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Abstract. A new boundary detection approach for shape modeling is presented. It detects the global minimum
an active contour model’s energy between two end points. Initialization is made easier and the curve is not trap
at a local minimum by spurious edges. We modify the “snake” energy by including the internal regularization ter
in the external potential term. Our method is based on finding a path of minimal length in a Riemannian metri
We then make use of a new efficient numerical method to find this shortest path.

It is shown that the proposed energy, though based only on a potential integrated along the curve, impose
regularization effect like snakes. We explore the relation between the maximum curvature along the resulti
contour and the potential generated from the image.

The method is capable to close contours, given only one point on the objects’ boundary by using a topology-ba
saddle search routine.

We show examples of our method applied to real aerial and medical images.

Keywords: shape modeling, deformable models—snakes, path of minimal cost, level sets, segmentation, feat
extraction, energy minimization, partial differential equations, curve evolution

1. Introduction The model requires the user to input an initial curve
close to the goal. It has to be a very precise polygon
An active contour model for boundary integration and approximation and it may be fastidious to use when we
features extraction, introduced in (Kass et al., 1988), deal with a large number of images. In a sequence of
has been considerably used and studied during the lasimages where there are small changes between two suc-
decade. Most of the approaches that were introducedcessive images, once initialization is made for the first
since then try to overcome the main drawbacks of image, it is possible to use the resulting contour of the
this model: initialization, minimization and topology  firstimage as initial condition for the second and so on,
changes. as proposed in (Kass et al., 1988). Using the balloon
model (Cohen, 1991) allows a less demanding initial-
“This work was supported in part by the Applied Mathematics 1Zation since any initial closed curve inside an object
Subprogram of the Office of Energy Research under DE-AC03- may be used to obtain its complete boundary. In some
76SF00098, and by the ONR grant N00014-96-1-0381. cases, it enables a completely automatic initialization.
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For example, in (Cohen, 1991) preprocessing is used tolead to different solutions. The modification we follow
getaninitial guess that has to be inside the desired area.enables us to include the internal regularization term in
The same property can be realized using the geomet-the external potential term in a natural way. The snake
ric model introduced in (Caselles et al., 1993; Malladi energy now depends only on the location of the point
et al., 1994) and recently improved in (Caselles et al., and not on the geometry of the curve at this point.
1995). In (Neuenschwander et al., 1994), onlytwoend We use an evolution scheme that computes at each
points on the boundary are needed to follow the con- image pixel the energy along the path of minimal inte-
tour. Also, based on simulated annealing, a minimal grated energy joining that pixel to the given start point.
path between two pointsis obtained in (Grzeszczuk and We use Sethian’s Fast Marching Method (Sethian,
Levin, 1994). 1995, 1996; Adalsteinsson et al., 1996). The search
Although the smoothing effect of the snakes may for a minimal path is then done efficiently. While this
overcome small defaults in the data, spurious edges path is restricted to connect two given points, we also
generated by noise or in a complex image may stop the present a topology-based saddle search that helps in
evolution of the curve so that it might be trapped by an automatically closing contours by clicking on a single
insignificant local minimum of the energy. The inflation  point along the boundary. We stress the fact that the
or expansion force (Cohen, 1991) may help the contour proposed algorithm is based on a search for the minimal
to avoid isolated edges that may trap it into alocal min- path and may therefore lead to meaningless classifica-
imum. A region based approach introduced in (Cohen tions in some cases. Yet, since the whole process is
et al., 1993) also makes the solution less sensitive to controlled by the user, such pathological cases may be
local minima and initialization. It considers a mixed en- easily avoided.
ergy including a snake like term on the boundary and  An upper bound for the curvature along the minimal
an homogeneous value constraint inside the region.  path is introduced. It enables a direct control over the
For segmenting several objects simultaneously or final result by simple changes of the potential function.
an object with holes, it is possible (Caselles et al., This justifies the fact that although our approach is a
1993; Malladi et al., 1994) to model the contour as path integration, it also incorporates the regularization
a level set of a surface, allowing it to change its ofthe pathlike a“snake” model. Qualitatively, the rela-
topology in a natural way. These approaches have tion between the potential and the smoothness of the re-
motivated many other recent works like (Caselles sult was understood and used in (Fischler et al., 1981),
et al., 1995, 1996; Whitaker, 1995; Kichenassamy long before the age of snakes. Here, we introduce a
et al.,, 1995; Tek and Kimia, 1995) for 2D and 3D quantitative bound expressing the connection between
implicit deformable models. Other models that can the curvature and the generated potential. This bound
handle topology changes have also been used foris useful in many applications.
curves (Mclnerney and Terzopoulos, 1995) or surfaces  The structure of the paper is as follows: Section 2
(Leitner and Cinquin, 1991; Szeliski and Tonnesen, explores the relation of deformable models to the pro-
1992; Szeliski et al., 1993). posed model. Section 3 gives a formal definition of
In this paper we present a new approach for finding our edge integration procedure for the shape model-
the global minimum of energy minimizing curves given ing problem, and Sectio4 a description of two nu-
only one or two end points. Our goal is to help the user merical methods, leading to Sethian’s Fast Marching
to solve the boundary detection problem by mapping it Method. In Section 5, we explore the relation between
into a single minimum problem. The proposed method the smoothing properties of our model and the poten-
contributes to the improvement of the first two items tial. Section 6 presents an extension of our minimal
above jnitialization andminimizationwhich are obvi- path approach to find a closed boundary given a sin-
ously related. Only end points are needed as an easygle point. Section 7 presents results of applying the
initialization and we are guaranteed that the global min- proposed procedure to real images.
imum is found between these points.
We modify the snake energy in a way that makes 2. Deformable Contours
it ‘intrinsic’ or free of the parameterization. Most of
the classical snake models are non-intrinsic models. The inherent difficulty in active contour models is that
Therefore, different parameterizations of the same ini- searching for a minimum over a non convex functional
tial curve (i.e., having the same geometric shape), could is possible only under predefined limitations that lead



to the desired solution. One possibility is to allow the
user to specify an initial guess that is close to a lo-
cal minimum. Starting from the user selection, like an
initial given contour, a minimization scheme refines
the initial guess to fit it to the given image data. The
global minimum of the given functional does not neces-
sarily make sense and initial and boundary conditions
are important in the process of locating the desired lo-
cal minimum. A global minimum is meaningless in
the case of free end points or closed curves, since in
both cases, the curve can vanish into a single point at
a global minimum of the potential (which then gives a
null energy). In other cases, where some points known
to be part of a contour are given as fixed end points or
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is the unit circle (in this case the parameteis a
mapping from the unit circle to the curve). The de-
formable model is a space of admissible paths or
deformations4 and a functionalE. This functional
represents the energy of the model which will be min-
imized on.A and has the following form:

