
Multiple Contour Finding and Perceptual Groupingusing Minimal PathsLaurent D. COHENCEREMADE, UMR 7534, Universit�e Paris-Dauphine75775 Paris cedex 16, France; Email: cohen@ceremade.dauphine.frAbstractWe present a new approach for �nding a set of con-tour curves in an image. We consider the problem ofperceptual grouping and contour completion, where thedata is a set of points in the image. A new method to�nd complete curves from a set of contours or edgepoints is presented. Our approach is based on a pre-vious work on �nding contours as minimal paths be-tween two end points using the fast marching algorithm[1]. Given a set of key points, we �nd the pairs ofpoints that have to be linked. The paths that join themcomplete the initial set of contours and allow to closethem. In a second part, we propose a scheme that doesnot need key points for initialization. Key points areautomatically selected from a larger set of admissiblepoints. We illustrate the capability of our approach toclose contours with synthetic examples.1 IntroductionWe are interested in perceptual grouping and �nd-ing a set of curves in an image with the use of energyminimizing curves. Since their introduction, activecontours [2] have been extensively used to �nd thecontour of an object in an image through the mini-mization of an energy. In order to get a set of contoursof di�erent objects, we need many active contours tobe initialized on the image. The level sets paradigm[3, 4] allowed changes in topology. It enables to getmultiple contours by starting with a single one. How-ever, these do not give satisfying results when there aregaps in the data since the contour may propagate intoa hole and then split to many curves where only onecontour is desired. This is the problem encounteredwith perceptual grouping where a set of incompletecontours is given. For example, in a binary image likethe ones in Fig. 1 with a drawing of a shape withholes and spurious edge points, human vision can eas-ily �ll in the missing boundaries, remove the spuriousones and form complete curves. Perceptual groupingis an old problem in computer vision. It has been ap-proached more recently with energy methods [5, 6, 7].These methods �nd a criteria for saliency of a curve

Figure 1: Examples of incomplete contourscomponent or for each point of the image. In thesemethods, the de�nition of saliency measure is basedindirectly on a second order regularization snake-likeenergy ([2]) of a path containing the point. However,the �nal curves are obtained generally in a second stepas ridge lines of the saliency criteria after threshold-ing. In [8] a similarity between snakes and stochasticcompletion �eld is reported. Motivated by this rela-tion between energy minimizing curves like snakes andcompletion contours, we are interested in �nding a setof completion contours on an image as a set of energyminimizing curves.In order to solve global minimization for snakes, theauthors of [1] used the minimal paths, as introducedin [9, 10]. The goal was to avoid local minima withoutdemanding too much on user initialization, which is amain drawback of classic snakes [11]. Only two endpoints were needed. The numerical method has theadvantage of being consistent (see [1]) and e�cient us-ing the Fast Marching algorithm introduced in [12]. Inthis paper we propose a way to use this minimal pathapproach to �nd a set of curves drawn between pointsin the image. As a �rst step, a set of end points is as-sumed to be given. We also introduce a technique thatautomatically �nds the end points. This can be alsoviewed as an extension of the minimal path approachby �nding automatically, based on construction of aminimal energy global map, a set of key end points.In order to �nd a set of most salient contour curves inthe image, we draw the minimal paths between pairsof linked neighbors selected among the key end points.In our examples, the potential P to be minimized1



along the curves is usually an image of edge pointsthat represent simple incomplete shapes. These edgepoints are represented as a binary image with smallpotential values along the edges and high values atthe background. Such a potential can be obtainedfrom real images by edge detection (see [13]). Thepotential could also be de�ned as edges weighted bythe value of the gradient or as a function of an estimateof the gradient of the image itself, P = g(krIk), like inclassic snakes. In these cases the chosen function hasto be such that the potential is positive everywhere,and it has to be decreasing in order to have edge pointsas minima of the potential. The potential could alsobe a grey level image as in [1].The problems we solve in this paper are presentedas follows:� Minimal path between two points: The solutionproposed in [1] is reviewed in Section 2.� Minimal paths between a given set of pairs ofpoints is a simple application of the previous one.� Minimal paths for a given set of unstructuredpoints: we propose a way to �nd pairs of linkedneighbors and paths between them (Section 3).� Minimal paths between an unknown set of point:Our main contribution concerns the automatic�nding of key points and the drawing of minimalpaths that leads to completed curves (Section 4).A detailed version of this work is presented in [14].2 Minimal Paths. Weighted distance2.1 Global minimum for Active ContoursWe present in this section the basic ideas of themethod introduced in [1] to �nd the global minimumof the active contour energy using minimal paths. Theenergy to minimize is similar to classical deformablemodels (see [2]) where it combines smoothing termsand image features attraction term (Potential P ):E(C)=Z
nw1kC 0(s)k2+ w2kC 00(s)k2+P (C(s))ods (1)where C(s) represents a curve drawn on a 2D imageand 
 is its domain of de�nition. The authors of [1]have related this problem with the recently introducedparadigm of the level-set formulation. In particular,its Euler equation is equivalent to the geodesic ac-tive contours [4]. The method introduced in [1] im-proves energy minimization because the problem istransformed in a way to �nd the global minimum.2.2 Problem formulationAs explained in [1], we are lead to minimizeE(C) = Z
=[0;L] fw + P (C(s))gds; (2)

