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Université Paris IX Dauphine, CEREMADE UMR CNRS 7534,
Place du Marechal de Lattre de Tassigny, 75775 Paris Cedex 16, France

cohen@ceremade.dauphine.fr, Telephone : 33-1-44 05 46 78, Fax : 33-1-44 05 45 99

Abstract. This paper presents a new method to find minimal paths in 3D images,
giving as initial data one or two endpoints. This is based on previous work [1] for
extracting paths in 2D images using Fast Marching [4]. Our original contribution
is to extend this technique to 3D, and give new improvements of the approach
that are relevant in 2D as well as in 3D. We also introduce several methods to
reduce the computation cost and the user interaction.
This work finds its motivation in the particular case of 3D medical images. We
show that this technique can be efficiently applied to the problem of finding a
centered path in tubular anatomical structures with minimum interactivity, and
we apply it to path construction for virtual endoscopy. Synthetic and real medical
images are used to illustrate each contribution.
keywords : Deformable Models, Minimal paths, Level Set methods, Medical
image understanding, Eikonal Equation, Fast Marching.

1 Introduction

In this paper we deal with the problem of finding a curve of interest in a 3D image. It is
defined as a minimal path with respect to a Potential

�
. This potential is derived from

the image data depending on which features we are looking for.
With classical deformable models [2], extracting a path between two fixed extrem-

ities is the solution of the minimization of an energy composed of internal and exter-
nal constraints on this path, needing a precise initialization. Similarly, defining a cost
function as an image constraint only, the minimal path becomes the path for which the
integral of the cost between the two end points is minimal. Simplifying the model to ex-
ternal forces only, Cohen and Kimmel [1] solved this minimal path problem in 2D with
a front propagation equation between the two fixed end points, using the Eikonal equa-
tion (that physically models wavelight propagation), with a given initial front. There-
fore, the first step is to build an image-based measure

�
that defines the minimality

property in the studied image, and to introduce it in the Eikonal equation. The second
step is to propagate the front on the entire image domain, starting from an initial front
restricted to one of the fixed points. The propagation is done using an algorithm called
Fast Marching [4].

The original contribution of our work is to adapt to 3D images the minimal path
technique developed in [1]. We also improve this technique by reducing the computing
cost of front propagation. For the particular case of tubular anatomical structures, we



also introduce a method to compute a path with a given length with only one point as
initialization, and another method to extract a centered path in the object of interest.

Deformable models have been widely used in medical imaging [7]. The main moti-
vation of this work is that it enables almost automatic path tracking routine in 3D med-
ical images for virtual endoscopy inside an anatomical object. An endoscopy consists
in threading a camera inside the patient’s body in order to examine a pathology. The
virtual endoscopy process consists in rendering perspective views along a user-defined
trajectory inside tubular structures of human anatomy with CT or MR 3D images. It is
a non-invasive technique which is very useful for learning and preparing real examina-
tions, and it can extract diagnostic elements from images. This new method skips the
camera and can give views of region of the body difficult or impossible to reach phys-
ically (e.g. brain vessels). A major drawback in general remains when the user must
define all path points manually. For a complex structure (small vessels, colon,...) the
required interactivity can be very tedious. If the path is not correctly built, it can cross
an anatomical wall during the virtual fly-through.

Our work focuses on the automation of the path construction, reducing interactions
and improving performance, given only one or two end points as inputs. We show that
the Fast Marching method can be efficiently applied to the problem of finding a path in
virtual endoscopy with minimum interactivity. We also propose a range of choices for
finding the right input potential

�
.

In section 2, we summarize the method detailed in [1] for 2D images. In section 3,
we extend this method to 3D, and we detail each improvement made on the front prop-
agation technique. In section 4, we explain how to extract centered paths in tubular
structures. And in section 5, we apply our method to colon and brain vessels.

2 The Cohen-Kimmel Method in 2D

2.1 Global Minimum for Active Contours.

We present in this section the basic ideas of the method introduced by Cohen and Kim-
mel (see [1] for details) to find the global minimum of the active contour energy using
minimal paths. The energy to minimize is similar to classical deformable models (see
[2]) where it combines smoothing terms and image features attraction term (Potential�

): ���������
	���
�� ��� ��������� � ��� � ��� ��� ������� � ��� ���������������! "�
. (1)

where
�������

represents a curve drawn on a 2D image, # is its domain of definition$ %'&)(+*
, and

(
is the length of the curve. It reduces the user initialization to giving the

two end points of the contour
�

. In [1], the authors have related this problem to the
new paradigm of the level-set formulation. In particular, its Euler equation is equivalent
to the geodesic active contours [8]. They introduced a model which improves energy
minimization because the problem is transformed in a way to find the global minimum,
avoiding being sticked in local minima.