E:A—-R
C > EQ) = f %||C’(v)||2+%||6”<v)n2
Q
+ P(C(v)) dv, (2

whereC’ andC” are the first and second derivatives
of C with respect ta, andP is the potential associated

as a constraint for a closed curve to pass through, it is to the external forces. The potential is computed as
more sensible to search for the minimal path between a function of the image data according to the desired
the end points. Roughly speaking, we can distinguish goal. If, for example, we want the snake to be attracted
between “good” and “bad” local minima for snakes. by edges, the potential should depend on the image gra-
The bad local minima that we would like to avoid are dient. For the problem to be well-posed, the space of
those that trap the curve in noisy areas as shown in theadmissible deformations! is restricted by boundary
left example in Fig. 8. The desired solution is usu- conditions. These may be free boundaries, as in the
ally found by active contours with an adequate initial- original snakes (Kass et al., 1988), cyclic boundaries
ization. It is also a local minimum when it has free by using periodic closed curves (Terzopoulos, 1987),
ends, and actually each boundary in the image corre- or fixed end points by giving (0), C’'(0), C(1) and
sponds to such a minimum. However, when the curve C’'(1) (Cohen, 1991; Cohen and Cohen, 1993). The
is forced to pass through some given points along the mechanical properties of the model are controlled by
same boundary, we may assume that the global mini- the functions or constants; .

mum is the desired solution, since the potential should If C is a local minimum ofE, it satisfies the associ-
be the smallest along the path that joins the end pbints ated Euler-Lagrange equation:

Our approach gives the global minimum path between {

two end points, and thereby simplifies the initialization
process in this case.
To motivate the proposed solution let us explore its |, thjs formulation each term appears as a force acting
relation to the classical active contour model. onthe curve. Asolution can be viewed either as satisfy-
Since the introduction of “snakes” (Kass et al., ng the equilibrium of the forces in the Euler Lagrange
1988), deformable models have been often used t0 in- equation or as reaching a minimum of the energy. Thus

tegrate boundaries and extract features from images.ine curve is under the control of two kinds of forces:
The extraction of local features is specified by initial

conditions that lead to the selection of one of the lo- 4 The internal forces (the first two terms) which
cal minima. Snakes are a special case of deformable jmpose the regularity on the curve. The choice of
models as presented in (Terzopoulos, 1987). The de- ¢onstantsy; and w, determines the elasticity and
formable contour model is a mapping: rigidity of the curve.

The image force (the potential term) pushes the curve
to the significant lines which correspond to the de-
sired attributes. It is defined by a potential of the
form fol P(C(v)) dv where for example

P =gdIVIOID- 4)

Here,| denotes the image argl-) is a decreasing
function. In the classical snakes (Kass et al., 1988),

_(wlc/)/ + (wzcll)// + VP(C) — O
given boundary conditions.

3

C(v):Q —> R?

v (X(v), Y(v)), 1)
whereQ =10, 1] is the parameterization interval. In
some cases is chosen to be the arc-length parameter,
and ther2 = [0, L] whereL is the length of the curve

In some other cases, like periodic closed curges, S*
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we haveg(x) = —x2. The curve is then attracted by initial curve C(s, 0), the geodesic active contours are

the local minima of the potential, i.e., edges (see (Fua based on the planar evolution equation

and Leclerc, 1990) for a more complete discussion )
. . .. .. ac s’ a C L

on the relationship between minimizing the energy 0 _ Py 2C _ (vp. iR, ©)

and locating contours). Other forces can be added ot 0s?

to impose constraints defined by the user. As intro- ] ) ) )
duced in (Cohen, 1991), previous local edge detec- wheres is the arclength. There is a major difference

tion might be taken into account as data for defining 2€tween (5) and (). In (5), the geometric snake evolu-
the potential. tion is slower when the potential is small but the curve

does not necessary stop completely at the boundary. It

A geometric approach for deformable models was may reduce its speed but keep on propagating since it
recently introduced in (Caselles et al., 1993; Malladi hever reaches an equilibrium. This might be a draw-
et al., 1995). A level set approach for curve evolution back when part of the initial curve is close to the bound-
(Osher and Sethian, 1988; Sethian, 1989) is used toary and part of it is far. When the further part of the

implement a planar curve evolution of the form: curve has reached the boundary, the closer part might
have already penetrated the object. In (6), the curve
aC(s, 1) 92C . reaches an equilibrium which is similar to the classical
ar P O(@ + wn), ®) snakes. ThevP term is a projection of the attrac-
tion force —VP onto the normal to the curve. This
wheresis the arc-length parameter of the cu@e this force balances the other term close to the boundary
case. Thereforeg%g = «fi is the curvature vectorri( and causes the curve to stop there.
is the unit normal), and is some predefined constant. Itis shownin (Caselles et al., 1995) that (6) is aresult

This constant term is thus similar to the pressure force of minimizing the functional
introduced for the balloon model (Cohen, 1991). lItis
also related to the dilatation transform in mathematical
morphology and the grass-fire transform (Leymarie and
Levine, 1993).

It was shown that the geometric snakes model per- where s is the arclength (orE(C) = fQ P({C(v))
forms better than the classical snakes in some cases like||C’' (v)|| dv, for the arbitrary parameter). The curve
topology changes when implemented by the implicit evolution equation is then reformulated and imple-
embedding function technique proposed by Osher and mented using the Osher-Sethian numerical algorithm
Sethian (1988). It was recently proven that introducing (Osher and Sethian, 1988; Sethian, 1996b). Similar
the ‘gradient of potential’ Y P) term of the classical = geometric models were also introduced in (Kichenas-
energy minimization snakes (Kass et al., 1988; Cohen samy et al., 1995; Whitaker, 1995; Shah, 1996) and
and Cohen, 1993; Leymarie and Levine, 1993) into the extended to color and texture in (Sapiro, 1996).
geometric snakes (Caselles et al., 1993; Malladi et al., Although our work is related to (Caselles et al.,
1994, 1995) is based on geometrical as well as energy1995), it is a totally independent approach. Actually,
minimization reasoning, leading to the “geodesic ac- the geodesic active contours may be considered as a
tive contours” (Caselles et al., 1995). natural refinement procedure to the proposed approach.

The basic idea of the geometric model is that the We note that following the formulation of (Caselles
curve follows an evolution by expansion in the normal et al., 1995), the minimization of the classical energy
direction, with lower speed wheR(C) is small. Yet, it (2) may be modified into the problem of finditacal
never comes to a complete stop, and heuristic stoppinggeodesicén a Riemannian metric computed from the
procedures are used to switch off the evolution process image, where we propose to find timnimal geodesics
when an edge is reached. The ‘gradient of potential’ in a similar Riemannian metric (see Eq. (8) in the fol-
term added in the geometric model forces it to stop at lowing Section). Although it is shown in (Caselles
the boundary similar to the image force in the classical et al., 1995) that the solution of active contour models
active contours. is closely related to geodesics, no method is proposed

The geodesic active contours (Caselles et al., 1995) to find the minimal ones. In general, active contours
were shown to ‘behave’ better than both its ‘ancestors’ models search for a local minimum that is close to the
since they enjoy the advantages of both. Given an initial guess, while we propose a method to find the

