Multiple Contour Finding and Perceptual
Grouping as a set of Energy Minimizing Paths

Laurent D. COHEN! and Thomas DESCHAMPS?

! CEREMADE, UMR 7534, Université Paris-Dauphine 75775 Paris cedex 16, France
cohen@ceremade .dauphine. fr
2 Laboratoire d’Electronique Philips France,
thomas.deschamps@philips.com

Abstract. We address the problem of finding a set of contour curves in
an image. We consider the problem of perceptual grouping and contour
completion, where the data is a set of points in the image. A new method
to find complete curves from a set of contours or edge points is presented.
Our approach is an extension of previous work on finding a set of contours
as minimal paths between end points using the fast marching algorithm.
Given a set of key points, we find the pairs of points that have to be
linked and the paths that join them. We use the saddle points of the
minimal action map. The paths are obtained by backpropagation from
the saddle points to both points of each pair.

We also propose an extension of this method for contour completion
where the data is a set of connected components. We find the minimal
paths between each of these components, until the complete set of these
“regions” is connected. The paths are obtained using the same backprop-
agation from the saddle points to both components.
Keywords:Perceptual grouping, salient curve detection, active contours,
minimal paths, fast marching, level sets, weighted distance, reconstruc-
tion, energy minimization, medical imaging.

1 Introduction

We are interested in perceptual grouping and finding a set of curves in an image
with the use of energy minimizing curves.

Since their introduction, active contours [12] have been extensively used to
find the contour of an object in an image through the minimization of an energy.
In order to get a set of contours of different objects, we need many active contours
to be initialized on the image. The level sets paradigm [15,1] allowed changes
in topology. It enables to get multiple contours by starting with a single one.
However, these do not give satisfying results when there are gaps in the data
since the contour may propagate into a hole and then split to many curves where
only one contour is desired. This is the problem encountered with perceptual
grouping where a set of incomplete contours is given. For example, in a binary
image like the ones in figure 1 with a drawing of a shape with holes and spurious
edge points, human vision can easily fill in the missing boundaries, remove the

spurious ones and form complete curves. Perceptual grouping is an old problem
in computer vision. It has been approached more recently with energy methods
[17,11,18]. These methods find a criteria for saliency of a curve component or
for each point of the image. In these methods, the definition of saliency measure
is based indirectly on a second order regularization snake-like energy ([12]) of a
path containing the point. However, the final curves are obtained generally in
a second step as ridge lines of the saliency criteria after thresholding. In [19] a
similarity between snakes and stochastic completion field is reported. Motivated
by this relation between energy minimizing curves like snakes and completion
contours, we are interested in finding a set of completion contours on an image
as a set of energy minimizing curves.

In order to solve global minimization for snakes, the authors of [6] used the
minimal paths, as introduced in [14,13]. The goal was to avoid local minima
without demanding too much on user initialization, which is a main drawback of
classic snakes [4]. Only two end points were needed. The numerical method has
the advantage of being consistent (see [6]) and efficient using the Fast Marching
algorithm introduced in [16]. In this paper we propose a way to use this minimal
path approach to find a set of curves drawn between points in the image. In
order to find a set of most salient contour curves in the image, we draw the
minimal paths between pairs of points.

We are also interested in finding a set of curves in an image between a set
of connected components. This extension of our perceptual grouping technique
finds its application in the completion of tube-like structures in images. The
problem is here to complete a partially detected object, based on a number of
connected components that belong to this object.

In our examples, the potential P to be minimized along the curves is usually
an image of edge points that represent simple incomplete shapes. These edge
points are represented as a binary image with small potential values along the
edges and high values at the background. Such a potential can be obtained from
real images by edge detection (see [5]). The potential could also be defined as
edges weighted by the value of the gradient or as a function of an estimate of the
gradient of the image itself, P = g(||VI||), like in classic snakes. In these cases
the chosen function has to be such that the potential is positive everywhere, and
it has to be decreasing in order to have edge points as minima of the potential.

