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Abstract. The aim of this work is to propose an adaptation of optimal
path based interactive tools for image segmentation (related to Live-Wire
[12] and Intelligent Scissors [18] approaches). We efficiently use both dis-
crete [10] and continuous [6] path search approaches. The segmentation
relies on the notion of energy function and we introduce the possibility
of complete on-the-fly adaptation of each individual energy term, as well
as of their relative weights. Non-specialist users have then a full control
of the drawing process which automatically selects the most relevant set
of features to steer the path extraction. Tests have been performed on a
large variety of medical images.

1 Introduction

Approaches in image segmentation are numerous, ranging from fully automatic
methods to fully manual methods. The first ones totally avoid user’s interaction
but still are an unsolved problem: even if they are well adapted to specific cases
their success can not be guaranteed in more general cases. The second ones are
time-consuming, hardly reproducible and inaccurate. To overcome these prob-
lems, interactive (or semi-automatic) methods are used. They combine knowl-
edge of the user and computer capabilities to provide supervised segmentation,
ranging from manual pixel level drawing to minimal user intervention.

The aim of this work is to develop a method to offer the possibility even
for a non-expert to draw quickly the boundary of an object of interest. He
could restrict its intervention to the setting of a start point in an image. Then
a contour has to be automatically found and drawn in real-time between this
start point and the current cursor position. This contour has to respond to a
certain constraints, such as internal and external forces and action of the user.
The developed method has to let the user validate or not the result. Using this
validation, the tool has to be able to learn on-line to better estimate the different
parameters of the model.
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In contour oriented segmentation, one approach is to define a boundary as
the minimum of an energy function that comprises many components such as
internal and external forces. In the literature, there exist many techniques to
perform this minimization.

Classical active contours (also called Snakes or Deformable Models), intro-
duced by Kass, Witkin and Terzopoulos [16], have received a lot of attention
during the past decade. But this technique presents three main problems. First,
deformable models are very sensitive to the initialization step and often get
trapped in a local minimum [3]. Second, user’s control cannot be applied dur-
ing the extraction but only during the initialization and the validation stages of
the segmentation process. Third, the different parameters of the model are not
meaningful enough in a user’s viewpoint (especially for clinicians).

The application of the minimal path theory to image segmentation is a more
recent technique. With this approach the image is defined as an oriented graph
characterized by its cost function. The boundary segmentation problem becomes
an optimal path search problem between two nodes in the graph. This approach
overcomes the problem of local minima by using either dynamic programming
(Dijkstra [10]), or a front propagation equation (Cohen and Kimmel [6]), map-
ping the non-convex cost function into a function with only one minimum. Falcao
and Udupa with their Live-Wire [11, 12] and Mortensen and Barrett with their
Intelligent Scissors [18–21] introduced interactivity into the optimal path ap-
proach. Their method is based on Dijkstra’s graph search algorithm and gives
to the user a large control over the segmentation process. The idea is the follow-
ing: a start point is selected by the user on the boundary to be extracted, and
an optimal path is computed and drawn in real time between this start point
and the current cursor position (see Fig. 1). Thus, user’s control is applied also

Fig. 1. Principle of interactive contour extraction with optimal path method:
the optimal trajectory is extracted in real time between a user defined starting point
and the mouse cursor.
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during the extraction. Mortensen and Barrett [1, 20] also introduced function-
alities called Path-Cooling and On-The-Fly training, which respectively lead to
the possibility of drawing a closed contour, and to partial adaptation of the
graph cost function. This technique seems to be the most adequate according
to our target. The application consists therefore first in the implementation of a
method based on minimal path search inspired from Live-Wire and Intelligent
Scissors tools, as presented in section 2. Section 3 explains then several improve-
ments brought to the interactive path extraction techniques, through the use of
Eikonal equation for extracting the minimal path. Section 4 details the imple-
mentation of our On-The-Fly training method. Section 5 contains a discussion
of the proposed method and future works.