EQC) = / P(C(s) ds @
Q
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minimal path (minimal geodesic) of the same energy The energy of the new model has the following form:
between two end points.
aC
felze

wL(C) +/ P(C(s)) ds
Q

Avapl - R
2
+ P(C(s)) ds

3. Paths of Minimal Action Cr— E©)

Given some potentid that takes lower values near the
edges or features, our goal is to find a single contour
that best fits the boundary of a given object or a line of
interest. This ‘bestfit’ question leads to algorithms that
seek for the minimal path, i.e., paths along which the with
integration overP is minimal. As mentioned earlier,
snakes start from a path close to the solution and con- P(p) = w + P(p). 9)
verge to a local minimum of the energy. Given only the
end points, our goal is to find the minimal path between Here A, , is the space of all curves connecting
these points, thereby simplifying the initialization pro- two given points (restriction by boundary conditions):
cess and avoiding erroneous local minima. At first C(0) = poandC(L) = pi1, whereL is the length of the
glance, this limits the problem to the type of bound- curve. Contrary to the classical snake energy, lsere
ary conditions with fixed end points, however, as we represents the arc-length parameter. So, Eg. (8) could
will see in Section 6, the proposed approach may also actually be read as
be used for closed contours. Motivated by the ideas
put forward in (Kimmel et al., 1995, 1996) we develop C— EQ) = /(w + P(C(v)))|IC'(v)|| dv, (10)
an efficient and consistent method to find the path of Q
minimal cost between two points, using the surface of
minimal action (Rutovitz, 1968; Kimmel et al., 1996; for an arbitrary parametar. This makes the energy
Verbeek and Verwer, 1990) and the fact that operating depend only on the geometric curve and not on the pa-
on a given potential (cost) function helps in finding the rameterization. The regularization term multiplied by
solution for our path of minimal action (also known the constantv nhow measures the length of the curve.
as minimal geodesic, or path of minimal potential). We note that a similar regularization effect may be also
Thereby, we are able to isolate the boundary of a given achieved by smoothing the potentRil(Fischler et al.,
object in the image. 1981). Section 5 gives more details about the smooth-

ing effects of the energy.

Having the above minimization problem in mind, we

3.1. Problem Formulation first search for thesurface of minimal action gJthat

starts appp = C(0). At each pointp of the image plane,
The minimization problem we are trying to solve is  the value of this surfadgy corresponds to the minimal

Sllghtly different from the deformable mOdels, though energy integrated along a path that StarMnd ends
there is much incommon. One may still differ between 5t p.

“internal” and “external” forces, yet now all terms are
geometric, which means a result of an intrinsic energy Uo(p) = ir}f { / |5ds}
= c

/ BC(s) ds ®
Q

_ _ = inf E(0), 11
functional. Contrary to the classical snake energy, here ,alt?o,p © (11)

srepresents the arc-length parameter, which means that ]

I%(s)|| = 1. The reason we modified the energy is wheres is the arclength parameter.

that we now have an expression in which the internal e next show how to determine the value o
regularization energy is included in the potential term €verywhere in the image domain.

in a natural way. We can then solve the energy mini-

mization in a similar way to that of finding the short- 3.2. Shortest Paths as a Set

est path on a surface using the method developed in

(Kimmel et al., 1995). The fact that the energy integral Following (Kimmel, 1995; Kimmel et al., 1995), given
is now intrinsic will also help us to explore the relation the minimal action surfaced, to pg andU; to py, then
between the smoothness of the result and the potential.the minimal geodesic betwegy and p; is exactly the
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set of coordinate pointpy that satisfy
Uo(pg) +U1(Pg) = Inf (Uo(p) + Un(p)}.  (12)

Usually, the set of pointpy needs to be refined from
agiven “fat” set of pointsinto a curve. Since we operate
on a discrete data, in order to keep the two end points
connected by the minimal set we need to threshold the
functionUg 4+ U7 using a value larger than its infimum.
This operation results in a fat set. In (Kimmel et al.,
1996) a thinning algorithm was applied. In our case,
a natural refinement of this set is to select any curve
in the set connecting the two points, and apply a local
minimization based on the Euler-Lagrange equations
minimizing the same functional. The geodesic active
contours without the constant term and fixed end points
is the right flow for this case. Observe that it should
operate only within the “fat” set, which can be consid-
ered as afixed narrow band (Adalsteinsson and Sethian
1995), thereby reducing drastically the computational
complexity of this refining.

When there are two or more minimal paths, as we
will see in Section 6, the destination pojntis a saddle
point and each path can be obtained from one of the
decreasingdirections pt. By using the sum ofthe two
distances, one can simultaneously obtain all minimal
paths.

The above is a global way for extracting the global
minimum. In our experiments we have preferred to use
a back propagation procedure that results in a single
curve (see Section 4.5).

3.3. Minimal Action Level Sets Evolution

In what follows, we assume th& > 0. For the mini-
mization of our energy (8), let us first formulate a partial
differential evolution equation for the set of equal en-
ergy contoursC in ‘time’, wheret is in fact the value
of the energy. These are the level setdJgfdefined
by Eq. (11). In the evolution equationrepresents the
height of the level set dily:

AL, 1)

= —fi(v, 1),
ot @1

1
5 (13)

where P = P+ w andii(v, t) is the normal to the
closed curvel(.,t) : S — R?. The motivation for
this evolution is that we need to propagate with a ve-
locity that is proportional to the inverse of the penalty.

So that at ‘low cost’ area the velocity is high while at
a ‘high cost’ area the velocity is low.
The curveL(., t) corresponds here to the set of points
p for which the minimal energyo(p) ist:
{L@,1),veS)={peR?*|Uo(p) =t}. (14)
This evolution equation is initialized by a curve
L(., 0) which is a small circle around the poi.
It corresponds to a null energy. It then evolves accord-
ing to Eq. (13), similar to a balloon evolution (Cohen,
1991) with an inflation force depending on the po-
tential. Considering theéx, y, t)-space, the family of
curves/L(., t) constructs the level sets of the surface
U(x,y) : R2 - R* defined in (11). The level set
of U is exactly the curvel(., t). Although a rigorous
proof of this statement can be found in (Bruckstein,
1988) it can be understood simply by the following ge-
ometric interpretation. Observe that when we add to

'a path that ends at a point gf(., t) a small segment

in the normal direction taC(., t) and of Iength%dt,

we add to the accumulated energy of (8) a contribu-
tion of P1dt = dt. This means that the new point
is on the ﬁevet + dt, that is on the curve&(., t +dt).
Figures 13 and 14 presents such a surfdcand its
corresponding level sets.

It is possible to compute the surfatk in several
ways. We shall describe three of them that are consis-
tent with the continuous case while implemented on a
rectangular grid. Itis, however, possible to implement
a simple approximation like the shading from shape al-
gorithm introduced in (Verbeek and Verwer, 1990), or
even graph search based algorithms (see Section 4.1), if
consistency with the continuous case is not important,
see also (Rutovitz, 1968).

4. Numerical Implementation

The numerical schemes we propose are consistent with
the continuous propagation rule. The consistency con-
dition guarantees that the solution converges to the true
one as the grid is refined. This is knowot to be