Fig. 1. Examples of incomplete contours

The potential could also be a grey level image as in [6]. It can also be a more
complicated function of the grey level, as in [7] or in section 4.4.
The problems we solve in this paper are presented as follows:

— Minimal path between two points: The solution proposed in [6] is reviewed
in Section 2.

— Minimal paths between a given set of pairs of points is a simple application
of the previous one.

— Minimal paths between a given set of unstructured points: a way to find the
pairs of linked neighbors and paths between them is proposed in Section 3.

— Minimal paths between a given set of connected components: we propose to
find the set of minimal paths that link altogether this set of regions, and we
show an example for a medical image in section 4.

— Minimal paths between an unknown set of point: In [2] we propose the
automatic finding of key points among a larger set of admissible points and
the drawing of minimal paths that leads to completed curves.

2 Minimal Paths and weighted distance

2.1 Global minimum for Active Contours

We present in this section the basic ideas of the method introduced in [6] to
find the global minimum of the active contour energy using minimal paths. The
energy to minimize is similar to classical deformable models (see [12]) where it
combines smoothing terms and image features attraction term (Potential P):

E(C)= /Q {willC' G)IP+ wal|C" () I+P(C(5)) }ds (1)

where C(s) represents a curve drawn on a 2D image and (2 is its domain of
definition. The authors of [6] have related this problem with the recently intro-
duced paradigm of the level-set formulation. In particular, its Euler equation
is equivalent to the geodesic active contours [1]. The method introduced in [6]
improves energy minimization because the problem is transformed in a way to
find the global minimum.

2.2 Problem formulation

In [6], contrary to the classical snake model (but similarly to geodesic active con-
tours), s represents the arc-length parameter, which means that ||C'(s)|| = 1,
leading to a geometric energy form. Considering a simplified energy model with-

out the second derivative term leads to the expression E(C) = [{w||C'||” + P(C)}ds.
Assuming that ||C'(s)|| = 1 leads to the formulation

B = [{w+PC))ds (2)
02=[0,L]

Fig. 2. Finding a minimal path between two points. On the left, the potential is minimal
on the ellipse. In the middle, the minimal action or weighted distance to the marked
point. On the right, minimal path using backpropagation from the second point.

The regularization of this model is now achieved by the constant w > 0 (see [6]
for details).

We now have an expression in which the internal energy can be included in
the external potential. Given a potential P > 0 that takes lower values near
desired features, we are looking for paths along which the integral of P = P+ w
is minimal. The surface of minimal action i/ is defined as the minimal energy
integrated along a path between a starting point py and any point p:

Up) = inf E(C)= inf { / P(C(s))ds} 3)
Apg.p Apo.p 2

where A, , is the set of all paths between py and p. The minimal path between
po and any point p; in the image can be easily deduced from this action map.
Assuming that potential P # 0 (this is always the case for P), the action map
has only one local minimum which is the starting point pg. The minimal path is
found by a simple back-propagation, that is a gradient descent on the minimal
action map U starting from p; until pg is reached. Thus, contour initialization
is reduced to the selection of the two extremities of the path. We explain in the
next section how to compute efficiently the action map U.

2.3 Fast Marching Resolution

In order to compute this map i/, a front-propagation equation related to Equa-
tion (3) is solved:
oc 1
ot P
It evolves a front starting from an infinitesimal circle shape around py until each
point inside the image domain is assigned a value for U. The value of U(p) is the
time ¢ at which the front passes over the point p.
The Fast Marching technique, introduced in [16], was used in [6] noticing
that the map U satisfies the Eikonal equation:

VUl =P and U(po) = 0. ()

7. (4)

Classic finite differences schemes for this equation tend to overshoot and are
unstable. An up-wind scheme was proposed by [16]. It relies on a one-sided