Most of the classical deformable contours have no constraint on the parameteriza-
tion

�
, thus allowing different parameterization of the contour

�
to lead to different



results. In [1], contrary to the classical snake model (but similarly to geodesic active
contours),

�
represents the arc-length parameter. Considering a simplified energy model

without a second derivative term leads to the expression� ������� 	�� � � � �����������)���� ��
. (2)

We now have an expression in which the internal forces are included in the external
potential. The regularization is now achieved by the constant

��� %
.

Given a potential
��� %

that takes lower values near desired features, we are looking
for paths along which the integral of �� � � � �

is minimal. We can define the surface
of minimal action � , as the minimal energy integrated along a path between a starting
point 	�
 and any point 	 :

� � 	 � �
������������ � � �������
������������ � � 	�� ��������������) ���� . (3)

where ��� � � � is the set of all paths between 	�
 and 	 . The minimal path between 	 

and any point 	 � in the image can be easily deduced from this action map. Assuming
that potential

�
is always positive, the action map will have only one local minimum

which is the starting point 	 
 , and the minimal path will be found by a simple back-
propagation on the energy map. Thus, contour initialization is reduced to the selection
of the two extremities of the path.

2.2 Fast Marching Resolution.

In order to compute this map � , a front-propagation equation related to equation (3) is
solved : !#"!%$ � � &')(* + . It evolves a front starting from an infinitesimal circle shape around	 
 until each point inside the image domain is assigned a value for � . The value of� � 	 � is the time , at which the front passes over the point 	 . Then it notifies the shortest
path energy to reach the start point from any point in the image.
The fast marching technique, introduced by Sethian (see [4]), was used by Cohen and
Kimmel [1] noticing that the map � satisfies the Eikonal equation:�%- � � � �� . (4)

Classic finite difference schemes for this equation tend to overshoot and are unstable.
Sethian [4] has proposed a method which relies on a one-sided derivative that looks
in the up-wind direction of the moving front, and thereby avoids the over-shooting of
finite differences. At each pixel

�/. &10 �
, the unknown 2 satisfies:�436587 � 2 ( �:94; � � < & 2 ( �:9�= � � < &)% � � � ��436587 � 2 ( �:9 � < ; � & 2 ( �:9 � < = � &)% � � � � �� �9 � < . (5)

giving the correct viscosity-solution 2 for �>9 � < . The improvement made by the Fast
Marching is to introduce order in the selection of the grid points. This order is based on
the fact that information is propagating outward, because action can only grow due to



the quadratic equation (5).
The algorithm is detailed in 3D in next section in table 2. The fast marching technique
selects at each iteration the Trial point with minimum action value. This technique of
considering at each step only the necessary set of grid points was originally introduced
for the construction of minimum length paths in a graph between two given nodes in
[6].
Thus it needs only one pass over the image. To perform efficiently these operations in
minimum time, the Trial points are stored in a min-heap data structure (see details in
[4]). Since the complexity of the operation of changing the value of one element of the
heap is bounded by a worst-case bottom-to-top proceeding of the tree in � ������� ��� �

, the
total work is about � � � �	�
� ��� �

for the fast marching on a � points grid.

3 3D Minimal Path Extraction

We are interested in this paper in finding a curve in a 3D image. The application that
motivates this problem is detailed in section 5. It can also have many other applications.
Our approach is to extend the minimal path method of previous section to finding a path�������

in a 3D image minimizing the energy:	 � ��������������) "� . (6)

where # � $ %'&)(+*
,
(

being the length of the curve. We first extend the Fast marching
method to 3D to compute the minimal action � . We then introduce different improve-
ments for finding the path of minimal action between two points in 2D as well as in
3D. In the examples that illustrate the approach, we see various ways of defining the
potential

�
.

