Multiple Contour Finding and Perceptual Grouping
using Minimal Paths

Laurent D. COHEN
CEREMADE, UMR 7534, Université Paris-Dauphine
75775 Paris cedex 16, France; Email: cohen@ceremade.dauphine.fr

Abstract

We present a new approach for finding a set of con-
tour curves in an image. We consider the problem of
perceptual grouping and contour completion, where the
data is a set of points in the image. A new method to
find complete curves from a set of contours or edge
points is presented. Qur approach is based on a pre-
vious work on finding contours as minimal paths be-
tween two end points using the fast marching algorithm
[1]. Given a set of key points, we find the pairs of
points that have to be linked. The paths that join them
complete the initial set of contours and allow to close
them. In a second part, we propose a scheme that does
not need key points for initialization. Key points are
automatically selected from a larger set of admissible
points. We illustrate the capability of our approach to
close contours with synthetic examples.

1 Introduction

We are interested in perceptual grouping and find-
ing a set of curves in an image with the use of energy
minimizing curves. Since their introduction, active
contours [2] have been extensively used to find the
contour of an object in an image through the mini-
mization of an energy. In order to get a set of contours
of different objects, we need many active contours to
be initialized on the image. The level sets paradigm
[3, 4] allowed changes in topology. It enables to get
multiple contours by starting with a single one. How-
ever, these do not give satisfying results when there are
gaps in the data since the contour may propagate into
a hole and then split to many curves where only one
contour is desired. This is the problem encountered
with perceptual grouping where a set of incomplete
contours is given. For example, in a binary image like
the ones in Fig. 1 with a drawing of a shape with
holes and spurious edge points, human vision can eas-
ily fill in the missing boundaries, remove the spurious
ones and form complete curves. Perceptual grouping
is an old problem in computer vision. It has been ap-
proached more recently with energy methods [5, 6, 7].
These methods find a criteria for saliency of a curve

Figure 1: Examples of incomplete contours

component or for each point of the image. In these
methods, the definition of saliency measure is based
indirectly on a second order regularization snake-like
energy ([2]) of a path containing the point. However,
the final curves are obtained generally in a second step
as ridge lines of the saliency criteria after threshold-
ing. In [8] a similarity between snakes and stochastic
completion field is reported. Motivated by this rela-
tion between energy minimizing curves like snakes and
completion contours, we are interested in finding a set
of completion contours on an image as a set of energy
minimizing curves.

In order to solve global minimization for snakes, the
authors of [1] used the minimal paths, as introduced
in [9, 10]. The goal was to avoid local minima without
demanding too much on user initialization, which is a
main drawback of classic snakes [11]. Only two end
points were needed. The numerical method has the
advantage of being consistent (see [1]) and efficient us-
ing the Fast Marching algorithm introduced in [12]. In
this paper we propose a way to use this minimal path
approach to find a set of curves drawn between points
in the image. As a first step, a set of end points is as-
sumed to be given. We also introduce a technique that
automatically finds the end points. This can be also
viewed as an extension of the minimal path approach
by finding automatically, based on construction of a
minimal energy global map, a set of key end points.
In order to find a set of most salient contour curves in
the image, we draw the minimal paths between pairs
of linked neighbors selected among the key end points.

In our examples, the potential P to be minimized

along the curves is usually an image of edge points
that represent simple incomplete shapes. These edge
points are represented as a binary image with small
potential values along the edges and high values at
the background. Such a potential can be obtained
from real images by edge detection (see [13]). The
potential could also be defined as edges weighted by
the value of the gradient or as a function of an estimate
of the gradient of the image itself, P = g(||VI|]), like in
classic snakes. In these cases the chosen function has
to be such that the potential is positive everywhere,
and it has to be decreasing in order to have edge points
as minima of the potential. The potential could also
be a grey level image as in [1].

The problems we solve in this paper are presented
as follows:

e Minimal path between two points: The solution
proposed in [1] is reviewed in Section 2.

e Minimal paths between a given set of pairs of
points is a simple application of the previous one.

e Minimal paths for a given set of unstructured
points: we propose a way to find pairs of linked
neighbors and paths between them (Section 3).

e Minimal paths between an unknown set of point:
Our main contribution concerns the automatic
finding of key points and the drawing of minimal
paths that leads to completed curves (Section 4).