2 Live-Wire and Intelligent Scissors methods

2.1 Cost function

The optimal-path search is guaranteed to find the solution minimizing the energy
function between two points. But if this function does not suit enough the ob-
ject to extract, the contour obtained by this method will not be suitable. That is
why we are proposing to automatically tune the parameters of the cost function
during the extraction process. Nevertheless, the cost function relies on salient
features of the image. A feature is supposed to describe certain properties of the
boundary and of its environment (gray levels of the contour, of the background,
...). These features are then mapped through the use of a so called cost assign-
ment function (CAF ) into cost functions which are similar to the ”‘Potential”’
instances of active contour models.

For instance, the following list records the cost functions Cx associated to
some features quoted in the Live-Wire [12] and Intelligent Scissors [20] papers:

– Cg: Gradient magnitude;
– Cd: Direction of the gradient magnitude;
– CL: Laplacian feature;
– CI : Intensity on the positive (inside) side of the boundary,
– CO: Intensity on the negative (outside) side of the boundary,
– CE : Intensity on the boundary (edge).

The cost assignment process depends on how one wants to emphasize one
or another value of the feature. For the gradient magnitude the inverse can for
example be taken as a CAF in order to favor high contrasts, but a Gaussian
function, centered on the gradient value one wants to highlight, could also be
applied. For the Laplacian feature, the CAF is usually a zero-crossing detector.
But many other types of CAF may be used.

Once satisfactory individual cost functions are defined, they are combined
into a total cost function. Let us call potential the weighted sum of all the
individual cost functions. On the directed graph-arc from a pixel p to an adjacent
pixel q, the potential used by Intelligent Scissors [20] is defined by:
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P(p, q) = ωgCg(q) + ωLCL(q) + ωdCd(p, q) (1)
+ ωiCi(q) + ωoCo(q) + ωeCe(q)

where each ωx is the weight of the corresponding cost function in the previous
list. The energy of a path to minimize with Dijkstra [10] is then defined by

Epath =
∑

(p,q)∈path
P(p, q) (2)

2.2 Path-Cooling

With the optimal path approach [10] it is not possible in general to extract a
closed contour with only one seed point and one end point (a solution to this
problem has been proposed in [4], based on saddle points). If the extracted
path becomes too long, the optimal path search method will favor shorter paths
cutting through the background: it is often necessary to set several points to
draw the expected contour. Path-Cooling was introduced in Intelligent Scissors
[1], as Bordery Cooling and achieves automatic generation of seed points. When
a new seed point is generated, the boundary segment between this new point and
the previous seed point is “frozen”. A new seed point is generated when a pixel
in the contour is considered stable enough. The stability criterion is function of
both the time spent on the active boundary segment and the path coalescence
(in other terms: how many times a point has been ”drawn”).

2.3 On-The-Fly training

For some features it is hard to decide without prior knowledge which values
are to be preferred in the cost function. The notion of On-The-Fly training
is introduced in Intelligent Scissors [20] and consists in adapting, during the
extraction, the cost functions to the specificities of the desired contour, so as
to track a contour with slowly changing properties. It is done for each feature
independently from each other. The idea is the following: assuming that the user
has drawn a long enough and valid boundary segment, the cost function of the
feature has to be modified in order to favor contours with the same feature-values
than those found on the segment, called training path. In practice, the process
modifies directly the cost assignement function and not the feature itself. The
CAF is basically represented as an histogram weighting, which is very easy to
compute. During extraction, the CAF is iteratively modified by removing from it
the training histogram (built on the training path) and scaling the result between
0 and 1. Figures 2 and 3 illustrate this process with the edge intensity feature.
The advantage of On-The-Fly training is that the potential can be adapted in
real-time during the extraction.
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(a) (b) (c)

Fig. 2. Training initialization: (a) the feature trained; (b) its corresponding his-
togram at initialization; (c) its corresponding cost assignment function.

(a) (b)

(c) (d) (e)

Fig. 3. Training iteration: (a) the trained path; (b) the histogram along the trained
path; (c) the cost assignment function at iteration i; (d) the CAF minus the trained
histogram; (e) the scaled CAF for iteration i + 1.