Figure 2: Finding a minimal path between two points.On the left, the potential is minimal on the ellipse. Inthe middle, the minimal action or weighted distance tothe marked point. On the right, minimal path usingbackpropagation from the second point.where s is the arclength parameter (kC 0(s)k = 1). Theregularization of this model is now achieved by theconstant w > 0 (see [1, 15] for details). Given a po-tential P � 0, the energy is like a distance weightedby ~P = P + w. The minimal action U is de�ned asthe minimal energy integrated along a path betweenstarting point p0 and any point p:U(p) = infAp0;pE(C) = infAp0;p�Z
 ~P (C(s))ds� (3)where Ap0;p is the set of all paths between p0 and p.The minimal path between p0 and any point p1 inthe image can be easily deduced from this action mapby a simple back-propagation (gradient descent on U)starting from p1 until p0 is reached.2.3 Fast Marching ResolutionIn order to compute this map U , a front-propagation equation related to Eqn. (3) is solved:@C@t = 1~P�!n : It evolves a front starting from an in�nites-imal circle shape around p0 until each point inside theimage domain is assigned a value for U . The value ofU(p) is the time t at which the front passes over p.The Fast Marching technique, introduced in [12],was used in [1] noticing that the map U satis�es theEikonal equation krUk = ~P and U(p0) = 0: Sinceclassic �nite di�erence schemes for this equation areunstable, an up-wind scheme was proposed by [12]:(maxfu� Ui�1;j ; u� Ui+1;j ; 0g)2 +(maxfu� Ui;j�1; u� Ui;j+1; 0g)2 = ~P 2i;j : (4)The improvement made by the Fast Marching is to in-troduce order in the selection of the grid points. Thisorder is based on the fact that information is propa-gating outward, because the action can only grow dueto the quadratic Eqn. (4). The main idea is similar tothe construction of minimum length paths in a graphbetween two given nodes introduced in [16] (see dis-cussion in [1]). Complexity of Fast Marching on a grid2



Algorithm for 2D Fast Marching� De�nitions:{ Alive set: grid points at which the action valueU has been reached and will not be changed;{ Trial set: next grid points (4-connexity neigh-bors) to be examined. An estimate U of Uhas been computed using Eqn. (4) from alivepoints only (i.e. from U);{ Far set: all other grid points, there is not yetan estimate for U ;� Initialization:{ Alive set: start point p0; U(p0) = U(p0) = 0;{ Trial set: reduced to the four neighbors p ofp0 with initial value U(p) = ~P (p) (U(p) =1);{ Far set: all other grid points, U = U =1;� Loop:{ Let p = (imin; jmin) be the Trial point withthe smallest action U ;{ Move it from the Trial to the Alive set;{ For each neighbor (i; j) of (imin; jmin):� If (i; j) is Far, add it to the Trial set;� If (i; j) is Trial, update Ui;j with Eqn. (4).Table 1: Fast Marching algorithmwith P nodes is bounded by O(P log2 P ) for the FastMarching on a grid with P nodes. The algorithm isdetailed in Table 1. An example is shown in Fig. 2.Solving Eqn. (4) is detailed in appendix.3 Finding multiple contours from a setof key points pkThe method of [1], detailed in the previous sectionallows to �nd a minimal path between two endpoints.We are now interested in �nding many or all contoursin an image. A �rst step for multiple contours �ndingin an image is to assume we have a set of points pkgiven on the image and then �nd contours passingthrough these points. We will discuss later how tode�ne these points, in particular in Section 4. For themoment we assume the points are either given by apreprocessing or by the user. We propose to �nd thecontours as a set of minimal paths that link pairs ofpoints among the pk's. If we also know which pairs ofpoints have to be linked together, �nding the wholeset of contours is a trivial application of the previoussection. This would be similar to the method in [17]which used a dynamic programming approach to �ndthe paths between successive points given by the user.The problem we are interested in here is also to �ndout which pairs of points have to be connected by acontour. Since the set of points pk's is assumed to be