Algorithm for 2D Fast Marching

— Definitions:
e Alive set: all grid points at which the action value I/ has been reached
and will not be changed;
e Trial set: next grid points (4-connexity neighbors) to be examined.
An estimate U of U has been computed using Equation (6) from alive
points only (i.e. from U);
e Far set: all other grid points, there is not yet an estimate for U;
— Initialization:
e Alive set: reduced to the starting point po, with U(po) = U(po) = 0;
o Trial set: reduced to the four neighbors p of po with initial value
U(p) = P(p) (U(p) = o0);
o Far set: all other grid points, with & = U = oc;
— Loop:
e Let p = (4min, jmin) be the Trial point with the smallest action U;
e Move it from the Trial to the Alive set (i.e. U(p) = Ui, ;. jmin 1S
frozen);
e For each neighbor (¢, j) (4-connexity in 2D) of (imin, jmin):
* If (4, j) is Far, add it to the Trial set and compute U;,; using Eqn.
6;
* If (4,7) is Trial, update the action U; ; using Eqn. 6.
Table 1. Fast Marching algorithm

derivative that looks in the up-wind direction of the moving front, and thereby
avoids the over-shooting associated with finite differences:

(max{u — U;_1,j,u — Uit1,;,0})* +
(max{u — Ui j_1,u — Ui j41,0})* = P} (6)

Ve
giving the correct viscosity-solution u for U; ;. The improvement made by the
Fast Marching is to introduce order in the selection of the grid points. This order
is based on the fact that information is propagating outward, because the action
can only grow due to the quadratic Equation (6).

This technique of considering at each step only the necessary set of grid
points was originally introduced for the construction of minimum length paths
in a graph between two given nodes in [8].

The algorithm is detailed in Table 1. An example is shown in Figure 2. The
Fast Marching technique selects at each iteration the Trial point with minimum
action value. In order to compute this value, we have to solve Equation (7) for
each trial point, as detailed in table 2.

2.4 Algorithm for 2D Up-Wind Scheme

Notice that for solving Equation (6), only alive points are considered. This
means that calculation is made using current values of U for neighbors and
not estimate U of other trial points. Considering the neighbors of grid point

(4,7) in 4-connexity, we note {41, A2} and {B1, Bz} the two couples of opposite
neighbors such that we get the ordering U(A4;) < U(Az), U(B;1) < U(B3), and
U(A1) < U(By). Considering that we have u > U(B1) > U(A1), the equation
derived is

(u—U(A1))* + (u = U(B1))* = P} (7

Computing the discriminant A of Equation (7) we have the steps described in
table 2.

1. — If A >0, u should be the largest solution of Equation (7);

o If the hypothesis u > L{(B;12{ is wrong, go to 2;
o If this value is larger than /(B1), this is the solution;
— If A < 0, By has an action too large to influence the solution. It means

that u > U(B1) is false. Go to 2;
Simple calculus can replace case 1 by the test:

1bis. If P ; > U(B1) — U(A1),
_ UBDHUAD+ /2P (U(B1)-U(A1))?

is the largest solution of Equa-
tion (7)
else go to 2;
2. Considering that we have u < U(Bi1) and u > U(A1), we finally have
u=U(A1)+ P ;.
Table 2. Solving locally the upwind scheme

Thus it needs only one pass over the image. To perform efficiently these
operations in minimum time, the Trial points are stored in a min-heap data
structure (see details in [16]). Since the complexity of the operation of changing
the value of one element of the heap is bounded by a worst-case bottom-to-top
proceeding of the tree in O(log, P), the total work is bounded O(P log, P) for
the Fast Marching on a grid with P nodes.

3 Finding multiple contours from a set of key points p

The method of [6], detailed in the previous section allows to find a minimal path
between two endpoints. We are now interested in finding many or all contours
in an image. A first step for multiple contours finding in an image is to assume
we have a set of points p; given on the image and then find contours passing
through these points. We assume the points are either given by a preprocessing
or by the user. We propose to find the contours as a set of minimal paths that
link pairs of points among the p;’s. If we also know which pairs of points have
to be linked together, finding the whole set of contours is a trivial application
of the previous section. This would be similar to the method in [10] which used
a dynamic programming (non consistent, see [6]) approach to find the paths
between successive points given by the user. The problem we are interested in

here is also to find out which pairs of points have to be connected by a contour.
Since the set of points pg’s is assumed to be given unstructured, we do not know
in advance how the points connect. This is the key problem that is solved here
using a minimal action map.