3 Adaptations and improvements

In this section, the original contribution essentially lies in the introduction of a
more general path search scheme and in the adaptation of the cooling speed.

3.1 Eikonal minimal path extraction

We worked on using the path extraction method of Cohen and Kimmel [6] in
the framework of 2D-Live-Wire and Intelligent Scissors . This extraction method
uses Eikonal equation for propagation. In our implementation we use this con-
tinuous formulation and compare it with Dijkstra as used in Live-Wire [12] and
Intelligent Scissors [20].

The main idea of Cohen and Kimmel method [6] is that the potential and
the graph are considered to be continuous, producing a sub-pixel path. In [6],
contrary to the classical snake model [16] (but similarly to geodesic active con-
tours [2]), the contour is parameterized by the arc-length parameter s, which
means that ‖C ′(s)‖ = 1, leading to a new energy form. Considering a simpli-
fied energy model without any second derivative term leads to the expression
E(C) =

∫ {w‖C ′‖2 + P (C)}ds. Assuming that ‖C ′(s)‖ = 1 leads to

E(C) =
∫

Ω

{w + P (C(s))}ds. (3)
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We have now an expression in which the internal forces are included in the ex-
ternal potential. With this approach, detailed in [5], the energy to be minimized
is defined as the integral of a strictly positive functional having low values close
to the desired features. Some improvements on finding the minimal path for 2D
and 3D images have been introduced in [7–9].

3.2 Comparison between Dijkstra and Eikonal equation

As explained in [6], the main difference between Dijkstra and Cohen and Kimmel
design of the minimal path lies in the considered metric. In the first case, the
minimal path minimizes the sum of the potential along the nodes of the graph
(L1 path), and in the second case, it minimizes the integral of the potential on
the image domain (L2 path). With Dijkstra, the image is considered as a graph
in which each pixel is a node and the weights on the vertices are functions of the
energy to minimize. This method uses dynamic programming to compute the
optimal path [10]. Cohen and Kimmel approach keeps a continuous framework
for the problem and computes the path by solving the Eikonal equation with
the Fast-Marching algorithm [5, 22]. Even if Eikonal method uses integrals to
compute the optimal contour, it is not slow. The average computing time ratio
between both methods on synthetic and real images is near 0.9. And, because
Eikonal equation produces a sub-pixel path (L2 path), it is more accurate. The
continuous formulation of Cohen and Kimmel method has the advantage to keep
a more general framework for the energy definition, thereby allowing applications
using other kind of potentials. It also easily includes an offset term w (see (3))
to constrain the regularity of the path, while it is more difficult with dynamic
programming methods [17, 13].

3.3 Path-Cooling improvement

Path-Cooling methods are based on the idea that if a point in the active contour
is stable enough, the corresponding boundary segment should be “frozen”. Our
approach uses the two counters described in [20], with an adaptation: the time
history is updated by multiplying (and not adding) a scaled potential-driven fac-
tor instead of a simple gradient-driven factor. The multiplication has a weighting
effect which gives more influence to pixels with a low potential. At pixel p and
for iteration i of the cooling process, the time history T Hi is defined as

T Hi(p) = T Hi−1(p) + ti−1 × [1− P(p)]

where ti is the consecutive time the path was active until iteration i and P the
penalty in (1).

The time history is useful if we consider that when the user does not move
(redraw history locked, but time history incremented), he wants to emphasize
the already drawn contour. But, as both thresholds are to be satisfied, even if
the user moves very slowly (or not at all), the active path will freeze slowly. In
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practice, the definition of the thresholds is not obvious and the main difficulty
lies in the interpretation of the mouse motion, in terms of speed and acceleration.

