examples of applications on medical
images.

1. INTRODUCTION

Active contour models, introduced by Kass, Witkin
and Terzopoulos [17], and many variations on these de-
formable models have been studied for almost a decade
and used for many applications. Their use is particu-
larly interesting for tracking nonrigid deformation of
structures found in biomedical images. We began us-
ing snakes for detecting the contour of Left Ventricular
cavity of the heart in MR Images [12]. Instead of the
gradient potential, we defined an attraction potential
from a binary image of already extracted edges using
distance map or convolution. The main drawbacks
of the model being its initialization and minimization,
we defined the balloon model [12] to extract the closed
contour of an object being less demanding on the ini-
tial curve. Starting from almost any curve inside the
object permits to recover the whole boundary by in-
flating the curve like a balloon (see figure 1). This
model was used as a first approach to make 3D recon-
struction from cross sections (see figure 2). A simpli-
fied 3D model was introduced as a stack of 2D balloons
deforming simultaneously [15]. These two approaches
suit well in the case of a cylindric shape. To recover
more general 3D surfaces in 3D medical images, the
snake and balloon model was generalized to 3D and
implemented with a finite element method in [15, 11]
(see figure 3). The normal inflation force appeared
later as the basic evolution equation for many models
with moving front [7, 21, 29]. We also used recently a
front evolution approach to solve the minimization in
the snake problem [16].

Using deformable models and templates, the ex-
traction of a shape is obtained through minimization
of an energy composed of an internal regularization
term and an external attraction potential (data fit-

ting term), illustrated for example in [30, 32, 15, 11,
35, 31, 3, 2]. Since the relevant surfaces in medical
images are usually smooth, the use of such models is
often very efficient for locating surface boundaries of
organs and structures, and for the subsequent tracking
of these shapes in a time sequence.

Although previous approaches based on general de-
formable surfaces [15, 11] give satisfying results, they
involve large linear systems to solve and heavy struc-
tures. This is particularly important when dealing
with a huge amount of data like for object trackingin a
sequence of 3D images. This is why a priori knowledge
on the surface may be useful, by constraining its shape
(section 5), or by decomposition in regions bounded by
discontinies (section 4). Parametric models are well
adapted when to impose global constraints. However,
further deformation of the parametric model is usually
necessary like with deformable superquadrics [31] (see
section 5.2).

2. RECONSTRUCTION WITH
REGULARIZATION

Our work deal with the use of deformable models
and parametric deformable templates for image anal-
ysis, in particular for segmentation and reconstruc-
tion with regularization. To extract and represent the
shapes of objects in images ,there is a simultaneous
segmentation and reconstruction:

(1) localize “edgels” that belong to the boundary of
a same object (segmentation).

(2) Reconstruction, from a set of structured “edgels”
given in a known order, of a smooth curve or
surface,

In classic methods, Step (2) is solved after Step (1)
through explicit constraints. For deformable models,
the two steps are merged in one through implicit con-
straints.

The general problem of reconstruction of a curve
or surface v from input data d that are previously
segmented can be formalized by minimization in v of
energy:

E(v,d) = / R(o(s))ds + / Viu(s),d(s)ds (1)



where

e R(v) measures the smoothness of the reconstruc-
tion v. Smoothness of v is obtained

— either through the term R(v) composed of
first or second order partial derivatives of v
in the case of a free curve or surface. For
example R(v) = ||[v'(s)||? or ||Vv||?. These
are the more general deformable models;
To introduce discontinuities, we can choose
a non convex term R(v) = f(||Vv|]).

— either by constraining v to be in a set of
shapes of some kind. R(v) is then most often
void. This is the case of parametric models
(Bsplines, superquadrics, hyperquadrics,...).

e V measures fidelity of v to data d. It can be

— explicit (convex): V(v,d) = ||v — d||?
— implicit (non convex): V(v,d) = Pyv)
where P, is an attraction Potential.