3.1 Main ideas of the approach

Our approach is similar to computing the distance map to a set of points and
their Voronoi diagram. However, we use here a weighted distance defined through
the potential P. This distance is obtained as the minimal action with respect to
P with zero value at all points py. Instead of computing a minimal action map for
each pair of points, as in Section 2, we only need to compute one minimal action
map in order to find all paths. At the same time the action map is computed we
determine the pairs of points that have to be linked together. This is based on
finding meeting points of the propagation fronts. These are saddle points of the
minimal action U. In Section 2, we said that calculation of the minimal action
can be seen as the propagation of a front through equation (4). Although the
minimal action is computed using fast marching, the level sets of U give the
evolution of the front. During the fast marching algorithm, the boundary of the
set of alive points also gives the position of the front. In the previous section, we
had only one front evolving from the starting point pg. Since all points py are
set with U(pr) = 0, we now have one front evolving from each of the starting
points pg. In what follows when we talk about front meeting, we mean either
the geometric point where the two fronts coming from different py’s meet, or in
the discrete algorithm the first alive point which connects two components from
different py’s (see Figures 3 and 4).

Our problem is related to the approach presented at the end of [6] in order to
find a closed contour. Given only one end point, the second end point was found
as a saddle point. This point is where the two fronts propagating both ways
meet. Here we use the fact that given two end points p; and ps, the saddle point
S where the two fronts starting from each point meet can be used to find the
minimal path between p; and ps. Indeed, the minimal path between the two
points has to pass by the meeting point S. This point is the point half way (in
energy) on the minimal path between p; and p,. Backpropagating from S to
p1 and then from S to ps gives the two halves of the path. This is in fact an
approximation, due to some discretization error in finding the meeting point S.
If high precision is needed, a subpixel location of saddle points can be made
based on the final energy map. In order to get the precise minimal path between
the two points, we could also backpropagate from the second point to the first
as in Section 2, but computation time would be then much increased.

3.2 Some definitions
Here are some definitions that will be used in what follows.

— For a point p in the image, we note U, the minimal action obtained by Fast
Marching with potential P and starting point p.

Fig. 3. Ellipse example with four points. On the left the incomplete ellipse as potential
and four given points; on the right the minimal action map (random LUT to show the
level sets) from these points.

— X being a set of points in the image, Ux is the minimal action obtained
by Fast Marching with potential P and starting points {p,p € X}. This
means that all points of X are initialized as alive points with value 0 and all
their 4-connexity neighbors are trial points. This is easy to see that Ux =
minpe x Up.

The region Ry, associated with a point pg is the set of points p of the image
closer in energy to p;, than to other points p;. This means that minimal action
Uy, <Up;,Vj # k. Thus, if X = {p;,0 < j < N}, we have Ux = Uy, on Ry
and the computation of Ux is the same as the simultaneous computation of
each Uy, on each region Rj. These are the simultaneous fronts starting from

each pg.
The region index r is r(p) = k,Vp € Ry. (Voronoi Diagram for weighted

distance).
A saddle point S(p;,p;) between p; and p; is the first point where the front

starting from p; to compute U, meets the front starting from p; to compute
Uy, ; At this point, U, and Uy, are equal and this is the smallest value for

which they are equal.
Two points among the pg’s will be called linked neighbors if they are selected

to be linked together. The way we choose to link two points is to select some
saddle points. Thus points p; and p; are linked neighbors if their saddle point
is among the selected ones.