We can either increase the cooling speed with the mouse cursor speed or
decrease it. An argument to increase the mouse speed is the following: if the
user moves fast it means there is no real difficulty with the drawing. But where
the contour has lots of details, the user must act slowly if he has to define little
areas. An argument to decrease the cooling speed is the following: the areas
where the user goes slowly are the areas which are not very well defined. On
the other hand, it induces that going too slowly in other areas (hesitating, for
example) may create false paths. No choice is totally satisfying in a general case,
but once one method is chosen, depending on the application, Path-Cooling is
a very satisfying tool to extract closed boundaries, as shown in Fig. 4.

Fig. 4. Path-Cooling on an ultrasound image of a breast: iterations of the
delineation of a tumor; the white cross is the seed point at iteration 0; the black cross
is the mouse cursor; the white path is the “cooled” one; the black path is the currently
drawn path between the mouse cursor and the new seed point at each iteration.

4 On-The-Fly training improvement

4.1 Training path

Training, as described in [20], is based on the distribution of the feature values
on a validated contour segment. As depicted in Fig. 5, we tested three different
definitions of the training path, which can either be:

1. the last section of the frozen contour; training is applied at each setting of a
seed point (white points of the path in Fig. 5);

2. the last section of the active boundary; training is applied at each mouse
movement, i.e. at each path extraction (black points of the path in Fig. 5);

3. the set of points where a mouse motion event is sent to the system; training
is applied at each such event (black crosses in Fig. 5).
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Fig. 5. Several training paths: on this fluoroscopy image, the cursor position is
shown with crosses, the path frozen part is in white, and the current free path in black.

We found that the first definition leads to better results. Training is effective
when a new seed point is manually or automatically set. This setting of a seed
point can be seen as the validation of a path segment. The free path, because
of its high variability and dependence on the local potential, is not a suitable
training area, as well as for the mouse movement marker, because it constrains
the mouse cursor to stay in the vicinity of the desired contour.

4.2 New way of training

We have developed an improvement of the classical training method [15, 14]. In
existing methods the training area is limited to a portion of the path itself and
only takes a positive information into account (see section 2.3). The original
technique we use is based on the addition of another training area based on
“negative” information. The positive training area contains pixels that could
belong to the contour, while the negative training area contains pixels that do not
belong to the contour. The positive area has a reinforcing role while the negative
area has a penalizing role in the cost assignment process. This improvement has
two consequences: firstly, the new potential is more robust and secondly, the
comparison of the distributions of the features (i.e. histograms) on each area
helps adapting the weights of the individual cost functions in the total potential.

Definition of the positive and negative training areas. The main problem
is to define suitable positive and negative areas that describe well enough which
pixels belong to the contour and which don’t. We tested four approaches for the
negative area definition:

1. In the minimal box including the training path, the points closer to the path
than a certain distance d are considered in the positive area, the other points
of the box are considered in the negative area (see Fig. 6-(a));

2. In this box, the points closer to the path than a certain distance dp are
considered in the positive area and the points further form the path than the
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distance dp and closer to the path than a certain distance dn are considered
in the negative area (see Fig. 6-(b));

3. the positive and negative areas are made from paths coming from the neigh-
borhood of the click-position. The paths coming from nearest neighborhood
form the positive area and the path coming from furthest neighborhood form
the negative area (see Fig. 6-(c));

4. The training set of points is made from translations of the path: in the
minimal box including the training path, nearest translations are the positive
area and furthest translations are the negative area (see Fig. 6-(d)).

For each approach, it is possible to add a weighting function based on the dis-
tance to the training path. The first approach is not accurate enough for the

(a) (b) (c) (d)

Fig. 6. Different definitions of the positive and negative areas: Positive area
in white, negative area in gray, other points of the box in black; (a) Positive area is
a ribbon around the path, negative area is the rest of the box; (b) Positive area is a
ribbon around the path, negative area is a ribbon around the positive area; (c) Areas
built by the paths coming from a region around the mouse cursor; (d) Areas built with
translations of the training path.