the case in general graph search algorithms that suffer
fromdigitization biaddue to themetrication erromwhen
implemented on a grid (Mitchell et al., 1987; Kiryati
and Sekely, 1993). This gives a clear advantage to
our method over minimal path estimation using graph
search. Before we introduce the proposed method, let
us review the graph search based methods that try to
minimize the energy given in (8).
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4.1. Graph Search Algorithms when there is no more change in the process (this has
and Metrication Error to happen in a fixed number of iterations) or after a
given number of passes. This kind of approach was
To evaluate and minimize the snake energy (2), the “in- used to compute distance maps in (Borgefors, 1984;
ternal” terms can be evaluated only from the shape of Danielsson, 1980). It was also used for road detection
the curve, leading to curve deformation and evolution in (Merlet and Zerubia, 1993; 1994), using some im-
schemes from an initial curve. Based on the new en- provements in the potential definition. The authors also
ergy definition (8), we are able to compute the final add some constraints on the curvature by taking into ac-
path without evolving an initial contour, by using the count sets of three vertices instead of two in the graph
surface of minimal action. To find the surface of min- search to update the distance. In their algorithm, they
imal action, graph search and dynamic programming find that 8 passes are sufficient for their applications.
techniques were often used, where the image pixels Such an algorithm was used by (Geiger et al., 1995)
serve as vertices in a graph (Montanari, 1971; Fischler for interactive boundary drawing giving a sequence of
et al., 1981; Chandran et al., 1991). points on the boundary and finding the path between
A description of A* and F* algorithms, applied to  two successive data points. A similar approach is used
road detection, can be found in (Fischler et al., 1981). in an interactive tool called live-wire (Mortensen and
The distance image is initialized with valae every- Barrett, 1995).
where except at a start point with value zero. At each  Asimplified F* algorithmis usedin (Chandranetal.,
iteration, theA* algorithm expands to a neighbor pixel 1991) to minimize a snake energy. It assumes the path
a previously obtained minimal path ending at the vertex expands from the starting point only in a restricted
with smallest current cost value. Since at each itera- range of directions and makes only one pass. Thus,
tion one pixel gets a final value, and a search for the it only finds the global minimum among all paths re-
minimal vertex to update is performed, the algorithm stricted by this condition. This is a problem for non
complexity isO(N log N) whereN is the number of monotonic paths. In case there are gaps in the poten-
pixels in the image. Our approach solves a continuous tial that can lead the expansion of the path in a wrong
version of the problem. Sethian Fast Marching Method direction, then the algorithm has no way to correctitself
(Sethian, 1996), described in Section 4.4, has a similar and to find the right path. Although these last authors
complexity, yet it is consistent! generalize their approach to the continuous case, they
The A* algorithm has to search among all vertices, solve it only for the discrete graph approach and their
the one to expand at each iteration. This is why the approach, as well as other graph search algorithms, is
F* algorithm was preferred in several applications. also subject to metrication error.
The F* algorithm (so called in (Fischler et al., 1981)) A completely different approach related to dynamic
computes the distance with a sequential update of the programming for detection of salient boundaries was
pixels. It is similar in spirit to the algorithm used in introduced in (Shaashua and Ullman, 1988). It defines
Section 4.3 (see also (Dupuis and Oliensis, 1994)), ex- iteratively at each pixel of the image a value of the max-
cept that Eq. (18) is again consistent. Using Hie imal energy of a path passing through this pixel. Then
the global minimum is reached only after the image is high valued pixels are grouped to get salient curves.
scanned iteratively top to bottom, row by row, left to The context is different there since each pixel or vertex
right followed by right to left, and then bottom to top. is considered as a start point and the algorithm finds
The number of such passes depends on the shape of theimultaneously all interesting feature curves.
minimal path, which is usually unknown in advance. Dynamic programming has also been used for
If that path expands from the starting point monoton- snakes, starting with (Amini et al., 1990). Although
ically with respect to the row index, one pass is suffi- a complete theoretical description of continuous dy-
cient. However, if it has a spiral shape from the starting namic programming is reviewed, the proposed applica-
point, it needs as much iterations as turns in the path, tion to active contours is different from the ones above
to propagate the information from the start point to the and our approach. The dynamic programming min-
end point. The resulting complexity is 6f(N [ «ds), imization is not applied there to find a minimal path
where the integral is along the optimal path ants between two points but to find the local deformation
the curvature ( xds/2r = number of loops of a pla-  from an initial curve that gives the best energy descent.
nar curve). In practice, the iterations are stopped either This is applied iteratively from an initial curve, exactly
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as in the classical curve evolution scheme for snakes.
However, instead of using gradient descent, it finds at
each iteration the global minimization among all pos-
sible local deformations, i.e., paths obtained by giving
each node of the curve the ability to move in a small
neighborhood (X 3 pixels usually). This reduces con-
siderably the size of the graph, since the vertices are
the nodes on the curve and the possible values for these
are only the eight neighbors of the initial vertex. In
(Fujimura et al., 1992), the range of possible local de-
formations is broadened using a multiscale dynamic
programming algorithm. However, in both approaches,
this kind of graph search does not avoid undesirable
local minima of the energy, and the solution remains
very sensitive to the initialization, as in classical snakes.
Also, like classical snakes, it is non intrinsic and the P1
same looking two initial contours with different control
points may lead to completely different solutions. Figure 1 An L' norm causes the shortest path to suffer from errors

One may argue that using previously mentioned of up to 41%. In this case both; and P, are optimal, and will stay
graph search algorithms like th&, (Dijkstra, 1959; optimal no matter how much we refine the (4-neighboring) grid.
Sedgewick, 1988), df* as proposed in (Fischler et al.,
1981) for road tracking, might be sufficient. These al- modifying the weights along the connections between
gorithms are indeed efficient, yet suffer from ‘metri- the pixels were proposed in (Kiryati andekely, 1993)
cation errors’. The graph based algorithms consider and used in (Kimmel and Kiryati, 1994). We show the
the image as a graph in which each pixel is a node, example of Figs. 1 and 2 for the simplest case of graph
and the 4 (or 8) connections to the neighboring pixels search, to clarify the metrication error effect.
are the vertices of the graph. The weights along these Our philosophy here is different. We propose to
vertices are usually taken as the average of the potentialdeal with the continuous problem as long as possible.
at the two end pixels, multiplied by the length of the In that, we follow the numerical analysis community,
“city block” distance between these pixels (1 for hor- by first analyzing the underlying problem in the con-
izontal and vertical connections). However, it is clear tinuous domain. Then, at the last stage which involves
that measuring length of the shortest path between thenumerical implementation we will consider the image
lower left and the upper right corners of the graph in given as a grid of pixels, compute optimal paths and the
Fig. 1 this way, the length d?; is equal to that oP;. It surface of minimum action in a relatively efficient way,
does not matter how fine the grid gels,is still an op- while at the same time enjoy the ‘consistency’ property
timal path. Our goal is to get the diagonal connection of converging to the desired continuous solution as the
as the optimal path with the ‘right’ Euclidean distance grid is refined. The main reason is obviously accuracy
measurel(?) in this simple case. Our problem is that Wwhich is important for example in medical applica-
in graph search algorithms we are obligated to the dis- tions. As an illustration, Fig. 2 shows the isodistance
tance measure imposed by the graphiq Fig. 1). curves using a graph-search approach and the continu-

Of course the result of the graph-search could be im- ous level-set approach. These curves are squares in the
proved by taking a larger neighborhood as structuring first case, not depending of the size of the grid, while
element, giving better approximations of the distance in in our case, the curves are getting closer to a perfect
some directions (like/2 for the diagonals) (Borgefors, ~ circle when the size of the grid is refined.
1984; Thiel and Montanvert, 1992).