3.3 Saddle points and Reconstruction of the set of curves

The main goal of our method is to obtain all significant paths joining the given
points. However, each point should not be connected to all other points, but

Fig. 4. Zoom on a saddle point between two key points.

only to those that are closer to them in the energy sense. In order to form closed
curves, each point p; should not have more than two linked neighbors. The
criteria for two points p; and p; to be connected is that their fronts meet before
other fronts. It means that their saddle point S(p;,p;) has lower action U than
the saddle points between these points and other points pg. The fact that we
limit each py, to have no more than two connections makes it possible that some
points will have only one or no connection. This helps removing some isolated
spurious points or getting different closed curves not being connected together.
We illustrate this in the example of Figure 6 where one of the py is not linked
to any other point since all the other points already have two linked neighbors.
In case we also need to have T-junctions, the algorithm can be used with a
higher number of linked neighbors allowed for each endpoint or we may connect
together all possible points as in Section 4.3. A non symmetric relation may also
be used to link each point to the closest or the two closest ones, regardless of
whether these have already two or more neighbors. In the exemple of Figure 6,
such an approach would link the spurious points with the circles. Postprocessing
would be needed to remove undesired links, based on high energy for example.

Once a saddle point S(p;,p;) is found and selected, backpropagation rela-
tively to final energy U should be done both ways to p; and to p; to find the
two halves of the path between them. We see in Figure 5 this backpropagation
at each of the four saddle points. At a saddle point, the gradient is zero, but the
direction of descent towards each point are opposite. For each backpropagation,
the direction of descent is the one relative to each region. This means that in
order to estimate the gradient direction toward p;, all points in a region different
from R; have their energy put artificially to co. This allows finding the good di-
rection for the gradient descent towards p;. However, as mentioned earlier, these
backpropagations have to be done only for selected saddle points. In the fast
marching algorithm we have a simple way to find saddle points and update the
linked neighbors.

Fig. 5. Ellipse example with four points. On the left the saddle points are found, and
backpropagation is made from them to each of the two points from where the front
comes; on the right, the minimal paths and the Voronoi diagram obtained.

As defined above, the region Ry associated with a point py is the set of
points p of the image such that minimal energy U, (p) to py is smaller than all
the Uy, (p) to other points p;. The set of such regions R}, covers the whole image,
and forms the Voronoi diagram of the image (see figure 5). All saddle points are
at a boundary between two regions. For a point p on the boundary between R;
and Ry, we have Uy, (p) = Up; (p). The saddle point S(p,p;) is a point on this
boundary with minimal value of U, (p) = U,, (p). This gives us a rule to find the
saddle points during the fast marching algorithm.

Each time two fronts coming from p;, and p; meet for the first time, we define
the meeting point as S(pg,p;). This means that we need to know for each point
of the image from where it comes. This is easy to keep track of its origin by
generating an index map updated at each time a point is set as alive in the
algorithm. Each point p starts with index k. Each time a point is set as alive,
it gets the same index as the points it was computed from in formula (6). In
that formula, the computation of U; ; depends only on at most two of the four
pixels involved. These two pixels, said A; and Bj, have to be from the same
region, except if (¢, 7) is on the boundary between two regions. If A; and B; are
both alive and with different indexes k and [, this means that regions Rj and
R; meet there. If this happens for the first time, the current point is set as the
saddle point S(pg,p;) between these regions. A point on the boundary between
Ry, and Ry is given the index of the neighbor point with smaller action A;. At
the boundary between two regions there can be a slight error on indexing. This
error of at most one pixel is not important in our context and could be refined
if necessary.

11

Algorithm with previously defined p;

— Initialization:
e p;’s are given
o Vk,V(pr) = 0;7(pr) = k; pi alive.
o Vp & {pr},V(pr) = co;r(p) = —1; pis far except 4-connexity neighbors
of p’s that are trial with estimate U using Eqn. (6).
— Loop for computing V' = Uyp, o<k<ny:

o Let p= gzmm, Jmin) be the Trial point with the smallest action U;
e Move it from the Trial to the Alive set with V(p) = U(p);
e Update r(p) with the same index as point A; in ormula (6). I r(Ay) #

r(B1) and we are in case 1 of table 2 where both points are used and if
this is the first time regions r(Ai) and r(Bi1) meet, S(p,(4,); Pr(By)) =
p is set as a saddle point between p,(4,) and p,p,). If these points
have not yet two linked neighbors, they are put as linked neighbors and
S(pr(Al)apr(Bl)) = p is selected,

For each neighbor (%, j) (4-connexity) of (imin, jmin):

* If (4,) is Far, add it to the Trial set and compute U using Eqn. (6);
* If (4, 7) is Trial, recompute the action U;,;, and update it.