given unstructured, we do not know in advance howthe points connect. This is the key problem that issolved here using a minimal action map.3.1 Main ideas of the approachOur approach is similar to computing the distancemap to a set of points and their Voronoi diagram.However, we use here a weighted distance de�nedthrough the potential P . This distance is obtainedas the minimal action with respect to P with zerovalue at all points pk. Instead of computing a mini-mal action map for each pair of points, as in Section2, we only need to compute one minimal action mapin order to �nd all paths. At the same time the actionmap is computed we determine the pairs of points thathave to be linked together. This is based on �ndingmeeting points of the propagation fronts. These aresaddle points of the minimal action U . In Section 2,we said that calculation of the minimal action can beseen as the propagation of a front through @C@t = 1~P�!n :Although the minimal action is computed using fastmarching, the level sets of U give the evolution of thefront. During the fast marching algorithm, the bound-ary of the set of alive points also gives the position ofthe front. In the previous section, we had only onefront evolving from the starting point p0. Since allpoints pk are set with U(pk) = 0, we now have onefront evolving from each of the starting points pk. Inwhat follows when we talk about front meeting, wemean either the geometric point where the two frontscoming from di�erent pk's meet, or in the discrete al-gorithm the �rst alive point which connects two com-ponents from di�erent pk's (see Figs. 3 and 4).Our problem is related to the approach presented atthe end of [1] in order to �nd a closed contour. Givenonly one end point, the second end point was foundas a saddle point. This point is where the two frontspropagating both ways meet. Here we use the factthat given two end points p1 and p2, the saddle pointS where the two fronts starting from each point meetcan be used to �nd the minimal path between p1 andp2. Indeed, the minimal path between the two pointshas to pass by the meeting point S. This point is thepoint half way (in energy) on the minimal path be-tween p1 and p2. Backpropagating from S to p1 andthen from S to p2 gives the two halves of the path.3.2 Some de�nitionsThese de�nitions will be used in what follows.� For a point p in the image, we note Up the minimalaction obtained by Fast Marching with potential~P and starting point p.� X being a set of points in the image, UX isthe minimal action obtained by Fast Marching3



Figure 3: Ellipse example with four points. On theleft the incomplete ellipse as potential and four givenpoints; on the right the minimal action map (randomLUT to show the level sets) from these points.with potential ~P and starting points fp; p 2 Xg.This means that all points of X are initialized asalive points with value 0 and all their 4-connexityneighbors are trial points. This is easy to see thatUX = minp2X Up.� The region Rk associated with a point pk is theset of points p of the image closer in energy topk than to other points pj . This means thatminimal action Upk � Upj ;8j 6= k: Thus, ifX = fpj ; 0 � j � Ng, we have UX = Upk onRk and the computation of UX is the same as thesimultaneous computation of each Upk on each re-gion Rk. These are the simultaneous fronts start-ing from each pk.� The region index r is r(p) = k;8p 2 Rk. (VoronoiDiagram for weighted distance).� A saddle point S(pi; pj) between pi and pj is the�rst point where the front starting from pi to com-pute Upi meets the front starting from pj to com-pute Upj ; At this point, Upi and Upj are equal andthis is the smallest value for which they are equal.� Two points among the pk's will be called linkedneighbors if they are selected to be linked to-gether. The way we choose to link two pointsis to select some saddle points. Thus points piand pj are linked neighbors if their saddle pointis among the selected ones.3.3 Saddle points and Reconstruction ofthe set of curvesThe main goal of our method is to obtain all sig-ni�cant paths joining the given points. However, eachpoint should not be connected to all other points, butonly to those that are closer to them in the energysense. In order to form closed curves, each point pkshould not have more than two linked neighbors. Thecriteria for two points pi and pj to be connected is

Figure 4: Zoom on a saddle point.