3.1 3D Fast-Marching

Similarly to previous section, the minimal action � is defined as

� � 	 � � ������ � � � � � 	�� ��������������  ���� . (7)

where � � � � � is now the set of all 3D paths between 	 
 and 	 . Given a start point 	�
 ,
in order to compute � we start from an initial infinitesimal front around 	 
 . The 2D
scheme equation (5) developed in [5] is extended to 3D, leading to :�436587 � 2 ( �:94; � � < � � & 2 ( � 9 = � � < � � &)% � � � ��/3 5 7 � 2 ( � 9 � < ; ��� � & 2 ( �:9 � < = ��� � &)% � � � � (8)�436587 � 2 ( � 9 � < � � ; � & 2 ( � 9 � < � � = � &)% � � � � �� �9 � < � � .

giving the correct viscosity-solution 2 for � 9 � < � � . Considering the neighbors of grid
point

�/. &10�&
� �
in 6-connexity, we study the solution of the equation (8) in table 1.

We extend the Fast Marching method, introduced in [4] and used by Cohen and
Kimmel [1] to our 3D problem. The algorithm is detailed in table 2.



Algorithm for 3D Up-Wind Scheme
We note ��� ��� � ��� , ��� ��� � ��� and ��	 ��� 	 ��� the three couples of opposite neighbors of
��
 ���
����� with the ordering ������������� , ������������� , �� ������� !� , and �"���������������� �� .
Three different cases are to be examined sequentially:

1. Considering that we have #%$��  �� $�� ��� $&� �'� , the equation derived is

( #*)+������, �.- ( #/)0������, �.- ( #*)1�� ���, �32546 �
. (9)

Computing the discriminant 7 � of equation (9) we have two cases
– If 7 � $98 , # should be the largest solution of equation (9);: If the hypothesis #<;��� �� is wrong, go to 2;: If this value is larger than �� �� , go to 4;
– If 7 �3= 8 , it means that at least 	 � has an action too large to influence the solution

and that the hypothesis #%;��  �� is false. Go to 2;
2. Considering that #>$�������$������ and # = �� �� , the equation derived is

( #*)+� ��� , ��- ( #*)+� ��� , �?2 6 �
. (10)

Computing the discriminant 7 � of equation (10) we have two cases
– If 7 � $98 , # should be the largest solution of equation (10);: If the hypothesis #<;�� ��� is wrong, go to 3;: If this value is larger than � ��� , go to 4;
– If 7 � = 8 , � � has an action too large to influence the solution. It means that
#>;������ is false. Go to 3;

3. Considering that # = � ��� and #<$�� ��� , we finally have # 2 � ��� - 6 . Go to 4;
4. Return # .

Table 1. Solving locally the upwind scheme
Algorithm for 3D Fast Marching

– Definition:: Alive is the set of all grid points at which the action value has been reached and will
not be changed;: Trial is the set of next grid points to be examined and for which an estimate of �
has been computed using algorithm of Table 1;: Far is the set of all other grid points, for which there is not yet an estimate for � ;

– Initialization:: Alive set is confined to the starting point @�A ;: Trial - the initial front is confined to the neighbors of @ A ;: Far is the set of all other grid points;
– Loop:: Let

( 
CBEDGF �C� BEDGF �H� BIDJF�, be the Trial point with the smallest action � ;: Move it from the Trial to the Alive set (i.e. ��DGK�LJM�N OPK�LJM�N QRK�LJM is frozen);: For each neighbor
( 
 ���
��� , (6-connexity in 3D) of

( 
 BIDJF ��� BIDJF �H� BEDGF , :S If
( 
 �C�
�H� , is Far, add it to the Trial set and compute � using table 1;S If
( 
 ���
��� , is Trial, recompute the action � DTN ORN Q , and update it if the new value

computed is smaller.

Table 2. Fast marching algorithm



3.2 Several Minimal Path Extraction Techniques

In this section, different procedures to obtain the minimal path between two points are
detailed. After discussing the previous backpropagation method, we study how we can
limit the front propagation to a subset of the image domain, for speeding-up execution.
We illustrate the ideas of this section on two synthetic examples of 3D front propagation
in figures 1 and 3. To make the following ideas easier to understand, we show examples
in 2D in this section. Examples of minimal paths in 3D real images are presented for
the application in Section 5.

Minimal path by back-propagation The minimal action map � computed according
to the discretization scheme of equation (7) is similar to convex, in the sense that its
only local minimum is the global minimum found at the front propagation start point	 
 where � � 	 
 ��� %

. The gradient of � is orthogonal to the propagating fronts since
these are its level sets. Therefore, the minimal action path between any point 	 and the
start point 	 
 is found by sliding back the map � until it converges to 	 
 . It can be done
with a simple steepest gradient descent, with a predefined descent step, on the minimal
action map � , choosing 	�� = � � 	�� ( step � - � � 	�� � . See in figure 1-middle the action
map corresponding to a binarized potential defined by high values in a spiral rendered in
figure 1-middle. The path found between a point in the center of the spiral and another
point outside is shown in figure 1-right by transparency.