definition of the negative area. Indeed it is possible that other points of the box
belong to another right path section. It is the motivation for introducing the
second approach. The third method seemed a priori to be the most accurate to
define a negative area. But all the paths quickly merge, thus limiting the size
of the training set. Second and last approaches are very similar and give the
best results with this difference that the first one is a continuous version of the
second one. We therefore choose the last approach: the positive area is the set of
p nearest translations and the negative area is the set of n next translations of
the training path. The translation direction is given by the mean normal direc-
tion to the training path. The different translations are weighted according to
their distance to the training path (see Fig. 7-(d)). The negative/positive areas
are symmetric for the gradient magnitude and the edge intensity features (fig-
ure 7-(a)). But, in order to consider the non symmetric aspect of the inside and
outside features, we adopt for them non symmetric training areas, depending
on the direction of the gradient on the path, the path direction and the con-
sidered feature. See examples with Fig. 7-(b)-(c). The positive/negative training
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(a) (b) (c) (d)

Fig. 7. Training areas: in white lines the positive area and in black lines the negative
one. The longest line is the training path. (a) Symmetric; (b) Asymmetric for inside
feature; (c) Asymmetric for outside feature; (d) Schematic weighting function.

sets of points are used to build two distinct histograms of the feature values.
The function of these histograms is twofold: to build an adapted cost function
for the feature (through the construction of an adapted CAF ) and to adapt
automatically the weight of the individual cost function in the global potential.

On-The-Fly adaptation of individual cost functions Individual cost func-
tions are built with a CAF applied to the feature. Training is used to dynamically
modify this cost assignment function. With our method, the algebraic difference
between the positive and the negative histograms is removed from the iteratively
modified CAF and the resulting cost is normalized.

The positive and negative histograms are scaled the following way: firstly, to
have a same scale for both training histograms, the negative histogram values are
multiplied by the ratio between the number of points used to build the positive
histogram and the number of points used to build the negative histogram:

H−[i] =
card{H+}
card{H−} ×H−[i]

where H+ and H− are respectively positive and negative histograms. Then, both
histograms are normalized using their common min/max.

The initialization used in [20] favors the gray values with highest occurrence
in the feature. This is not a good initialization for images where there is a large
homogeneous background as in Fig. 8-(a). We prefer an approach that does not
carry any a priori about the expected feature values: the CAF is initialized with
a flat line, giving the same cost to every pixels. So, the CAF obtained during
the process depends only on the past and the present training data.

If the training contour is not uniform enough, producing a too wide positive
histogram, the classical approach will favor feature values that are perhaps not
specifically relevant to the expected contour. The negative information used in
our method leads to a description of what the values should not be. Combining
both positive and negative information thus produces a more suitable cost func-
tion. This effect is shown in Fig. 8 on the septum wall of an echocardiographic
left-ventricle image.

The trained feature is the inside intensity one (Fig. 8-(b)). The classical
method uses a CAF initialized with the inverse of the distribution of the feature,
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j) (k)

Fig. 8. Training on the septum wall of an echographic left-ventricle image:
(a) echographic left-ventricle image; (b) inside Feature Ci; (c to f) classical training:
(c) initial CAF ; (d) training histogram; (e) resulting CAF with (f) corresponding cost
function; (g to k) improved training: (g) initial CAF ; (h) positive and (i) negative
training histograms; (j) resulting CAF with (k) corresponding cost function.

where black levels are predominant and thus favored (Fig. 8-(c)). The training
histogram is scaled between 0 and 1 (Fig. 8-(d)) and removed from the initial
CAF to build a new CAF (Fig. 8-(e)) favoring very specific values. With this
example the training path is homogeneous and the resulting cost function (Fig. 8-
(f)) is good. But with a non uniform enough training contour, the resulting
potential will not be consistent. Our method initializes the CAF (Fig. 8-(g)) with
an arbitrary value between 0 and 1. The positive and negative histograms (Fig. 8-
(h) and 8-(i)) are jointly scaled and the difference between them is removed from
the initial CAF producing a less specific but carrying more accurate information
histogram (Fig. 8-(j)). Thus the new cost function (Fig. 8-(k)) is more relevant.