A detailed version of this work is presented in [14].

2 Minimal Paths. Weighted distance
2.1 Global minimum for Active Contours
We present in this section the basic ideas of the
method introduced in [1] to find the global minimum
of the active contour energy using minimal paths. The
energy to minimize is similar to classical deformable
models (see [2]) where it combines smoothing terms
and image features attraction term (Potential P):

E(C)= /Q {willC' G+ wal|C" () [*+P(C(s) fds - (1)

where C(s) represents a curve drawn on a 2D image
and Q is its domain of definition. The authors of [1]
have related this problem with the recently introduced
paradigm of the level-set formulation. In particular,
its Euler equation is equivalent to the geodesic ac-
tive contours [4]. The method introduced in [1] im-
proves energy minimization because the problem is
transformed in a way to find the global minimum.
2.2 Problem formulation
As explained in [1], we are lead to minimize

E(C) = / {w+PC(s)}ds, (2)
Q=[0,L]

Figure 2: Finding a minimal path between two points.
On the left, the potential is minimal on the ellipse. In
the middle, the minimal action or weighted distance to
the marked point. On the right, minimal path using
backpropagation from the second point.

where s is the arclength parameter (||C’(s)|| = 1). The
regularization of this model is now achieved by the
constant w > 0 (see [1, 15] for details). Given a po-
tential P > 0, the energy is like a distance weighted
by P = P +w. The minimal action ¢ is defined as
the minimal energy integrated along a path between

starting point pp and any point p:

U(p) = inf E(C) = inf {/ P(C(s))ds} (3)
POP Apo.p Q

where A, , is the set of all paths between py and p.
The minimal path between py and any point p; in
the image can be easily deduced from this action map
by a simple back-propagation (gradient descent on i)
starting from p; until py is reached.
2.3 Fast Marching Resolution

In order to compute this map U, a front-
propagation equation related to Eqn. (3) is solved:
% = %ﬁ. It evolves a front starting from an infinites-
imal circle shape around pg until each point inside the
image domain is assigned a value for /. The value of
U(p) is the time ¢ at which the front passes over p.

The Fast Marching technique, introduced in [12],
was used in [1] noticing that the map U satisfies the
Eikonal equation ||[VU|| = P and U(po) = 0. Since
classic finite difference schemes for this equation are
unstable, an up-wind scheme was proposed by [12]:

(max{u — Z/{i—l,j: u — ui+1,j: 0})2 +
(max{u — Ui j_1,u — Ui j11,0})* = PZ. (4)

The improvement made by the Fast Marching is to in-
troduce order in the selection of the grid points. This
order is based on the fact that information is propa-
gating outward, because the action can only grow due
to the quadratic Eqn. (4). The main idea is similar to
the construction of minimum length paths in a graph
between two given nodes introduced in [16] (see dis-
cussion in [1]). Complexity of Fast Marching on a grid

Algorithm for 2D Fast Marching

o Definitions:

— Alive set: grid points at which the action value
U has been reached and will not be changed,

— Trial set: next grid points (4-connexity neigh-
bors) to be examined. An estimate U of U
has been computed using Eqn. (4) from alive
points only (i.e. from U);

— Far set: all other grid points, there is not yet
an estimate for U;

e Initialization:
— Alive set: start point po, U(po) = U(po) = 0;
— Trial set: reduced to the four neighbors p of

po with initial value U(p) = P(p) (U(p) = 0);
— Far set: all other grid points, i/ = U = o0;

e Loop:
— Let p = (¢min, jmin) be the Trial point with
the smallest action U,
— Move it from the Trial to the Alive set;
— For each neighbor (7, 7) of (imin, Jmin):
x If (i,7) is Far, add it to the Trial set;
* If (¢, 7) is Trial, update U; ; with Eqn. (4).

Table 1: Fast Marching algorithm

with P nodes is bounded by O(P log, P) for the Fast
Marching on a grid with P nodes. The algorithm is
detailed in Table 1. An example is shown in Fig. 2.
Solving Eqn. (4) is detailed in appendix.