Potential
6 2

spire action map with
6 2

spire 3D path in the spire

Fig. 1. Examples on synthetic potentials

Partial front propagation. An important issue concerning the back-propagation tech-
nique is to constrain the computations to the necessary set of pixels for one path con-
struction. Finding several paths inside an image from the same seed point is an interest-
ing task, but in the case we have two fixed extremities as input for the path construction,
it is not necessary to propagate the front on all the image domain, thus saving comput-
ing time. In figure 2 is shown a test on an angiographic image of brain vessels. We
can see that there is no need to propagate further the points examined in figure 2-right,
the path found being exactly the same as in figure 2-middle where front propagation is



done on all the image domain. We used a potential
���

x
� ��� -�������� � x �	� � �

, where
� is the original image ( 
���
 � pixels, displayed in figure 2-left), ��� a Gaussian filter of
variance � � 
 , and

� � � the weight of the model. In figure 2-right, the partial front
propagation has visited less than ��
�� of the image. This ratio depends mainly on the
length of the path tracked.

Fig. 2. Comparing complete front propagation with partial front propagation method on a digital
subtracted angiography (DSA) image

Simultaneous partial front propagation The idea is to propagate simultaneously a
front from each end point 	 
 and 	 � . Lets consider the first grid point 	 where those
fronts collide. Since during propagation the action can only grow, propagation can be
stopped at this step. Adjoining the two paths, respectively between 	 
 and 	 , and 	 � and	 , gives an approximation of the exact minimal action path between 	 
 and 	 � . Since 	
is a grid point, the exact minimal path might not go through it, but in its neighborhood.
Basically, it exists a real point 	�� , whose nearest neighbor on the Cartesian grid belongs
to the minimal path. Therefore, the approximation done is sub-pixel and there is no
need to propagates further.

It has two interesting benefits for front propagation:

– It allows a parallel implementation of the algorithm, dedicating a processor to each
propagation;

– It decreases the number of pixels examined during a partial propagation by��� ����� ������ � � 
 in 2D (figure 3-right);
��� ������������ � �! 

in 3D (figure 3-left).
because with the potential

�
� � , the action map is the Euclidean distance.

Note that it can also compute the Euclidean distance to a set of points by initializing �
to be 0 at these points.
In figure 4 is displayed a test on a digital subtracted angiography (DSA) of brain vessels.
The potential used is

���
x
� �"� � � x � ( �#� � � , where � is the original image ( 
�
%$ � pixels,

displayed in figure 4-left),
�

a constant term (mean value of the start and end points
gray levels), and

� � � % the weight of the model. In figure 4-middle, the partial front
propagation has visited up to $ % � of the image. With a colliding fronts method, only
� % � of the image is visited (see figure 4-right), and the difference between both paths
found is sub-pixel.



Action map with potential
6 2��

Zone1

Zone2 Zone2

Comparing both methods on potential
6 2��

Fig. 3. Propagation with potential
6 2��

Fig. 4. Comparing the partial front propagation with the colliding fronts method on a DSA image

One end point propagation We have shown the ability of the front propagation tech-
niques to compute the minimal path between two fixed points. In some cases, only one
point should be necessary, or the needed user interaction for setting a second point is
too tedious in a 3D image. We have derived a method that builds a path given only one
end point and a maximum path length. The technique is similar to that of subsection
3.2, but the new condition will be to stop propagation when a path corresponding to a
chosen Euclidean distance is extracted. A test of this path length condition is shown on
figure 5 which is a DSA image of brain vessels. We have seen with figure 3-left that
propagating a front with potential

� � � computes the Euclidean distance to the start
point. Therefore, we use simultaneously an image-based potential

� � , for building the
minimal path and a potential

� � � � for computing the path length.
While we are propagating the front corresponding to

� � on the image domain, at
each point 	 examined we compute both minimal actions for

� � (shown in figure 5-
middle) and for

� � (shown in figure 5-right). In this case the action corresponding to� � is an approximate Euclidean length of the minimal path between 	 and 	 
 .
4 The Path Centering Method

In this section we derive a technique to track paths that are centered in a tubular shape,
using the front propagation methods. To illustrate this problem, we use the example
shown on figure 6-left, which is a binarized image of brain vessels. Using our classical