— Obtain all paths between selected linked neighbors by backpropagation each
way from their saddle point (see Section 3.3).
Table 3. Algorithm of Section 3

3.4 Algorithm and results

The algorithm for this section is described in Table 3 and illustrated in figures
3 and 5. When there is a large number of pg’s, this does not change much the
computation time of the minimal action map, but this makes more complex
dealing with the list of linked neighbors and saddle points. This may generate
more conflicting neighbor points, and due to the constraint of having at most two
linked neighbors, some gaps may remain between contours. The method can be
applied to a whole set of edge points or points obtained through a preprocessing.
However, choosing few key points simplifies the computation of saddle points
and linked neighbors and the geometry of the paths. When there are few key
points, they are not too close to each other. Finding all paths from a given set
of points is interesting in the case of a binary potential defined, like in Figure
3, for perceptual grouping. It can be used as well when a special preprocessing
is possible, either on the image itself to extract characteristic points or on the
geometry of the initial set of points to choose more relevant points. In [2] we give
a way to find automatically a set of key points from a larger set of “admissible
points”.

We show in figure 6 the results of the approach for the data given in figure 1.
We show in figure 7 an application of our approach combined with the saliency
map of [11]. In such an example, the given dots are too few to enable finding
the ellipse as a minimal path. Indeed, taking two opposite points on the ellipse,
the minimal path between them will not be along the ellipse but rather along a
straight line. By passing through low potential points (in black) along the ellipse,

12

O

Qfﬂf

Fig. 6. Final paths obtained for images of Figure 1

Fig. 7. Finding a set of minimal path using a saliency map as potential. From left to
right, original data, saliency map, ridge lines and minimal paths.

the path will also pass through more points with high potential (background in
white). Thus applying the method of [11] gives a saliency map that is much
more dense than the original image. Taking the saliency map as potential, our
approach allows finding the whole ellipse as a set of minimal paths between
points determined automatically. The set of points to be linked here can be
either the initial set of points of the original image or the set of points obtained
by thresholding the saliency map. We can also find the ellipse by looking for ridge
curves on the saliency map but there are many spurious ridge curves obtained.

4 Extension to Finding multiple contours from a set of
connected components

4.1 Minimal Path between two Regions

The method of [6], detailed in the previous section allows to find a minimal path
between two endpoints. This is a straightforward extension to define a minimal
path between two regions of the image. Given two connected regions of the image
Ry and R;, we consider Ry as the starting region and R; as a set of end points.
The problem is then finding a path minimizing energy among all paths with
start point in Ry and end point in R;. The minimal action is now defined by

Up) = inf E(C)= inf inf E(C) ®)

ARO,p PoERo Apo,p

where Apg, , is the set of all paths starting at a point of Ry and ending at p.
This minimal action can be computed the same way as before in table 1, with
the alive set initialized as the whole set of points of Ry, with &/ = 0 and trial

13

points being the set of 4-connexity neighbors of points of Ry that are not in Ry.
Backpropagation by gradient descent on I/ from any point p in the image will
give the minimal path that join this point with region Rj.

In order to find a minimal path between region R; and region Ry, we deter-
mine a point p; € Ry such that U(p1) = minyer, U(p). We then backpropagate
from p; to Rg to find the minimal path between p; and Ry, which is also a
minimal path between R; and Ry.