Figure 5: Ellipse example with four points. On the leftthe saddle points are found, and backpropagation ismade from them to each of the two points from wherethe front comes; on the right, the minimal paths andthe Voronoi diagram obtained.that their fronts meet before other fronts. It meansthat their saddle point S(pi; pj) has lower action Uthan the saddle points between these points and otherpoints pk. The fact that we limit each pk to have nomore than two connections makes it possible that somepoints will have only one or no connection. This helpsremoving some isolated spurious points or getting dif-ferent closed curves not being connected together. Weillustrate this in the example of Fig. 7 where one ofthe pk is not linked to any other point since all theother points already have two linked neighbors. Incase we also need to have T-junctions, the algorithmcan be used with a higher number of linked neighborsallowed for each endpoint. A non symmetric relationmay also be used to link each point to the closest orthe two closest ones, regardless of whether these havealready two or more neighbors. In the exemple of Fig.7, such an approach would link the spurious pointswith the circles and postprocessing would be neededto remove undesired links.Once a saddle point S(pi; pj) is found and selected,backpropagation relatively to �nal energy U should bedone both ways to pi and to pj to �nd the two halves4



of the path between them. We see in Fig. 5 this back-propagation at each of the four saddle points. At asaddle point, the gradient is zero, but the directionof descent towards each point are opposite. For eachbackpropagation, the direction of descent is the onerelative to each region. This means that in order toestimate the gradient direction toward pi, all points ina region di�erent from Ri have their energy put arti-�cially to 1. This allows �nding the good directionfor the gradient descent towards pi. However, as men-tioned earlier, these backpropagations have to be doneonly for selected saddle points. In the fast marchingalgorithm we have a simple way to �nd saddle pointsand update the linked neighbors.As de�ned above, the set of regions Rk covers thewhole image, and forms the Voronoi diagram of theimage (see Fig. 5). All saddle points are at a boundarybetween two regions. For a point p on the boundarybetween Rj and Rk, we have Upk(p) = Upj (p). Thesaddle point S(pk; pj) is a point on this boundary withminimal value of Upk = Upj . This gives a rule to �ndthe saddle points during the fast marching algorithm.Each time two fronts coming from pk and pj meetfor the �rst time, we de�ne the meeting point asS(pk; pj). This means that we need to know for eachpoint of the image from where it comes. This is easyto keep track of its origin by generating an index mapupdated at each time a point is set as alive in the algo-rithm. Each point pk starts with index k. Each timea point is set as alive, it gets the same index as thepoints it was computed from in formula (4). In thatformula, the computation of Ui;j depends only on atmost two of the four pixels involved. Following nota-tions of appendix, this means the neighbor points A1and B1. These two pixels have to be from the sameregion, except if (i; j) is on the boundary between tworegions. If A1 and B1 are both alive and with di�er-ent indexes i and j, this means that regions Ri and Rjmeet there. If this happens for the �rst time, the cur-rent point is set as the saddle point S(pi; pj) betweenthese regions. A point on the boundary between Riand Rj is given the index of the neighbor point withsmaller action A1. At the boundary between two re-gions there can be a slight error on indexing. Thiserror of at most one pixel is not important in our con-text and could be re�ned if necessary.3.4 AlgorithmThe algorithm for this section is described in Ta-ble 2 and illustrated in Figs. 3 and 5. When thereis a large number of pk's, this does not change muchthe computation time of the minimal action map, butthis makes more complex dealing with the list of linked

Algorithm with previously de�ned pk� Initialization:{ pk's are given{ 8k; V (pk) = 0;R(pk) = k; pk alive.{ 8p =2 fpkg; V (pk) = 1;R(p) = �1; p is farexcept 4-connexity neighbors of pk's that aretrial with estimate U using Eqn. 4.� Loop for computing V = Ufpk;0�k�Ng:{ Let p = (imin; jmin) be the Trial point withthe smallest action U ;{ Move it from the Trial to the Alive set withV(p) = U(p);{ Update R(p) with the same index as point A1in formula (5) (see appendix). If R(A1) 6=R(B1) and we are in case 1 of appendixwhere both points are used and if this isthe �rst time regions R(A1) and R(B1) meet,S(pR(A1); pR(B1)) = p is set as a saddle pointbetween pR(A1) and pR(B1). If these pointshave not yet two linked neighbors, they are putas linked neighbors and S(pR(A1); pR(B1)) = pis selected,For each neighbor (i; j) of (imin; jmin):� If (i; j) is Far, add it to the Trial set;� If (i; j) is Trial, update action Ui;j .� Obtain all paths between selected linked neighborsby backpropagation each way from their saddlepoint (see Section 3.3).Table 2: Algorithm of Section 3neighbors and saddle points. This may generate morecon
icting neighbor points, and due to the constraintof having at most two linked neighbors, some gapsmay remain between contours. The method can be ap-plied to a whole set of edge points or points obtainedthrough a preprocessing. This was actually our �rststep in this work. However, choosing few key pointssimpli�es the computation of saddle points and linkedneighbors and the geometry of the paths. When thereare few key points, they are not too close to each other.Finding all paths from a given set of points is inter-esting in the case of a binary potential de�ned, like inFig. 3, for perceptual grouping. It can be used as wellwhen a special preprocessing is possible, either on theimage itself to extract characteristic points or on thegeometry of the initial set of points to choose morerelevant points. In what follows we give a way to �ndautomatically a set of key points.4 Finding a set of key points pkAs motivated in Section 3.4, the problem is now,given a potential, �nding automatically a set of points5