The original image The minimal action The path length map

Fig. 5. Computing the Euclidean path length simultaneously

front propagation, the minimal path extracted is tangential to the edges, as shown in
figure 6-middle, superimposed on the action map computed. This is due to the fact that
length is minimized. This path is not tuned for problems which may require a centered
path, and we will see in next section that it can be necessary for virtual endoscopy. In

The two paths The thresholded potential The centered minimal action

Fig. 6. Comparing classic and centered paths

some cases it is possible to get the shape of the object in which we are looking for a
path. One way of making this shape available is to use the front propagation itself as
shown in Figure 9. This is more detailed in [9]. If we have the shape of our object,
we can use a front propagation method to compute the distance to its edges using a
potential defined by

���/. & 0 � � ��� �/. & 0 ��� � object
�

.
���/. &10 � ��� � �/. & 0 ��� � Background

�
.

���/. & 0 � � % � �/. & 0 ��� � Interface
�

.

When this distance map, noted � , is computed, it is used to create a potential
� �

which
weights the points in order to propagate faster a new front in the centre of the desired
regions. Choosing a value

 
to be the minimum acceptable distance to the walls, we



propose the following potential:
�����

x
� � � �  ( 36� � � � � x ���  ��	� ��� with ��� � . (11)

According to this new penalty, the final front propagates faster in the center of the ves-
sel. This can be observed by looking at the shape of the iso-action lines of the centered
minimal action shown in figure 6-right. Finally, one can observe in figure 6-left that
the path avoids the edges and remains in the center of the vessel, while the former path
tangential to edges. This method can be related to robotic problems like optimal path
planning (see [4] for details), essentially because the potential shown in figure 6-left is
binary. But there is no reason to limit the application of this algorithm to a binary do-
main. Thus, for continuously varying potential

�
, we use the same method. In section 5,

we present results on real 3D data applied to virtual endoscopy, where the problem is to
find shortest paths on weighted domains.

5 Application to Virtual Endoscopy

In previous sections we have developed a series of issues in front propagation tech-
niques. We study now the particular case of virtual endoscopy, where extraction of
paths in 3D images is a very tedious task.

5.1 The Role of Virtual Endoscopy

Visualization of volumetric medical image data plays a crucial part for diagnosis and
therapy planning. The better the anatomy and the pathology are understood, the more
efficiently one can operate with low risk. Different possibilities exist for visualizing
3D data: three 2D orthogonal views (see figure 7), maximum intensity projection (MIP,
and its variants), surface and volume rendering. In particular, virtual endoscopy allows

Fig. 7. Three orthogonal views of a volumetric CT data set of the colon

by means of surface/volume rendering techniques to visually inspect regions of the
body that are dangerous and/or impossible to reach physically with a camera. A virtual
endoscopic system is usually composed of two parts:

1. A Path construction part, which provides the successive locations of the fly-through
the tubular structure of interest (see figure 8-left);



Path

Original CT slice + path Endoscopic view

Fig. 8. Interior view of a colon, reconstructed from a defined path

2. Three dimensional viewing along the endoscopic path (see figure 8-right).

A major drawback in general remains when the path construction is left to the user
who manually has to “guide” the virtual endoscope/camera. The required interactivity
on a 3D image can be very tedious for complex structures such as the colon. Since
the anatomical objects have often complex topologies, the path passes in and out of
the three orthogonal planes. Consequently the right location is accomplished by alter-
natively entering the projection of the wanted point in each of the three planes. Then,
the path is approximated between the user defined points by lines or Bezier splines,
and if the number of points is not enough, it can easily cross an anatomical wall. Path
construction in 3D images is thus a very critical task and precise anatomical knowl-
edge of the structure is needed to set a suitable trajectory, with the minimum required
interactivity.

Numerous techniques [10],[11] try to automate this path construction process by
using a skeletonization technique as a pre-processing. It requires first to segment the
object in order to binarize the image, then it extracts the skeleton of this volume. The
skeleton often consists in lots of discontinuous trajectories, and post-processing is nec-
essary to isolate and smooth the final path. But those methods can lead to critical cases:
if there is a stenosis in the tubular structure, the binarization can produce two separate
objects, where a skeletonization is inefficient. The front propagation techniques studied
in this paper propose an alternative to the tedious manual path construction by building
paths in 3D images with minimum interactivity. In contrast to other methods, it does
not require any pre- or post-processing. We first apply this method to the case of virtual
endoscopy in a colon CT dataset, then we extend it to a brain MR dataset.