These give a different polygonal approximation of 4.2. Front Propagation Approach
the circle, but there will always be an error in some
direction that will be invariant to the grid resolu- According to this first continuous approach, the curve
tion, which is not the case in the approach we use. evolution((., t) of Eq. (13)is reformulated into an evo-
Also, some fixes that minimize the average error by lution of an implicit representation of the curve defined




Global Minimum for Active Contour Models 65

V

60

a0}

20

0 20 40 60 80 100

Figure 2 lllustration of metrication error for computation of the distance map to a single point, showing level sets of the distance. On the le
a graph search-like discrete distance computation gives squares; On the right: the distance is obtained by our approach, giving circles.

by an evolving surface : R? x (0, T) — R, where self instead of tracking its level sets as in the previous
for each value of, £ = ¢~1(0). Thismeansthatcurve approach. In this case the surface may be found as so-
L(.,t) is the zero level set ap(t) : R2 - R. This lution of the Eikonal equation

Eulerian formulation for curve evolution was intro- -

duced by Osher and Sethian (1988) and Sethian (1989) VUl =P, (16)

_to overcome num_er_i(_:al_diff_iculties and handletopolog- with U(po) = O at the start point. The solutiod

ical changes. As initialization fof (., 0), we start with

an infinitesimal circle around the start poipt We
mean a small one for practical implementation. The

is obtained as the steady stateltfp, T) whent is
large, wheré/(p, 7) satisfies the following evolution

. L L equation:
function ¢ is initialized att = 0 to be negative in the
interior and positive in the exterior of the curgég., 0). y — B VU (17)
This is obtained by setting one pixel+dl and the rest T ’
to +1. The evolution rule ob is then given by: givend(po, T) = O at the start point as boundary con-
A dition. The limit valueU = U, is solution of the

1
= plvel (15)  Eikonal Eq. (16).

) ) o We can again give a geometric interpretation that
It was this same idea of considering the curve as the re|ates (13) to (16). The gradient bf is normal to
zero level setofan evolving surface thatinitiated the ge- jts evel setsC(., t), and the gradient norm is thus the
ometric snake approach (Caselles et al., 1993; Malladi ya|ye of the spatial directional derivative in the nor-

et al., 1995) described in the end/}of Section 2. For a mga| direction. AsU increases bylt, the normal dis-
Jds H

fast implementation, of orde® (M ") whereM is placement of the level set(., t) is d—ﬁt from (13). So
the number of points in a narrow band around the front o derivative‘j]—g — (VU,A) = VU] is equal to
R ,

andAt is the time step of the scheme, of the above ap- dt/9 — B. Arigorous proof of this idea can be found
roach we refer to (Adalsteinsson and Sethian, 1995). P o ;
P for example in (Bruckstein, 1988). (See also (Bellman

and Kalaba, 1965) for a nice proof on the orthogonality
4.3. Shape from Shading Approach of the wave fronts and the geodesics.) Here, boundary

conditions are given in the form of fixing the point
The second approach is based on Rouy-Tourin shapeC(0) = po, i.e.,U(po, ) = O for all . Authors of
from shading method (Rouy and Tourin, 1992; Dupuis (Rouy and Tourin, 1992) also presented a direct nu-
and Oliensis, 1994) and searches for the surthde merical approach to solve (16) and gave a convergence
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proof to that minimization procedure in the viscosity

solutions framework (Crandall et al., 1992). We shall

discuss this method and its discretization in more de-
tails in the following section. The method we recom-

mend is presented in the following section. Itisin some
sense a hybrid of both methods just described.

4.4. Sethian Fast Marching Method

In his recent report (Sethian, 1996), Sethian presents
a fast and efficient method for solving Eq. (16). Itis
based on a clever way for propagating the information
on the grid. Motivated by the two methods above, this

method uses the proposed humerical scheme in (Osher

and Sethian, 1988; Rouy and Tourin, 1992). However,
by marching in an ordered way, the problem is solved
after a finite number of steps, and by that contradicting
Remark 5 in (Rouy an Tourin, 1992). We recommend
this method for any real time application.
Given the potential valueB ; = P(i Ax, jAy) on

a grid (e.g., the pixel grid), the numerical method ap-
proximatingV; j in Eq. (16) is given by

(max{u — Ui,]_,j ,U— Ui+17j , O})2

+(max{u — Ui j_1,u—Uj j41.0D? = P, (18)

where, for simplicity, we assumax = Ay = 1. In
(Rouy and Tourin, 1992) the numerical viscosity solu-
tion was obtained by solving the above equation at each
grid point, selecting folJ; ; the largesu that satisfies
Eq. (18). The grid points were selected in an arbitrary
way, and thus it was claimed that convergence is ob-
tained after infinite number of such iterations. Where
each iteration involves an arbitrarily selection of a grid
point(i, j), and updating the value bf ; at that point.

In practice, it means many passes on the image.

The Fast Marching Method introduces order in the
selection of the grid points. It is based on the fact
that information is propagating from the source point
‘outwards’. It needs only one pass on the image (see
beginning of Section 4.1). Following (Sethian, 1996),
the method goes as follows:

o Initialization:

— For each point in the grid, ld; j = co (large
positive value). Label all points dar.

— Set the start pointi, j) = po to be zero:
Up, = 0, and label itrial.

e Marching Loop:

— Let (imin, jmin) be thetrial point with the smallest
U value.

— Label the point(inmin, jmin) asalive, and remove
it from thetrial list.

— For each of the 4 neighboring grid poirts, |)
of (imin, jmin):

= If (k, ) is labeledfar, then label ittrial .

x If (k, ) is notalive, then comput&)y | accord-
ing to Eq. (18), selecting the largest solution to
the quadratic equation, which is the only valid
solution. i.e., solve with respect to

(max{u — min{Ux_1, Uxy11}, 02
+ (max{u — min{Uy _1, Uy 4 1}, 02

and letUy, = u.

The algorithm is based on the fact that solving
Eq. (19), the value ata pixéi, I) depends only onthose
neighboring pixels that have lower value thaR,.

For efficiency, thdrial list is kept as min heap struc-
ture. We refer to (Sethian, 1995, 1996; Adalsteinsson
et al., 1996; Kimmel and Sethian, 1996) for further
details on the above algorithm, as well as a proof of
correct construction. Using a min-heap structure for
thetrial list, the algorithm computational complexity

is O(N log N) whereN is the number of grid points.

It has similar complexity to that of graph search based
algorithms like theA* or (Dijkstra, 1959; Sedgewick,
1988). For example on a SPARC 1000, it took a second
to compute théJ surface of a 256« 256 image. This

is a first order numerical scheme. As an example for
accuracy we should note that the Euclidean distance
(R,j = 1) from a straight line is accurate with sub
pixel accuracyerror= 0). In general, the consistency
condition guarantees that as the grid is refined, the so-
lution converges to the true continuous one. See also
(Tsitsiklis, 1995) for a nice related work on combining

a numerically consistent scheme with tB¢N log N)
efficiency of Dijkstra graph search algorithms.

4.5. Global Snake Minimization between Two
End Points

Shortest Path betweenyand p,.  Using the approach
of (Kimmel et al., 1995) described in Section 3.2, the
shortest path between a start pgiptand a destination
point p;, according to the energy minimization is the
set of pointspy, = (Xm, Ym) that satisfy:

(Uo + Up) (Xm, Ym) = (ixn;){(Uo +Un(x, y},  (20)



whereUgy and U; correspond to the minimal action
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We back track the path of minimal action connecting

obtained in the previous section with paths starting at the two points, which is the global minimum of the

po andp; respectively. A natural combination is to use

snake energy defined in Eq. (8).

the above method in order to locate the minimal set,and  Using back propagation following the gradient of
then letthe model defined in (Caselles et al., 1995) take U, once the surfact is available, the minimal path
over and refine the result. However, we recommend an between the start poirfig and any other poinp can

easier way to compute the path by back propagation.