This formulation applies to many fields in Image
Processing including edge extraction, segmentation,
Image restoration and enhancement, and Matching
[30, 23, 6, 17, 33].

3. DEFORMABLE MODELS
Active Contour Models or Snakes

In the case of plane curves, we are looking for a curve
v(s) = (z(s),y(s)) minimizing energy:

v BE(v) = /91111||v'(5>‘)||2 + ws|[v" (s)||> + P(v(s))ds
(2)

This energy models mechanical properties that are be-
tween an elastic string (first order) and a more rigid
rod or spline (second order).

Starting from an initial estimate, we solve the evo-
lution equation with fixed or periodic boundary con-
ditions:

v 0O Ov o? d%v
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where F' = —V P, is the attraction force towards con-
tours. This equation is equivalent to making a gradi-
ent descent of the energy to converge to a minimum

of (2).

Minimizing Surfaces

For a deformable surface, the energy to minimize is:
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In this case, we model a surface that has physical prop-
erties between an elastic membrane (first order, like
food wrapping plastic paper) and a thin plate (second
order, for example projection transparencies).

The partial differential equation to solve writes:
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Resolution

The equations are solved using finite differences or fi-
nite elements. In any case, we can always write the
iterative scheme as:

(Id + TA)t = (v~ + 7F(v'™1)) (6)

where v? represents the vector of unknowns (nodes or
degrees of freedom) of the discrete curve or surface at
iteration ¢.

Attraction Potential P

Instead of taking P(v) = —||VI(v)||? introduced in the
original model [17], it was often more interesting to use
the attraction potential to a set of edge points that
were obtained previously. Indeed, since in general the
gradient is not constant along a contour, this permits
to make the contours uniform by giving them equally
weighted attraction along the boundary. This can also
avoid a high concentration of nodes at higher gradient
values and we obtain better results. Moreover, this
edge image is usually easily made available together
with the original image. Also, it permits to solve the
problem when the data itself is a binary edge image.
The attraction acts as a zero length string that links
a point of the curve and a data point [15]. To define
this attraction potential, two approaches were used.
The first was convolution of the edge image with a
Gaussian. The second, more popular, was a function
of the Chamfer distance to edges. P(v) = g¢(d(v))
where 6(v) is the distance between a point v and the
closest edge point. Function f is increasing on IR™, for
example, P(v) = —e~3®* or P(v) = Min(5(v)2, B).
In both cases, g is bounded, in order to allow the string
linked to the data to break. This is related to robust
statistics. Chamfer distance is a good approximation
of this distance map. It can be obtained by a fast
sequential algorithm or using front propagation (see
[16]). We see in figure 1 an example of distance map.

Balloon Model: Expansion Pressure Force

Usually, to make the curve converge to the right so-
lution, the user has to provide an initial guess that



Figure 1: MRI 3D Image of the heart. Top: edge de-
tection and attraction potential. Middle and bottom
: Evolution of the balloon on a slice.

is rather close to it. To make the curve or surface
converge to the solution, even when it is not close to
it, we introduced the “Balloon model” [12]. We add
a pressure force pushing outwards like inflating a
“balloon”. This gives the curve or surface a more
dynamic behavior

Fyatioon = kﬁ(s) (7)

where 7i(s) is the unit normal vector to the curve at
point v(s). The curve behaves like a balloon which
is inflated. It is stopped by a strong edge but avoids
the curve being “trapped” by spurious isolated edge
points. This makes the result much less sensitive to
the initial conditions. Since by inflating the model, the
size of the curve or surface increases, it may be nec-
essary to increase the number of discretization nodes.
This may be obtained by making reparametrization
every few iterations, defining regularly spaced nodes.

Remark that this force derives from the inside area
(or volume) energy

Eorea = —k dA (8)

insideregion

that measures the area (or volume) inside the region
bounded by the curve (or surface). Minimization of
such energy corresponds to get a region as large as
possible. This is obtained by a pressure force in the
outward normal direction.