5.2 Application to Colonoscopy

All tests are performed on a volumetric CT scan of size 
 ��
 � 
�� 
 � �  % voxels, shown
in figure 7. We define a potential

�
from the 3D image � ��� � that is minimal inside

the anatomical shapes where end points are located. We chose the potential
���

x
� �

� � � x � ( � mean
� � � �

, where an average grey level value � mean of the colon is obtained
with an histogram. From this definition,

�
is lower inside the colon in order to propagate

the front faster. Also, edges are enhanced with a non-linear function ( �
� � ) since the

path to be extracted is in a large object that has complex shape and very thin edges.



Then, using this potential, we propagate inside the colon creating a path between a
couple of given points. In fact, the colon being a closed object with two extremities, one
can use the Euclidean path length stopping criterion as explained in subsection 3.2. This
allows to give only one end point. The figure 9 shows the result of the fast marching
technique with a unique starting point belonging to the colon and an Euclidean path
length criterion of 
 % % mm. This path has been computed in 10 seconds (in CPU time)
on an UltraSparc 30 with a 300 MHz monoprocessor. However, this potential does

Fig. 9. Successive steps of front propagation inside the colon volume

Initial Path

Path centered

The two different paths Image potential Centering potential

Fig. 10. Centering the path in the colon

not produce paths relevant for virtual endoscopy. Indeed, paths should remain not only
in the anatomical object of interest but as far as possible from its edges. In order to
achieve this target, we use the centering potential method as detailed in section 4. This
approach needs a shape information. This information is provided by the previous front
propagation. From its definition, the front sticks to the anatomical shapes as shown
in figure 9. This is related to the use of Fast Marching algorithm to extract a surface
for segmentation [3]. It gives a rough segmentation of the colon and provides a good



Fig. 11. 3D Views of a path inside the colon

information and a fast-reinitialization technique to compute the distance to the edges.
Using this thresholded map as a potential that indicates the distance to the walls, we
can correct the initial path as shown in figure 10-left. Both 3D paths are projected on
the 2D slice for visualization. As expected, the new path remains more in the middle
of the colon. The two different cross-sections in figures 10-middle and 10-right display
the view of the interior of the colon from both paths at the u-turn shown in figure 10-
left. This effect of centering the path enhances dramatically the rendering of the video
sequence of virtual endoscopy obtained. 1 With the initial potential, the path is near the
wall, and we see the u-turn, whereas with the new path, the view is centered into the
colon, giving a more correct view of the inside of the colon.

Therefore, the two end points can be connected correctly, giving a path staying
inside the anatomical object. The results are displayed in two 3D views in figure 11.
But for virtual colonoscopy, it is often not necessary to set the two end points within
the anatomical object.

5.3 Application to a Brain MRA Image

Tests were performed on brain vessels in a magnetic resonance angiography (MRA)
scan. The problem is different, because there is only signal from blood. All other
structures have been removed. The main difficulty here lies in the variations of the
dye intensity. The path shown from two viewpoints tracks (see figure12) the superior
sagittal venous canal, using a nonlinear function of the image dye intensity (

���
x
� �

� � � x � ( � % % � � � � ).

6 Conclusion

In this paper we presented a fast and efficient algorithm that computes a 3D path of
minimal energy. This is particularly useful in medical image understanding for guiding
endoscopic viewing.

1 This video will be shown at the presentation, and is available at
http://www.ceremade.dauphine.fr/˜cohen/ECCV00.



Fig. 12. Path tracking in brain vessels in a MR-Angiographic volume.

This work was the extension to 3D of a level-set technique developed in [1] for
extracting paths in 2D images, given only the two extremities of the path and the image
as inputs, with a front propagation equation.

We improved this front propagation equation by creating new algorithms which
decrease the minimal path extraction computing cost, and reduce user interaction in the
case of path tracking inside tubular structures. We showed that those techniques can
be efficiently applied to the problem of finding a path in tubular anatomical structures
for virtual endoscopy with minimum interactivity. In particular we extracted centered
paths inside a CT dataset of the colon, and in a MR datasets of the brain vessels. We have
proved the benefit of our method towards manual path construction, and skeletonization
techniques, showing that only a few seconds are necessary to build a complete trajectory
inside the body, giving only one or two end points and the image as inputs.
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