Back Propagation fromp. Inorder to determine the
minimal path betweemy and p;, we need only to cal-
culateUy and then slide back on the surfadg from

(p1, Uo(pr)) to (po, 0). The surface of minimal action

be obtained without additional computation. This ap-
proach is used for example to simultaneously track four
roads in the same image, as shown in Fig. 10. Notice
that in (Merlet and Zerubia, 1993), a back propagation
is made from all pixels along the image boundary. We
could also apply the same idea with our approach, and

Uo has a convex like behavior in the sense that starting then deal with the meaningless parts of the paths.

from any point(q, Ug(q)) on the surface, and following

Note that if at some point along the path, we have

the gradient descent direction, we will always converge VUg = 0, there may be more than one path that reaches

to po. It means thatJy has only one local minimum
that is of course the global minimum and is reached
at pp with value zero. We show in Figs. 13 and 14
an example of 3D representation of the= Ug(X, Y)
surface and a level setimage of the sdlgeGiven the
point py, the path of minimal action connectinmg (the
minimal point inUg, U (pg) = 0) andp; is the curve

C (o) starting atp; and following the opposite gradient
direction onUg:

aC _
e —VUo, CO0) =p; (21)

Then the solutior€(s) is obtained by arclength pa-
rameterization o€ (—o) with C(0) = pp andC(L) =
p:. The minimal path can be obtained this way since

the global minimum. This will be the case in Section 6
where we find two minimal paths from a saddle point.
Inthis case, we perform back propagation with two ini-
tial opposite directions. These directions can be found
either directly, as the steepest descents on the discrete
grid, or from the eigenvectors of the second differential
operator.

5. Discussion on the Potential Term

5.1. Regularization Properties

We now show how the constant and the potential
P in Eg. (8) control the smoothness of the solution.
A gqualitative understanding of a similar control was

VU istangentto the geodesic. Thisis a consequence ofused in (Fischler et al., 1981). Here, we first introduce
the resultsin (Bellman and Kalaba, 1965) that show that quantitative results in the form of geometric bounds on
the light rays (geodesics, constant parameter curves)the curvature of the final contour.

are orthogonal to the wave fronts (equal cost contours).

The gradient olJ is therefore orthogonal to the wave
fronts since these are its level sets.

The back propagation procedure is a simple steep-
It is possible to make a simple

est gradient descent.
implementation on a rectangular grid: given a point
g = (i, j), the next point in the chain connectiqgo
p is selected to be the grid neighbgx, I) for which
U (k, I is the minimal, and so forth. Of course, a better

tracking can be obtained using a more precise estima-

tion of the gradient ofJ. In our examples we have

chosen the discrete steepest descent just described, be-

cause of its simplicity, and the fact that it is used only

for presentation purpose. Being a local operation, back

propagation suffers from angular error accumulation.
See (Kimmel and Sethian, 1996) for a more sophisti-
cated high order ODE integrator developed for other
purposes. Itis used in the examples of Fig. 11.

We shall make use of the following lemmas to intro-
duce an upper bound on the curvature along the result-
ing contouiC (s) by controlling the potentiaP. We also
assume that the potential is given as a positive function.

Lemma 1. G|ven a potential P> 0, the curvature
magnitudex| = |2 asz ¢ || along the geodesics minimizing

/ P(C(9) ds, (22)
Q

where s is the arclength parameteor [ P(C(v))
||C/(v) || dv for an arbitrary parametep, is bounded by

|K| < su M
— Q P M

Proof: Following (Caselles et al., 1995) (see also
(Dubrovin et al., 1984)), the Euler-Lagrange equation

(23)
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of (22) is given by

Picfi — (VP, fi)ii = 0. (24)

It indicates the curve’s behavior at the minima of (22).
This yields the following expression for the curvature
along the geodesics ¢f:
(VP, i)
5
Sincen is a unit vector, the numerator is a projection
on a unit vector operation. Thus, we can conclude that
along any geodesic path minimizing (22) the curvature
magnitude is bounded by Eq. (23). O

(25)

K =

Using Lemma 1, a@a priori bound of the curvature
magnitude may be obtained by evaluation of sup and inf
over the image domaif instead of the curve domain
Qin (23). We readily have the following result which
applies to our case with the energy of (8):

Lemma 2. Given a potential P> 0 defined on the
image domairD, and letP = w + P, the curvature
magnitudex | along the geodesics minimizing the en-
ergy of(8) is bounded by

S VP
k| < upp |l II}‘ (26)

w

Proof: SinceP > 0 we have that inf{P} > w.
Using this relation and Eg. (23) we have:

p{nvﬁn}_ ||VP||}
k| < supy —— ¢ = Su
Q P o |P+w
~ sugl IVPI } _ Sup{IVPI}
" p|P+w _w+|nfD{P}
VP
_ SuB(IVPI} @)
w
O

Equation (26) enables us to control the behavior of
any geodesic minimizing (8), and especially the min-
imal geodesics that interest us. Lemma 1 also gives
a nice interpretation of the connection between the
curvature of the resulting contour, and the ratio between
the gradient magnitude and the value of the poteRtial
When the curve’s normal is orthogonal to the slope of
P, so that the curve is directed towards the valley, then
the curvature is zero implying a straight line. While
if the curve travels along a contour of equal height in
P, then the normafi coincides with the slope oP
and the curvature increases causing the curve to bend
and direct the curve to flow into the valley, where the
potential is lower.

The conclusion is that to decrease the limit of the
curvature magnitude of the geodesics in Eq. (26), and
thereby lead to a smoothing effect on the resulting con-
tour, we have two alternatives:

e Smoothing the potential (or the image) to decrease
supp{[IVPI1}.

e Increasing the constant added toP, increases the
denominator without affecting syg||VP|}. This
gives a justification for referring ta as a regular-
ization parameter in Section 3.1.

Figure 4 shows the effect of changingon the so-
lution (it varies between 0.04 and 0.4). The potential
shown in Fig. 3 is based on the image gradient like in
(4) (the range of? and VP is normalized between 0
and 1).

A possible application of the bound in Eq. (26) would
be to limit the domain in which the curve lies and thus
reduce computation of the minimal action only to this
area of the image.

Figure 3 Bird image: original on the left, potential in the middle and minimal path on the right.
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Figure 4 Regularization effect by increasing the coefficienfrom left to right.

Figure 5 Line image. From left to right: original, potential, minimal action (random look up table to show the level set propagation starting
from the bottom left), minimal path between bottom left and top right.

5.2. Attraction Potential traction weight along the boundary. Several approaches
of generating ‘attraction potentials’ from such data for
As noted in Section 2, it is useful in some cases to various reconstruction methods were surveyed in (Co-
define a potential from an edge image. These edgehen and Cohen, 1993) and a ‘physical’ interpretation
points may be extracted from the original image us- was given as weak springs linking the curve to data
ing an edge detection operator or given as a set of datapoints.
points. This kind of potential is often used in the lit- Letl(x,y) : D c R? - R* be a given gray level
erature (see (Cohen, 1995) for several possibilities of image. Applying a standard edge detectdrtesultsin
selecting such potential functions). Choosing this po- a set of points in the image domaiR) some of which
tential function is useful when the edge detection op- correspond to true edge points. These points are scat-
eration produces most of the edge points but has gapstered over the image domain and serve as the key points
in the contours, as shown in Fig. 5. The distance basedin generating a single boundary contour. Finding such
potential considers the distance from the detected edgea contour is usually referred to as ‘shape modeling’
points to be the penalty. In this case the gradient of the that is used for object segmentation and classification
potential points towards the closest detected point. (Malladietal., 1994, 1995; Malladi and Sethian, 1994).
Also, the use of such a potential may avoid node con- The difficulty here is that there is no order in the set of
centration at some high gradient points. Indeed, since points and that it is unknown in advance which points
the gradient norm usually changes its values along a belong to the boundary. This is defined as implicit
boundary contour, this operation assigns an equal at-constraints in (Cohen, 1996).
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Denote by&(x,y) : D — {0, 1} a binary func-
tion representing the result of applying a standard edge
detector on the imagk, where 1 corresponds to a de-
tected edge point. One possible way of defining a po-
tential P : D — R™ is as a function of the distance
map (Cohen and Cohen, 1993), where each ppint
is assigned with a value representing the shortest Eu-
clidean distance to an edge point:

ds(p)=g(gr)1f:1{di5t(p, )}, and P(p)= f(ds(p)
(28

wheredist(p, q) is the Euclidean distance between the
two pointsp andq and f is an increasing function. An
example of distance map is shown in Fig. 5. Consistent
numerical approximations of (28) for the computation
of ds on a sequential computer may again be imple-
mented by using the fast marching method (Sethian,
1996). Quick sequential algorithms (Borgefors, 1984;
Danielsson, 1980) were used for defining the attrac-
tion potential in (Cohen and Cohen, 1993). Sub-pixel
estimation of the distance using a parallel algorithm
was presented in (Kimmel et al., 1996). It gives a high
sub-pixelprecision of the distance. This is one pos-
sible application of shortest path estimation (Kimmel
et al.,, 1995; Sussman et al., 1994) presented briefly
in Section 3.2. Note also that the distance potential
selectionP may be also considered as the normalized
force introduced in (Cohen, 1991) for stabilizing the
results (i.e., fol® = ds we have| VP| = ”g—g“) since
IVds|| = 1 almost everywhere. The motivation for
choosing such a potential is that the penalty grows as a
function of the distance from the edge points.

This last equality is useful in the context of the pre-
vious section to obtain an estimation of the curvature’s
bound wherP = w + d¢. From Eq. (26), we have:

(29)

k| < —,
w

i.e.,w is the minimum curvature radius along the final
contour. In the casP = w + f(d), the upper bound
becomes

f'(d)
+d’

k] < sup
d w

(30)

whered ranges from 0 to the maximal distance in the
image. The bound in (30) can be easily found for the
functionsf (d) = ed?or f(d) =1 — e~4* which cor-
responds to robust statistics (see (Cohen, 1996)).

A synthetic example is presented in Fig. 5 where the
potential used is obtained from a distance map to the
edge points. Observe the way the level curves propa-
gate faster along the line.

6. Closed Boundary Extraction
from a Single Point

It is often needed to detect a closed contour. Our pre-
vious approach of finding a minimal path between two
given end points, detects the two paths that complete a
closed contour only if both ways correspond to a global
minimum. In the general case of selecting the second
point, it is clear that although both ways are local min-
ima, only one is a global minimum. Assuming only
one start pointpg is given on the closed contour, let
us compute the minimal actids from this start point.

We should then find a second poipt that is located

on the unknown contour, from which the two geodesics
have the same energy. This means we have to find a
point p; from which there is more than one minimal
curve connecting it to the sourg®. These special
points are the saddles bf.

6.1. Justification of the Search for Saddle Points
A saddle point is a surface point at which there are two
descents and two ascents. The descents indicate reach-
ability by two minimal geodesics in our case. Assum-
ing that all the points at the boundary of a closed shape,
belong to one of two (“left” or “right”) geodesics con-
necting it to the start point. There is only one popit
at which the “left” and “right” geodesics have the same
length,i.e., their meeting point, which is a saddleldf
SinceU is maximal atp; along both ways (“left”
or “right”), the derivative ofU along the direction tan-
gent to the path is zero. As mentioned before, the two
minimal paths are orthogonal to the level setdJof
Thus, the derivative df along the normal to the path
is also zero, which means tHat (p;) = 0. Sincel is
maximal atp; along the pathl) has a negative second
derivative in that direction. Since > 0, at any point
of the image there has to be a direction in whi¢ln-
creases, and for which the second directional derivative
has to be positive. As a consequendél (p;) has to
have opposite sign eigenvalues, that is one definition
of a saddle point.
The saddle points may serve as clues in closing con-
tours of objects that are contained within the image
domain. When the user searches for a closed contour



Global Minimum for Active Contour Models 71

from pg, an automatic search for saddle pointd brs selecting the rightv for a smoothing effect reduces the
performed. Back propagating from a saddle pgnt number of saddles to the only interesting ones. Since
to both directions will connect the saddle to the source we are dealing with a user interactive procedure, it is
point pp by two curves. (see end of Section 4.5). Al- possible to paint the candidate saddle points on the
ternatively, computing the minimal action surface from image and let the user pick the right saddle among the
the saddle point and searching for the minimal set of filtered saddle points. Selecting the right saddle point
the sum of both action surfaces, yields the desired re- will close the contour and segment the object.

sult as a set of points (to be refined). Thereby, a closed

contour is formed representing the complete boundary
of an object. 7. Examples and Results

We demonstrate the performance of the proposed al-
6.2. Saddle Points Characterization gorithm (using the minimal action algorithm described

in Section 4.4) by applying it to several real images.
In order to detect such a saddle point, we can compute The images were scaled to 128128 pixels, and the
the gradien{VU | and the Gaussian curvature f,), gray levels forP were normalized between 0 and 1.
and check foftVU| < € andkik, < O. Parametemw is usually of the order of Q.

Another way to find the saddle points bhis to use

a simple test to determine the number®fel cross- .
ings (p:onsider a small radius circle centered at a can- 7.1. Open Contour: Road and Medical Image
didate pointg and embedded in the horizontal plane
(X, y¥,U(q)). Denote the number of level crossings to
be the number of points this circle intersects with the
surface(x, y, U (X, y)). Itis shown in Fig. 6 that this
number at a saddle pointis equal to four, while for most
surface points it is two, and at maximum and minimum
points there are no level crossings. In our implemen-
tation of the number of level crossings, for each point
@i, j) in the pixels grid, we simply count the number
of sign changes itJ (k,1) — U(, j) while traveling

around the 8 neighboi¥, |) of the point. /,—__\\

6.3. Saddle Points Filtering

In the first example, we are interested in a road detec-
tion between two points in the image of Fig. 7. Road
areas are brighter and correspond to higher gray levels.
The potential functiorP was thus selected to be the op-
posite of the gray level image itselP = 1 — |. Min-
imizing this potential along a curve yields a path that
follows the middle of the road. This example illustrates

&

Although there are only few saddle pointslih(see
Fig. 14 for example), finding the level crossing for ev-
ery pointg in the domain is not enough. Itis necessary
to filter out the insignificant saddles that have a rela-
tively large value ofP or U.