3 Finding multiple contours from a set
of key points p;

The method of [1], detailed in the previous section
allows to find a minimal path between two endpoints.
We are now interested in finding many or all contours
in an image. A first step for multiple contours finding
in an image is to assume we have a set of points py
given on the image and then find contours passing
through these points. We will discuss later how to
define these points, in particular in Section 4. For the
moment we assume the points are either given by a
preprocessing or by the user. We propose to find the
contours as a set of minimal paths that link pairs of
points among the p;’s. If we also know which pairs of
points have to be linked together, finding the whole
set of contours is a trivial application of the previous
section. This would be similar to the method in [17]
which used a dynamic programming approach to find
the paths between successive points given by the user.
The problem we are interested in here is also to find
out which pairs of points have to be connected by a
contour. Since the set of points pg’s is assumed to be

given unstructured, we do not know in advance how
the points connect. This is the key problem that is
solved here using a minimal action map.
3.1 Main ideas of the approach

Our approach is similar to computing the distance
map to a set of points and their Voronoi diagram.
However, we use here a weighted distance defined
through the potential P. This distance is obtained
as the minimal action with respect to P with zero
value at all points py. Instead of computing a mini-
mal action map for each pair of points, as in Section
2, we only need to compute one minimal action map
in order to find all paths. At the same time the action
map is computed we determine the pairs of points that
have to be linked together. This is based on finding
meeting points of the propagation fronts. These are
saddle points of the minimal action U/. In Section 2,
we said that calculation of the minimal action can be
seen as the propagation of a front through 2¢ = %ﬁ.
Although the minimal action is computed using fast
marching, the level sets of U give the evolution of the
front. During the fast marching algorithm, the bound-
ary of the set of alive points also gives the position of
the front. In the previous section, we had only one
front evolving from the starting point py. Since all
points py are set with U(px) = 0, we now have one
front evolving from each of the starting points pg. In
what follows when we talk about front meeting, we
mean either the geometric point where the two fronts
coming from different p;’s meet, or in the discrete al-
gorithm the first alive point which connects two com-
ponents from different pi’s (see Figs. 3 and 4).
Our problem is related to the approach presented at
the end of [1] in order to find a closed contour. Given
only one end point, the second end point was found
as a saddle point. This point is where the two fronts
propagating both ways meet. Here we use the fact
that given two end points p; and p-, the saddle point
S where the two fronts starting from each point meet
can be used to find the minimal path between p; and
p2- Indeed, the minimal path between the two points
has to pass by the meeting point S. This point is the
point half way (in energy) on the minimal path be-
tween p; and py. Backpropagating from S to p; and
then from S to py gives the two halves of the path.
3.2 Some definitions

These definitions will be used in what follows.

e For a point p in the image, we note U/, the minimal
action obtained by Fast Marching with potential
P and starting point p.

e X being a set of points in the image, Ux is
the minimal action obtained by Fast Marching

Figure 3: Ellipse example with four points. On the
left the incomplete ellipse as potential and four given
points; on the right the minimal action map (random
LUT to show the level sets) from these points.

with potential P and starting points {p,p € X}.
This means that all points of X are initialized as
alive points with value 0 and all their 4-connexity
neighbors are trial points. This is easy to see that
UX = rninpeX L{p.

e The region Rj, associated with a point py is the
set of points p of the image closer in energy to
pr than to other points p;. This means that
minimal action U,, < U, ,Vj # k. Thus, if
X = {p;,0 < j < N}, we have Ux = U, on
Ry, and the computation of Uy is the same as the
simultaneous computation of each U, on each re-
gion Ry,. These are the simultaneous fronts start-
ing from each py.

e The region index r is r(p) = k,Vp € Ry. (Voronoi
Diagram for weighted distance).

e A saddle point S(p;,p;) between p; and p; is the
first point where the front starting from p; to com-
pute U, meets the front starting from p; to com-
pute Uy, ; At this point, U, and U, are equal and
this is the smallest value for which they are equal.

e Two points among the p;’s will be called linked
neighbors if they are selected to be linked to-
gether. The way we choose to link two points
is to select some saddle points. Thus points p;
and p; are linked neighbors if their saddle point
is among the selected ones.