Figure 2: 3D reconstruction from cross sections (two
views).

Figure 3: Evolution of the deformable surface to the
energy minimum in a 3D MR image of a face (ex-
tracted from [15]).

Recently, many works have been made based on
the evolution of a plane curve subject to a normal
force. This was either in a purely mathematical frame-
work or for many application in image processing
[24, 1, 26, 7, 21, 8]. Remark also the similarity be-
tween the evolution of a plane curve submitted to a
pressure force (7) with a dilatation in mathematical
morphology.

The current trend to define a deformable curve or
surface is by using an intrinsic geometric model [7, 21].
The surface is defined as the zero level set of a 3D func-
tion. This function is “deformed” in order to make its
zero level set follow the minimization of the poten-
tial. These are called either geometric or geodesic de-
formable models [8, 9, 18], implicit deformable surface
[34], or bubbles [29]. This is efficient to obtain an easy



way to change topology. Other models also permit the
curve or surface to change topology [20, 28, 22].

The study of the evolution of a shape through a
partial differential equation with invariants [1] or the
presence of shocks in other cases (Reaction-diffusion
space) [26, 19] permits the characterization of a shape.

4. RECONSTRUCTION WITH
DISCONTINUITIES

When recovering a surface u from explicit data
d, the first order regularizing term R(u) =
A2 [ ||Vu||2dzdy has the same smoothing effect all over
the surface. Large variations of elevation in the sur-
face, corresponding to discontinuities between two re-
gions, are blurred or removed by the smoothing. To
avoid this problem, we can either make parameter A
depend on position (z,y) [30], or introduce disconti-
nuities with penalty (as in [23, 6]). The advantage of
the latter is that it does not assume the discontinuities
as known in advance. The authors of [23, 6] introduce
a penalty term at each point where a discontinuity is
detected, instead of its contribution to R(u). This set
of discontinuities is also an unknown of the problem
and an argument of the energy. The energy becomes:

E(u, B) :/R(u—d)2+/\2 /IH; IVul2+a I(B) (9)

where R represents the image domain, and B is a set
of boundary points where discontinuities of u are in-
troduced. The last term I(B) is the length of this set
of contours. The constant a can be interpreted as a
contrast detection factor since a point will choose to
be in B depending of the lower cost either of the gradi-
ent contribution in R(u) or paying a penalty a. In the
discrete energy, the term R(u) can also be formalized
as R(u) = f(||Vull) where f(g) = Min(g*,a).

The regularizing effect operates only inside the re-
gions bounded by B. Thus u is piecewise regular and
can be discontinuous along B.

In [14], we used an active contour to detect a curve
of discontinuities in a surface. In figure 4, we see a
digital terrain model of a mountain and lake. The
surface has to be smoothed and at the same time, we
wish to recover the lake as a constant elevation region
bounded by discontinuities.

We thus defined the reconstruction of a surface u
composed of two different kinds of regions. One is a
constant lake region L at level wug, the other is the
background (R — L). The boundary curve B between
them is obtained with an active contour model v. This
combines the two problems of surface reconstruction
with discontinuities and contour detection. We min-
imize an energy that is function of the couple of un-
knowns: (surface u, boundary curve v):

Eg (u; ’U) = Lisnake (U) + Ejake (u; ’U) + Eoutside (U; U)
= Lisnake ('U) + fL(Uo — d((B, y))zdmdy +

Jppu—=a?+ X [ IVull® + [p(u —uo)?

where I" corresponds to points on B such that (u —
UO) < 0.

The minimization of a global energy allows direct
interaction between surface terms and the active con-
tour (see figure 4). Initialization of the contour is
made easier (see [14]).