On-The-Fly adaptation of the individual cost functions is shown in Fig. 9,
where iterations of the modification of the CAF of the feature Ce are shown.

Adaptation of the weights. One of the main advantage of using positive
and negative training areas is the evaluation of the differences between the his-
tograms, which helps adapting the weight of the corresponding individual cost
function in the global potential. If the histograms are distinct enough, we can
assume that the considered feature is discriminating enough and that its weight
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Fig. 9. Results of the training on a left ventricle image: First row - iterations
of the real-time contour extraction with training, on a X-Ray image of the heart left-
ventricle; second row - modification of the CAF of the feature Ce at the same iterations;
third row - corresponding feature potential Ce at the same iterations.

should be more important. In a first approach we take the mean difference be-
tween both histograms as dissimilarity criterion, expressed as:

c =
1

256

255∑

i=0

|H+[i]−H−[i]|.

Indeed, if the histograms are very similar this criterion will be very low and
if they are different, it will be high. In practice, this criterion often produces
very low values and hardly ever values above 0.5. Hence a stretching function is
used to transform it into a weight ωc associated with the cost function c in the
total potential. See on Fig. 10 examples of stretching functions.

(a) (b) (c)

Fig. 10. Examples of stretching functions: (a) Privileges small values of the cost;
(b) penalizes small values of the cost; (c) penalizes values of the cost below a and favors
values of the cost above a.
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5 Discussion

We have described a very general method of path extraction. This path extrac-
tion is interactive, works in real-time, is able to achieve sub-pixel accuracy and
makes use of on-line training to adapt its internal parameters. Figure 11 shows
several results of the developed tool on different medical images. But of course,
it can be applied to any type of digital images. The described work is not focused

Fig. 11. Results on different datasets: First row - Extraction of a guide-wire in a
fluoroscopy image; second row - tumor delineation in an ultrasound breast image; third
row - extraction of the left ventricle in an echocardiographic image.

on the best features to compute for the path extraction problem at hand (a low-
level task subjects to a lot of ad-hoc choices), but is rather trying to make the
best use of the available features in order to give satisfactory results to the user.
The ”live” satisfaction of the user is a crucial input for the method and several
methods have been proposed to ”measure” it (see the discussions in sections 3.3
and 4.1). The proposed training method is clearly able to adapt the use of each
individual feature, because the training process is rather simple and general, and
because we make simultaneous use of both positive (reinforcing) and negative
(penalizing) information, see section 4.2. This training can also work in real-
time because it acts on the cost assignement function level and not in the lower
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feature level (which is more time consuming to compute). Thus, to make the
best use of our work, a lot of features should be computed (once, at the start of
the extraction process) and proposed for selection to the method. Of course, our
work is not limited by the sample list of features presented in 2.1 and both ”gen-
eral” and specific features should compete. The competition we propose is also
based on the automatic setting of the individual weight applied to each feature
(see section 4.2). Using positive and negative information allows us to estimate
the pertinence of each feature and thus to adapt the corresponding weight ac-
cordingly. As presented here, this automatic weight adaptation requires further
improvements to fully take advantage of this very nice potentiality. Then, the
proposed method could be applied to a database of images using a wide range
of features, leading to an ”automatic” selection (provided that an experienced
user has used the tool) of the most relevant features for the current task.

6 Conclusion

We have developed an interactive, real-time and user-guided image segmenta-
tion software. The user has a full control of the drawing process (which is very
important for physicians). Also, the non-specialist user has the possibility to
outline the contour of an object in an image without a very precise drawing,
for example with the track-ball on an echograph. We are currently testing this
feature for a dedicated echographic vessel detection application.

Some improvements have been brought to the bibliographical background of
interactive extraction of optimal path. A very general optimal path extraction
method has been efficiently used, producing in real-time very precise paths.
Finally, a new method of On-The-Fly training has been developed to adapt,
during extraction of the contour, the individual cost-functions and their relative
weights in the total potential.
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