3.3 Saddle points and Reconstruction of
the set of curves

The main goal of our method is to obtain all sig-
nificant paths joining the given points. However, each
point should not be connected to all other points, but
only to those that are closer to them in the energy
sense. In order to form closed curves, each point py
should not have more than two linked neighbors. The
criteria for two points p; and p; to be connected is

Figure 5: Ellipse example with four points. On the left
the saddle points are found, and backpropagation is
made from them to each of the two points from where
the front comes; on the right, the minimal paths and
the Voronoi diagram obtained.

that their fronts meet before other fronts. It means
that their saddle point S(p;,p;) has lower action U
than the saddle points between these points and other
points pg. The fact that we limit each py to have no
more than two connections makes it possible that some
points will have only one or no connection. This helps
removing some isolated spurious points or getting dif-
ferent closed curves not being connected together. We
illustrate this in the example of Fig. 7 where one of
the pr is not linked to any other point since all the
other points already have two linked neighbors. In
case we also need to have T-junctions, the algorithm
can be used with a higher number of linked neighbors
allowed for each endpoint. A non symmetric relation
may also be used to link each point to the closest or
the two closest ones, regardless of whether these have
already two or more neighbors. In the exemple of Fig.
7, such an approach would link the spurious points
with the circles and postprocessing would be needed
to remove undesired links.

Once a saddle point S(p;,p;) is found and selected,
backpropagation relatively to final energy ¢/ should be
done both ways to p; and to p; to find the two halves

of the path between them. We see in Fig. 5 this back-
propagation at each of the four saddle points. At a
saddle point, the gradient is zero, but the direction
of descent towards each point are opposite. For each
backpropagation, the direction of descent is the one
relative to each region. This means that in order to
estimate the gradient direction toward p;, all points in
a region different from R; have their energy put arti-
ficially to oco. This allows finding the good direction
for the gradient descent towards p;. However, as men-
tioned earlier, these backpropagations have to be done
only for selected saddle points. In the fast marching
algorithm we have a simple way to find saddle points
and update the linked neighbors.

As defined above, the set of regions Ry, covers the
whole image, and forms the Voronoi diagram of the
image (see Fig. 5). All saddle points are at a boundary
between two regions. For a point p on the boundary
between R; and Ry, we have U, (p) = Uy, (p). The
saddle point S(py, p;) is a point on this boundary with
minimal value of U, = U,;. This gives a rule to find
the saddle points during the fast marching algorithm.

Each time two fronts coming from p; and p; meet
for the first time, we define the meeting point as
S(pk,p;). This means that we need to know for each
point of the image from where it comes. This is easy
to keep track of its origin by generating an index map
updated at each time a point is set as alive in the algo-
rithm. Each point pg starts with index k. Each time
a point is set as alive, it gets the same index as the
points it was computed from in formula (4). In that
formula, the computation of U;; depends only on at
most two of the four pixels involved. Following nota-
tions of appendix, this means the neighbor points A
and B;. These two pixels have to be from the same
region, except if (i, j) is on the boundary between two
regions. If A; and B; are both alive and with differ-
ent indexes ¢ and j, this means that regions R; and R;
meet there. If this happens for the first time, the cur-
rent point is set as the saddle point S(p;,p;) between
these regions. A point on the boundary between R;
and R; is given the index of the neighbor point with
smaller action A;. At the boundary between two re-
gions there can be a slight error on indexing. This
error of at most one pixel is not important in our con-
text and could be refined if necessary.

3.4 Algorithm

The algorithm for this section is described in Ta-
ble 2 and illustrated in Figs. 3 and 5. When there
is a large number of pg’s, this does not change much
the computation time of the minimal action map, but
this makes more complex dealing with the list of linked

Algorithm with previously defined py

o Initialization:

— pi’s are given

— VEk,V(pr) = 0; R(pr) = k; pr alive.

= Vp & {px},V(pk) = oo;R(p) = —1; pis far
except 4-connexity neighbors of pi’s that are
trial with estimate U using Eqn. 4.

e Loop for computing V' = Uy, o<k<ny:

— Let p = (4min, jmin) be the Trial point with
the smallest action U,

— Move it from the Trial to the Alive set with
V(p) = U(p);

— Update R(p) with the same index as point A
in formula (5) (see appendix). If R(A:1) #
R(B:) and we are in case 1 of appendix
where both points are used and if this is
the first time regions R(A:) and R(B1) meet,
S(Pr(A,),PR(B,)) = P 18 set as a saddle point
between prca,) and pg(p,). If these points
have not yet two linked neighbors, they are put
as linked neighbors and S(pgr(a,);Pr(B,)) =P
is selected,

For each neighbor (7, j) of (imin, jmin):
* If Ei,jg is Far, add it to the Trial set;
* If (4,7) is Trial, update action Uj ;.

e Obtain all paths between selected linked neighbors
by backpropagation each way from their saddle
point (see Section 3.3).