pk that can be used as start and end points for theminimal path approach. This way a set of most rep-resentative curves would be found in the image. Theway endpoints are linked together is similar to theprevious section, except we determine the set of end-points during the minimal action computation. Wewill see below that the method we propose here hastwo advantages. First, it avoids computing the energymap to a point when it is not useful. This permitsto have much lower computation time for the �nal en-ergy map (P log2 P multiplied by an order less thanlogN , with N the number of key points). Second, weneed to store only one energy map, which means eachpoint has only one value of the energy kept. In orderto make \classical" backpropagation between all pairsof points, we would have to store and manage with thewhole set of energy maps for all points pk. We proposebelow a variation of the algorithm of section 3, whichdynamically adds key points and updates the minimalaction map. Once the set of key points is found, the�nal result is the same as in Section 3, but only onecomputation is needed. We do not need a second steprunning algorithm of Section 3 with the found p0ks.4.1 AlgorithmThe main idea is to �nd iteratively new points onthe image and say that two points have to be linked bya minimal path if the fronts starting from these pointsmeet before they meet any other front. As before,in order to get closed curves, we look for two linkedneighbors for each point. This means that each keypoint is linked by a minimal path to at most two keypoints. In order to �nd the next key point, we look forpoint with highest action among a subset of admissiblepoints. This point is the most far in energy from thepreviously obtained key points. The main algorithm isdescribed in Table 3 and detailed in the next sections.4.2 Admissible pointsThe set A of admissible points should contain allpoints that are likely to be on the curves we are lookingfor. These are de�ned as local minima of the potentialP in the general case. For a binary potential de�ning aset of contour points, as we usually have for perceptualgrouping, A is included in the set of contour points. Inorder to limit the number of admissible points, we addthe condition on a smoothed version of the gradientof the potential to be large enough. This is to im-pose two kinds of properties. First, if the set of pointscontains thick curves, this keeps only points that areon the boundary. Second, this removes spurious iso-lated edge points. In order to start the algorithm, a�rst admissible point p0 has to be chosen. This canbe done either by the user, or at random, or taking

Algorithm with automatic selection of pk� The admissible points set A is de�ned in section 4.2;� Initialization:{ p0 chosen among admissible points (see 4.2){ V0 = Up0� Loop: pk; Vk; 0 � k � n being known:{ Let pn+1 be the admissible point with thehighest value of action Vn;{ Compute Vn+1 = Ufpk;0�k�n+1g: From thisde�nition, computation is made easier sinceVn+1 = min(Vn;Upn+1): Fast Marching is lim-ited to points where Vn+1 � Vn (see 4.3).{ Update saddle points (see 4.4).{ Stopping criteria: If supA Vn+1 � TU or if n �Nmax, where TU and Nmax are given.� Select the saddle points.� Obtain all paths between selected linked neighborsby backpropagation from their saddle point accord-ing to the �nal energy map VN (see Section 4.4).Table 3: Main algorithmthe �rst of the list. In case we do not want the userto give the initial point, we can use a random pointp0 only in order to de�ne the next point p1 obtainedby the algorithm. And then we start again removingthe previous p0 and replacing it by p1. This avoidsto get a point in the middle of an open curve. Thisgives preference to points that are at ends of a curve.Another possible interaction with the user could beto give a region of interest in the image, where theadmissible points will be constrained to be. Thus theuser has only to circle roughly an object in order toget its contours. A priori information on the grey levelof the object or the background (for example vesselsin medical applications or roads in aerial images) canalso be used as a way to de�ne admissible points.4.3 Fast Marching and partial map com-putationFor the �rst point p0, the fast marching describedin section 2.3 is used to compute V0 = Up0 . For thefollowing points pk, the same fast marching could beused to obtain Vn+1 = Ufpk;0�k�n+1g with pk; 0 �k � n + 1 as initial alive points with value 0, as inSection 3. However, it is not necessary to computethe whole map again. In order to estimate Vn+1, weneed to compute Upn+1 only for those points that havea value smaller than the previously obtained energymap Vn. In the fast marching algorithm, each time apoint p has to be put as alive with a value U(p), it iscompared to the previous map Vn. If Vn(p) > U(p),the point is put as alive with value Vn+1(p) = U(p) =6