The algorithm successively minimizes energy E,
with respect to each of the two variables u and wv.
When u is given, minimization in v corresponds to ac-
tive contour evolution where new external forces are
added that derive from the surface terms. This allows
the model to take into account the fact that the level
inside the region has to be homogeneous. This avoids
the curve being trapped by spurious edges. This prop-
erty is not satisfied in classical active contours, where
the curve “sees” only what happens locally along the
curve and this may stop its evolution due to local min-
ima.
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Figure 4: Digital Terrain Model with a lake: noisy

(10) image and reconstruction. (from [14]).



5. PARAMETRIC DEFORMABLE
MODELS

We have illustrated the capacity of 2D and 3D de-
formable models to define a local description of struc-
tures appearing in images. These local models do not
allow constraints on the global shape of the object.
The use of parametric curves and surfaces (circles,
parabolas, segments in [35], Superquadrics [25, 27, 31],
hyperquadrics [10] or B-Snakes [3, 13]) allows the def-
inition of global constraints on the shape to find. The
same kind of attraction potential is minimized over
the curve or surface defined by a small number of pa-
rameters. These models make easier the retrieval of
missing data (see figure 5). They reduce the number
of unknowns and give a compact and stable represen-
tation.
5.1. Global Models

Using Superquadrics or hyperquadrics, a priori
knowledge of the shape can be included in the model.
Superquadrics are a generalization of quadrics with
real exponents that can be defined by the implicit
equation:

/2
2/€a 2/€a e2/e1 2/€e1 “
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Hyperquadrics (see [10]) are a generalization of those:
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A shape S4 being defined by a set of parameters
A, a two step algorithm (see [10, 13]) can be used to
minimize

BA) = [ P 3 P4

where v;(A) is a discretization of the shape S4. Ini-
tialization is made by a model A° or a set of points
M©O. Then the following two steps are iteratively ap-
plied:

Global Fit. An ordered set M* = (MF)i<i<, being
given. New parameters AF are defined by minimiza-
tion of E¥(A):

. _ MEI1Z2 ~ # ky _ 2
;”Uz(A) M7 —;{HVFA”(FA(M,) D}

Local Deformation of the set of points. A" being
given, a new set M**1 = (Mf*"),<;, is defined by
minimization of

E2(M) = Z P(M,-)

MEH = 0,(A*) - ab VP (0i(A"))

5.2. Local Refinement
Hybrid hyperquadrics

Although parametric models are able to describe com-
plex shapes by a few parameters, this is usually not
enough for recovery of complex shapes. It may be
necessary to refine the global model by adding a lo-
cal deformation [31]. We have studied such methods
for each of the two previous models. The first model
is using hybrid hyperquadrics [10] that is obtained by
adding to the equation 5.1 exponential terms (e~ ).
It enables to model local properties and introduce con-
cavities:

N M
L; .
H(wayaz) = E |Kz " + E cje_ Z:l=JO|Kjl“m = ]_’
i=1 j=1

(11)

Free-Form Deformations

To get a better reconstruction of data, we deform
[4] the superquadric model using tri-dimensional B-
splines called Free-Form Deformation (FFD) in com-
puter graphics. A point X is defined by its local co-
ordinates (s,t,u) and the position of control points
Pijk3

l,m,n
Y CiCCE(1—s) " s A—t)™ I (1—u)"Fuk Py,
i,5,k=0

(12)
A two-step iterative algorithm is used:

1: Compute the Displacement Field :
X2 =X,+0X,

2: New Control points P,4; by minimization of
IBP — X3

Xn+1 = BPn+1

Results that illustrate this approach are shown in fig-
ure 6. The model allows a very compact represen-
tation of the data. In the example, there are 6000
3D data points and the model is defined by 130 3D
points (a 5x5x5 box). Since the FFD is volumic it can
give the deformation between two surfaces, like in fig-
ure 6. Figure 5 shows how this model can retrieve a
good reconstruction from sparse data. This applies to
tracking (see figure 7) and permits to get estimates of
the deformation. This provides a set of quantitative
parameters and permits to detect pathologic areas [5].
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Figure 5: Reconstruction with sparse data.

Above

complete (right) and sparse (left) data; below the two
reconstructions.
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