Table 2: Algorithm of Section 3

neighbors and saddle points. This may generate more
conflicting neighbor points, and due to the constraint
of having at most two linked neighbors, some gaps
may remain between contours. The method can be ap-
plied to a whole set of edge points or points obtained
through a preprocessing. This was actually our first
step in this work. However, choosing few key points
simplifies the computation of saddle points and linked
neighbors and the geometry of the paths. When there
are few key points, they are not too close to each other.
Finding all paths from a given set of points is inter-
esting in the case of a binary potential defined, like in
Fig. 3, for perceptual grouping. It can be used as well
when a special preprocessing is possible, either on the
image itself to extract characteristic points or on the
geometry of the initial set of points to choose more
relevant points. In what follows we give a way to find
automatically a set of key points.

4 Finding a set of key points p;,

As motivated in Section 3.4, the problem is now,
given a potential, finding automatically a set of points

pr that can be used as start and end points for the
minimal path approach. This way a set of most rep-
resentative curves would be found in the image. The
way endpoints are linked together is similar to the
previous section, except we determine the set of end-
points during the minimal action computation. We
will see below that the method we propose here has
two advantages. First, it avoids computing the energy
map to a point when it is not useful. This permits
to have much lower computation time for the final en-
ergy map (Plog, P multiplied by an order less than
log N, with N the number of key points). Second, we
need to store only one energy map, which means each
point has only one value of the energy kept. In order
to make “classical” backpropagation between all pairs
of points, we would have to store and manage with the
whole set of energy maps for all points pi,. We propose
below a variation of the algorithm of section 3, which
dynamically adds key points and updates the minimal
action map. Once the set of key points is found, the
final result is the same as in Section 3, but only one
computation is needed. We do not need a second step
running algorithm of Section 3 with the found pjs.

4.1 Algorithm

The main idea is to find iteratively new points on
the image and say that two points have to be linked by
a minimal path if the fronts starting from these points
meet before they meet any other front. As before,
in order to get closed curves, we look for two linked
neighbors for each point. This means that each key
point is linked by a minimal path to at most two key
points. In order to find the next key point, we look for
point with highest action among a subset of admissible
points. This point is the most far in energy from the
previously obtained key points. The main algorithm is
described in Table 3 and detailed in the next sections.

4.2 Admissible points

The set A of admissible points should contain all
points that are likely to be on the curves we are looking
for. These are defined as local minima of the potential
P in the general case. For a binary potential defining a
set of contour points, as we usually have for perceptual
grouping, A is included in the set of contour points. In
order to limit the number of admissible points, we add
the condition on a smoothed version of the gradient
of the potential to be large enough. This is to im-
pose two kinds of properties. First, if the set of points
contains thick curves, this keeps only points that are
on the boundary. Second, this removes spurious iso-
lated edge points. In order to start the algorithm, a
first admissible point pg has to be chosen. This can
be done either by the user, or at random, or taking

Algorithm with automatic selection of py

e The admissible points set A is defined in section 4.2;
e Initialization:

— po chosen among admissible points (see 4.2)
— Vo = Uy,

e Loop: pi, Vi,0 <k < n being known:

— Let pn+1 be the admissible point with the
highest value of action Vj;

— Compute Vo1 = u{pk,0§k§n+l}. From this
definition, computation is made easier since
Vot+1 = min(Vy,Up, .,). Fast Marching is lim-
ited to points where V41 < V;, (see 4.3).

— Update saddle points (see 4.4).

— Stopping criteria: If sup 4 V41 < Ty orifn >
Niaz, where Ty and Np,q. are given.

e Select the saddle points.

e Obtain all paths between selected linked neighbors
by backpropagation from their saddle point accord-
ing to the final energy map Vn (see Section 4.4).