This usually reduces the number of candidates to a
relatively small number (only two remain after simple
filtering of the saddles in Fig. 14). In a favorable case
where there are not many gaps in the boundary contour,
another criteria that will do the work is to consider only
those saddle points that are close to edge points, since
it is obvious that the contour should pass close to an
edge point. Selecting the right regularization constant _ _ _

. . . Figure 6 lllustrating the number of level crossings. At the top,
w will obviously filter out most of the saddles that a maximum and a minimum points give O, at the bottom left, a

are formed dU_e to noise, yet Will obviously int_roduce saddle point gives 4, and at the bottom right, other points give 2 level
further constraints ow. According to our experience,  crossings.
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Figure 7. Road Image. Original on the left. Minimal actidth from bottom left start point: in the middle, black corresponds to lower values
of U, on the right a random look up table is used to render the level curugs of

the efficiency of our approach compared to classical athick contour potential like in (Davatzikos and Prince,
snakes. We do not claim that this is a road detection 1993).

algorithm as one can find for example in (Fischleretal.,  Given a start poinpy on the bottom left, the image
1981; Geman and Jedynak, 1996). For such an appli- of minimal actionU (x, y) from this point is shown in
cation, if the two edges of the road are needed rather Fig. 7. Observe the way the level curves propagate
than the middle way, our result could be refined using faster along the road. At the left of Fig. 8, we show
either ribbon snakes (Neuenschwander et al., 1994) orhow a bad initialization for classical snakes leads to

Figure 8 Local and global minimum. The initial data is shown at the top and the result at the bottom. The left and middle columns sho
the results of two different initializations of the classical snakes. The right example shows our path of minimal action connecting the two bla
points as start and end points.
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Figure 9.  Two examples of applying the approach of (Neuenschwander et al., 1994) with two slightly different initializations. In both case
the curve is trapped by a local minimum (see text).

an insignificant local minimum and requires a very  Our approach can be used for the minimization of
accurate initial guess, as in the middle example, to many paths emerging from the same pointin one single
guarantee convergence to the desired solution. It is calculation of the minimal action. Figure 10 shows an
shown that given two end points, the proposed proce- application of this operation for the road image. Given
dure detects the path of minimal action as the desired a start point in the upper left area, the path achieving
road. the global minimum of the energy is found between
Note, that using a completely different ap- this point and four other given points to determine the
proach based on classical snakes, the authors ofroads graph in our previous image.
(Neuenschwander et al., 1994) have also found a way InFig. 11, we show an application to the detection of
to solve efficiently the snake problem with fixed end blood vessels in a medical angiographic image of the
points. Although their method behaves betterthan clas- eye fundus. Here also, the potential is obtained from
sical snakes, it does not ensure to converge to the globalthe image itself to detect higher gray levels. These
minimum and may be trapped in a bad local minimum results make use of high order ODE integrators for the
solution as we illustrate in the following example. Us- back propagation as described in (Kimmel and Sethian,
ing the same road image, Fig. 9 presents two examples1996).
for which their method leads to a local minimum. At Note that our method is very efficient in finding
the top, taking the same end points as in Fig. 8, the part boundaries in a static image. In a sequence of images,
of curve close to the upper right end point is trapped by it may be faster to use it once for the first image. For
the white building below it, like in the left example of the subsequent images, the boundary found in the pre-
Fig. 8. Atthe bottom, if the end pointis slightly shifted, viousimage is usually a good initialization for classical
the curve follows the road correctly from both ends but or geodesic active contours (Kass et al., 1988; Caselles
at some point it prefers a short-cut. Note, that in both et al., 1995).
examples we do not present the final curve position but
its position at some intermediate time from which it
is not possible to return back to the correct road. The 7.2. Closed Contour: Medical Image
interactive tool for outlining roads in aerial or medi-
calimages presented in (Neuenschwander et al., 1994)In this third example, we want to extract the left ven-
could also make use of our method between fewer con- tricle in an MR image of the heart. The potential is a
straint points or key-points to solve some cases inwhich function of the distance to the closest edge in a Canny
there are many erroneous local minima. (1986) edge detection image (see Fig. 12). Sinceitisa



Figure 10 Many paths are obtained simultaneously connecting the start point on the upper left to four other points. The minimal action
shown on the left.
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Figure 11  Finding vessels in a medical angiographic image of the eye fundus; At the top, the original image and multiple path detection wi
a start point on the left of the image. At the bottom, the level setd afe shown on the left and the paths are superimposed on the surfaces
obtained with elevatiok on the middle and on the right.
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Figure 12 MRI heart image: original image on the left, edge image in the middle, distance map on the right.
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Figure 13 MRI heart image: minimal actiob represented as a
graph surface. The start point is the lower polst£ 0) located on
the bottom left of the ventricle at pixel (48, 44).

closed contour we use the saddle points classification
in closing the boundaries of a single object in the heart
image (see Figs. 13 and 14). Given a single point,
saddle point classification is used to find the second
end point. The closed contour is formed of the two

minimal paths joining the start and end points.

8. Concluding Remarks

In this paper we presented a method for integrating
objects boundaries by searching for the path of mini-
mal action connecting two points. The search for the
global minimum makes sense only after the two end
points are determined, and the ‘action’ or ‘potential’ is
generated from the image data. The proposed approach
makes snake initialization an easier task that requires
only one or two end points and overcomes one of the
fundamental problems of the active contour model, that
is being trapped by an insignificant local minimum.

Figure 14 MRI heart image: from left to right, level set curves of the minimal action from previous figure; heart ventricle detection: to find
the second end point, saddle point classification is used on the middle image (after filtering, only two of these points remain). The numbe
level crossings appears in black for 0 (maximum and minimum), gray for 2 (most of the points) and white for 4 (saddle). After filtering th
white pixels, the selected saddle point is used to find the two half contours on the right. The contour is white and the two end points are the
black pixels. The start point is on the lower left and the other one is the detected saddle.
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Applying the proposed procedure to real images gave Bellman, R. and Kalaba, R. 19685ynamic Programming and Mod-
very promising results that were compared to the re- ern Control TheoryLondon Mathematical Society Monographs:

sults obtained by other approaches that search for local_ -ondon. _ o .
solutions Borgefors, G. 1984. Distance transformations in arbitrary dimen-

. sions.Computer Vision, Graphics, and Image Process#y321—
An upper bound over the curvature magnitude of 345
the final contour was obtained by the ratio of gradient Bruckstein, A.M. 1988. On shape from shadi@pmputer Vision,
magnitude and the value of the potential. It was shown Graphics, and Image Processings:139-154. '
that controlling the smoothness of the final contour is €. J. 1986. A computational approach to edge detection.

. . o . IEEE Transactions on Pattern Analysis and Machine Intelligence
possible by adding a regularization term to the potential PAMI-8(6):679—698.

function, thereby decreasing this bound. ~ Caselles, V., Catt/ ., Coll, T., and Dibos, F. 1993. A geometric
The result of the proposed procedure may be consid-  model for active contourdlumerische Mathemat;ilé6:1-31.

ered either as the solution or as initial condition for clas- Caselles, V., Kimmel, R., and Sapiro, G. 1995. Geodesic active con-

sical snake models. or even more naturally for geodesic tours. InProc. Fifth IEEE International Conference on Computer

ti t for furth fi t Inthe lat Vision (ICCV’95) Cambridge, USA, pp. 694—699. Long version
active contours forurther rennement. Inthe later case, in International Journal of Computer Visiorl997, 22(1):61-

refinement to the proper solution should be almostim- 79,

mediate. Caselles, V., Kimmel, R., Sapiro, G., and Sbert, C. 1996. Three di-
mensional object modeling via minimal surfacesPioc. Third
European Conference on Computer Vision (ECCV,9%6am-
bridge, U.K.

Chandran, S., Meajima, T., and Miyazaki, S. 1991. Global minima
via dynamic programming: Energy minimizing active contours.
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