4.2 Minimal Paths from a Set of Connected Components

Here, our approach is to compute the distance map to a set of unstructured set
of points where connected points are considered as regions, using a weighted
distance defined through the potential P. The set of paths is obtained with the
minimal action with respect to P with zero value at all regions Ry,. This method
has the same possibilities as the one presented in section 3, as we only need to
compute one minimal action map in order to find all paths. In the same way, we
find the saddle points between each pair of propagating fronts from two regions
R; and R,. And we compute the minimal paths between two regions R; and
Ry by back-propagating from each selected saddle-point until we meet a pixel
belonging respectively to regions R; and R». The notion of linked neighbors is
extended to linked regions. More details can be found in [3].

4.3 Connecting all regions with minimal paths

The goal here is to connect all regions, but only to those that are closer to them
in the energy sense. In section 3, we were looking for closed contours from a set
of points, and had constraints on the maximal number of linked neighbors. In the
application we show below, we are interested in connecting all initial given points
through a path. In this case we also need to have T-junctions, for reconstructing
tree-like structures, therefore the algorithm can be used with a higher number of
linked regions allowed for each region, as said for the end points in subsection 3.3.
The constraint we use now is to avoid creating a closed contour when connecting
two regions. This is obtained through the definition of cycles and cycle tests.

A cycle is a sequence of different regions Ri,1 < k < K, such that for
1<k<K-1, R and Ry are linked regions and Rx and R; are also linked
regions. A cycle test can be easily implemented using a recursive algorithm.
When two regions R; and R; are willing to be connected - ie that their fronts
meet - a table storing the connectivity between each region enables to detect if
a connection already exists between those regions. Having N different regions,
we fill a matrix M (N, N) with zeros, and each time two regions R; and R; meet
for the first time, we set M (i,7) = M (j,i) = 1. Thus, when two regions meet,
we apply the algorithm detailed in table 4.

If two regions are already connected, the pixel where their fronts meet is not
considered as a valuable candidate for back-propagation.

The algorithm stops automatically when all regions are connected.

14

Once a saddle point between any region R; and R; is found and selected,
back-propagation relatively to final energy U should be done both ways to p;
and to pj, the first points belonging to respectively R; and R;, during the back-
propagation algorithm.

Algorithm for Cycle detection when a region R; meets a region R;:
Test(s, j, M, 1); with
Test(i, j, M, 1);

— if M(l,7) =1, return 1;
— else
e count=0;
o for ke [l,N]withk #i,k#j,k#1:
if M(k,j) =1, count + = Test(j, k, M, 1);
e return count;

Table 4. Cycle detection

4.4 Medical Application

The method can be applied to connected components from a whole set of edge
points or points obtained through a preprocessing. Finding all paths from a given
set of points is interesting in the case of a binary potential defined, like in Figure
3, for perceptual grouping. It can be used as well when a special preprocessing
is possible, either on the image itself to extract characteristic points or on the
geometry of the initial set of points to choose more relevant points. We show in
Figure 8 an example of application for a hip medical image where we are looking
for vessels. Potential P is defined using ideas from [9] on vesselness filter.

For this, we propose to extract valuable information from this dataset, com-
puting a multiscale vessel enhancement measure, based on the work of [9] on
ridge filters. Having extracted the two eigenvalues of the Hessian matrix com-
puted at scale o, ordered |A1| < |Az|, we define at each pixel a vesselness function

0, if Ay >0
Y0) = exp BE (1 — exp 35)

where Rp = %, and S = V12 + A2, See [9] for a detailed explanation of the
settings of each parameter in this measure. Using this information computed at
several scales, we can take as new image the maximum of the response of the
filter across all scales. In figure 8-top right you can observe the response of the
filter, based on the Hessian information.

And we can easily give a very constrained threshold of this image, that will
lead to sets of unstructured pixels that surely belong to the anatomical object of
interest, as shown in figure 8-bottom left. Figure 8-bottom right shows the set of
completion paths obtained that link all given connected components together.