Table 3: Main algorithm

the first of the list. In case we do not want the user
to give the initial point, we can use a random point
po only in order to define the next point p; obtained
by the algorithm. And then we start again removing
the previous py and replacing it by p;. This avoids
to get a point in the middle of an open curve. This
gives preference to points that are at ends of a curve.
Another possible interaction with the user could be
to give a region of interest in the image, where the
admissible points will be constrained to be. Thus the
user has only to circle roughly an object in order to
get its contours. A priori information on the grey level
of the object or the background (for example vessels
in medical applications or roads in aerial images) can
also be used as a way to define admissible points.

4.3 Fast Marching and partial map com-
putation

For the first point pg, the fast marching described
in section 2.3 is used to compute Vg = U,,. For the
following points pg, the same fast marching could be
used to obtain Vi1 = Uy, o<k<ni1y With pg, 0 <
k < n+ 1 as initial alive points with value 0, as in
Section 3. However, it is not necessary to compute
the whole map again. In order to estimate V1, we
need to compute U, ., only for those points that have
a value smaller than the previously obtained energy
map V,,. In the fast marching algorithm, each time a
point p has to be put as alive with a value U(p), it is
compared to the previous map V,,. If V,(p) > U(p),
the point is put as alive with value V,,11(p) = U(p) =

Figure 6: Ellipse example: successive partial map computation for five points. From left to right, line 1: potential,
admissible points, found key points, saddle points, final paths and voronoi diagram; line 2: successive partial maps
for the 5 key points and final map; line 3: the same with random color map to visualize level sets.

- . -
1o oo (:']
- - -

Figure 7: Circles: potential, key points and paths.

Up, ., (p), and its neighbors are updated as usual in
Table 1. In case V,(p) < U(p), the point is put as
alive with values V,, 11 (p) = Vi,(p), and U(p) = oo and
no update is done on its neighbors. This is a way to
stop propagation around this point. This makes the
whole propagation stop as soon as we passed over all
points that are closer in energy to pp4+1 than to the

other previous py.

Therefore, the computation of the whole map does
not cost much more than computation of the fast
marching a few times over the image (a rough estima-
tion is log N times, with IV the number of p;’s instead
of N times in case we would recompute the map at
each step). Thus the computation time of this step is
not too much dependent on the number of key points.
We see in Fig. 6 an example of running this algorithm
on the ellipse image. Notice the order in which the
points pi were chosen. The first py is on the top of

the ellipse. In consequence the second point p; is on
the bottom. Then p, and ps3 are on right and left. On
the second and third rows of the figure, we show the
partial map computation, that is the set of pixels for
which a new value of minimal action was computed.
For such a simple example, we see in the energy map
to the first point py that the second key point is in
fact the saddle point between poy and itself.
4.4 Finding the Saddle points

In the fast marching algorithm, as we modified it in
the previous section, we have a simple way to find and
update the linked neighbors and saddle points. The
definition and criteria for finding a saddle point is the
same as in the algorithm of Section 3. However, since
we add key points at each step, some saddle points
detected earlier are not saddle points anymore. So we
have to check each time a saddle point is set as alive in
a new region. It is then removed from the set of saddle
points (see Fig. 8). This comes from the fact that this
point is no more on the boundary of the previously
obtained regions. Often, the new key point added was
itself a saddle point, and it is also removed from the
set of saddle points. Since the saddle point between
two key points may change during the algorithm, it is
easier to define the selected saddle points only at the
end, once all key points are known.

We see in Fig. 6 results on an ellipse for the de-
termination of key points and their selected saddle

Figure 8: The saddle point between p; and p, is not
a saddle point anymore when included in region Rs.

[e .
it Rl

Figure 9: Complex exemple: From left to
right:potential, final paths with energy as grey level
and final paths with 30 key points.

points. The paths that are obtained correspond to
the completed curve that have filled in the holes. Fig.
7 illustrates the capacity of our method to deal with
a contour image including spurious points and more
than one curve. In the example of Fig. 9, more com-
plex data is taken and we show the results with 30 key
points. The result gives a simplified and completed set
of contour curves. We see in this example that limiting
the number of linked neighbors to at most two linking
paths can change the way the contours are completed.
We show in this figure the energy of the found paths.
Each time we compute a path between two points py
and p;, we know the saddle point S(py,p;) and its en-
ergy V. This energy is in fact equal to the cost of the
path which links S(pg,p;) to pr and to p;. Therefore
the energy of the path between p; and p; is equal to
2Vn(S(pk,p;))- The smaller this energy is, the more
reliable the path can be considered. It could be a crite-
ria to choose best curves if necessary in more complex
images as in [5].