Figure 6: Ellipse example: successive partial map computation for �ve points. From left to right, line 1: potential,admissible points, found key points, saddle points, �nal paths and voronoi diagram; line 2: successive partial mapsfor the 5 key points and �nal map; line 3: the same with random color map to visualize level sets.
Figure 7: Circles: potential, key points and paths.Upn+1(p); and its neighbors are updated as usual inTable 1. In case Vn(p) � U(p), the point is put asalive with values Vn+1(p) = Vn(p); and U(p) =1 andno update is done on its neighbors. This is a way tostop propagation around this point. This makes thewhole propagation stop as soon as we passed over allpoints that are closer in energy to pn+1 than to theother previous pk.Therefore, the computation of the whole map doesnot cost much more than computation of the fastmarching a few times over the image (a rough estima-tion is logN times, with N the number of pk's insteadof N times in case we would recompute the map ateach step). Thus the computation time of this step isnot too much dependent on the number of key points.We see in Fig. 6 an example of running this algorithmon the ellipse image. Notice the order in which thepoints pk were chosen. The �rst p0 is on the top of

the ellipse. In consequence the second point p1 is onthe bottom. Then p2 and p3 are on right and left. Onthe second and third rows of the �gure, we show thepartial map computation, that is the set of pixels forwhich a new value of minimal action was computed.For such a simple example, we see in the energy mapto the �rst point p0 that the second key point is infact the saddle point between p0 and itself.4.4 Finding the Saddle pointsIn the fast marching algorithm, as we modi�ed it inthe previous section, we have a simple way to �nd andupdate the linked neighbors and saddle points. Thede�nition and criteria for �nding a saddle point is thesame as in the algorithm of Section 3. However, sincewe add key points at each step, some saddle pointsdetected earlier are not saddle points anymore. So wehave to check each time a saddle point is set as alive ina new region. It is then removed from the set of saddlepoints (see Fig. 8). This comes from the fact that thispoint is no more on the boundary of the previouslyobtained regions. Often, the new key point added wasitself a saddle point, and it is also removed from theset of saddle points. Since the saddle point betweentwo key points may change during the algorithm, it iseasier to de�ne the selected saddle points only at theend, once all key points are known.We see in Fig. 6 results on an ellipse for the de-termination of key points and their selected saddle7



Figure 8: The saddle point between p1 and p2 is nota saddle point anymore when included in region R3.
Figure 9: Complex exemple: From left toright:potential, �nal paths with energy as grey leveland �nal paths with 30 key points.points. The paths that are obtained correspond tothe completed curve that have �lled in the holes. Fig.7 illustrates the capacity of our method to deal witha contour image including spurious points and morethan one curve. In the example of Fig. 9, more com-plex data is taken and we show the results with 30 keypoints. The result gives a simpli�ed and completed setof contour curves. We see in this example that limitingthe number of linked neighbors to at most two linkingpaths can change the way the contours are completed.We show in this �gure the energy of the found paths.Each time we compute a path between two points pkand pj , we know the saddle point S(pk; pj) and its en-ergy VN . This energy is in fact equal to the cost of thepath which links S(pk; pj) to pk and to pj . Thereforethe energy of the path between pk and pj is equal to2VN (S(pk; pj)). The smaller this energy is, the morereliable the path can be considered. It could be a crite-ria to choose best curves if necessary in more compleximages as in [5].5 ConclusionWe presented a new method that �nds a set of con-tour curves in an image. It was applied to perceptualgrouping to get complete curves from a set of noisycontours or edge points with gaps. In a �rst method,we assume given a set of key points, and we found thepairs of key points that had to be linked with minimalpaths. In a second method, the set of key points is au-tomatically extracted from a set of admissible points,which can be the whole set of edge points. The wholeset of minimal paths completes the initial set of con-
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