15

\

Fig. 8. Medical Image. First line: original image and vesselness potential; Second line:
from the set of regions obtained from thresholding of potential image, our method finds
links between these regions as minimal paths with respect to the potential.

5 Conclusion

We presented a new method that finds a set of contour curves in an image. It
was applied to perceptual grouping to get complete curves from a set of noisy
contours or edge points with gaps. The technique is based on previous work of
finding minimal paths between two end points [6]. However, in our approach, we
do not need to give the start and end points as initialization. In a first method,
given a set of key points, we found the pairs of key points that had to be linked by
minimal paths. Once saddle points between pairs of points are found, paths are
drawn on the image from the selected saddle points to both points of each pair.
This gives the minimal paths between selected pairs of points. The whole set of
paths completes the initial set of contours and allows to close these contours. In a
second method, we compute the whole set of paths between unstructured regions
in the image. We illustrate this approach with a medical image application.

16

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 22(1):61-79, 1997.

L. D. Cohen. Multiple contour finding and perceptual grouping using minimal
paths. Journal of Mathematical Imaging and Vision, 14(3), May 2001. CERE-
MADE TR 0101, Jan 2001. To appear.

L. D. Cohen and T. Deschamps. Grouping connected components using minimal
path techniques. Technical report, CEREMADE, 2001. To appear.

. Laurent D. Cohen. On active contour models and balloons. CVGIP: Image Un-

derstanding, 53(2):211-218, March 1991.

Laurent D. Cohen and Isaac Cohen. Finite element methods for active contour
models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-15(11):1131-1147, November 1993.
Laurent D. Cohen and R. Kimmel. Global minimum for active contour models: A
minimal path approach. International Journal of Computer Vision, 24(1):57-78,
August 1997.

T. Deschamps and L.D. Cohen. Minimal paths in 3D images and application
to virtual endoscopy. In Proc. sizth European Conference on Computer Vision
(ECCV’00), Dublin, Ireland, 26th June - 1st July 2000.

E. W. Dijkstra. A note on two problems in connection with graphs. Numerische
Mathematic, 1:269-271, 1959.

A. Frangi, W. Niessen, K. L. Vincken, and M. A. Viergever. Multiscale vessel
enhancement filtering. In Proc. Medical Image Computing and Computer-Assisted
Intervention, MICCAI’98, Cambridge, pages 130137, 1998.

D. Geiger, A. Gupta, L. Costa, and J. Vlontzos. Dynamic programming for detect-
ing, tracking, and matching deformable contours. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 17(3):294-302, March 1995.

G. Guy and G. Medioni. Inferring global perceptual contours from local features.
International Journal of Computer Vision, 20(1/2):113-133, October 1996.
Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour
models. International Journal of Computer Vision, 1(4):321-331, January 1988.
R. Kimmel, A. Amir, and A. Bruckstein. Finding shortest paths on surfaces us-
ing level sets propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-17(6):635-640, June 1995.

R. Kimmel, N. Kiryati, and A. M. Bruckstein. Distance maps and weighted distance
transforms. Journal of Mathematical Imaging and Vision, 6:223-233, May 1996.
Special Issue on Topology and Geometry in Computer Vision.

R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape modeling with front prop-
agation: A level set approach. IEEE Trans. on PAMI, 17(2):158-175, February
1995.

J. A. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechan-
ics, Computer Vision and Materials Sciences. Cambridge Univ. Press, 1996.

A. Shaashua and S. Ullman. Structural saliency: The detection of globally salient
structures using a locally connected network. In Proc. Second IEEE International
Conference on Computer Vision (ICCV’88), pages 321-327, December 1988.

L. R. Williams and D. W. Jacobs. stochastic completion fields: a neural model of
illusory contour shape and salience. In Proc. Fifth IEEE International Conference
on Computer Vision (ICCV’95), pages 408-415, Cambridge, USA, June 1995.

L. R. Williams and D. W. Jacobs. Local parallel computation of stochastic com-
pletion field. In Proc. IEEE CVPR’96, San Francisco, USA, June 1996.