5 Conclusion

We presented a new method that finds a set of con-
tour curves in an image. It was applied to perceptual
grouping to get complete curves from a set of noisy
contours or edge points with gaps. In a first method,
we assume given a set of key points, and we found the
pairs of key points that had to be linked with minimal
paths. In a second method, the set of key points is au-
tomatically extracted from a set of admissible points,
which can be the whole set of edge points. The whole
set of minimal paths completes the initial set of con-

tours and allows to close these contours.

References

[1] Laurent D. Cohen and R. Kimmel. Global minimum
for active contour models: A minimal path approach.
IJCV, 24(1):57-78, August 1997.

[2] M. Kass, A. Witkin and D. Terzopoulos. Snakes: Ac-
tive contour models. IJCV, 1(4):321-331, Jan. 1988.

[3] R. Malladi, J. A. Sethian, and B. C. Vemuri. Shape
modeling with front propagation: A level set ap-
proach. IEEE PAMI, 17(2):158-175, february 1995.

[4] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic ac-
tive contours. IJCV, 22(1):61-79, 1997.

[6] A. Shaashua and S. Ullman. Structural saliency: The
detection of globally salient structures using a locally
connected network. In Proc. ICCV’88, Dec. 1988.

[6] G. Guy and G. Medioni. Inferring global perceptual
contours from local features. IJCV, 20(1/2) Oct. 1996.

[7] L. R. Williams and D. W. Jacobs. stochastic comple-
tion fields: a neural model of illusory contour shape
and salience. In Proc. ICCV’95, June 1995.

[8] L. R. Williams and D. W. Jacobs. Local parallel com-
putation of stochastic completion field. In Proc. IEEE
CVPR’96, San Francisco, USA, June 1996.

[9] R. Kimmel, N. Kiryati, and A. M. Bruckstein. Dis-
tance maps and weighted distance transforms. JMIV,
6:223-233, May 1996.

[10] R. Kimmel, A. Amir, and A. Bruckstein. Finding
shortest paths on surfaces using level sets propaga-
tion. IJEEE PAMI-17(6):635-640, June 1995.

[11] Laurent D. Cohen. On active contour models and
balloons. CVGIP:IU, 53(2):211-218, March 1991.

[12] J. A. Sethian. Level Set Methods: Evolving Interfaces
in Geometry, Fluid Mechanics, Computer Vision and
Materials Sciences. Cambridge Univ. Press, 1996.

[13] Laurent D. Cohen and Isaac Cohen. Finite element
methods for active contour models and balloons for
2-D and 3-D images. IJEEE PAMI-15(11), Nov. 1993.

[14] Laurent D. Cohen. Multiple contour finding and per-
ceptual grouping using minimal paths. TR 0101,
CEREMADE, January 2001. To appear in JMIV.

[15] T. Deschamps and Laurent D. Cohen. Minimal paths
in 3D images and application to virtual endoscopy. In
Proc. ECCV’00, Dublin, Ireland, July 2000.

[16] E. W. Dijkstra. A note on two problems in connection
with graphs. Numerische Math., 1:269-271, 1959.

[17] D. Geiger, A. Gupta, L. Costa, J. Vlontzos. Dynamic
programming for detecting, tracking, and matching
deformable contours. IEEE PAMI, 17(3), Mar. 1995.

Appendix : 2D Up-Wind Scheme
Notice that for solving Eqn. (4), only alive points are
considered. Considering the neighbors of grid point
(,7) in 4-connexity, we note {A;, A2} and {Bj, By}
the two couples of opposite neighbors such that we
get the ordering U(A4;) < U(As), U(By) < U(Bs),
and U(A;) < U(By). Considering that we have u >
U(By) > U(A,), the equation derived is

(u—U(A))* + (u = U(BL))? = P} ()
Based on testing the discriminant A of Eqn. (5), one
or two neighbors are used to solve it:

1. If P,j > U(B1) — U(A,), solution of Eqn. (5) is

U(B1I)FU(AL+ /2P —(U(B1)~U(A1))?
5 :

u =

2. else u =U(A) + P; ;.

