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AbstractA new boundary detection approach for shape mod-eling is presented. It detects the global minimum ofan active contour model's energy between two points.Initialization is made easier and the curve cannot betrapped at a local minimum by spurious edges. Wemodify the \snake" energy by including the internalregularization term in the external potential term. Ourmethod is based on the interpretation of the snake asa path of minimal length in a Riemannian metric, oras a path of minimal cost. We then make use of anew e�cient numerical method to �nd the shortestpath which is the global minimum of the energy amongall paths joining the two end points. The method isextended to closed contours, given only one point onthe objects' boundary by using a topology{based saddlesearch routine. We show examples of our method ap-plied to real aerial and medical images.Keywords: Shape modeling, Deformable Models{Snakes, Path of minimal cost, Level Sets, Segmenta-tion, Feature Extraction, Energy Minimization, Par-tial Di�erential Equations.1 IntroductionAn active contour model for boundary integra-tion and features extraction, introduced in [1], hasbeen considerably used and studied during the lastdecade. Most of the approaches that were introducedsince then try to overcome the main drawbacks ofthis model: initialization, minimization and topologychanges.The model requires the user to input an initial curveclose to the goal. Often, it has to be a very precisepolygon approximation and it may be fastidious touse for an application dealing with a large numberof images. Using the balloon model [2] allows a lessdemanding initialization since any initial closed curveinside an object may be used to obtain its completeboundary. The same property can be realized usingthe geometric model introduced in [3, 4] and recentlyimproved in [5]. In [6], only two end points on theboundary are needed to follow the contour.In this paper we present a new approach for �nd-ing the global minimum of energy minimizing curves

given only one or two end points. Our goal is to helpthe user in solving the problem in hand by mapping itinto a single minimumproblem. The proposed methodcontributes to the improvement of the �rst two itemsabove, initialization and minimization which are obvi-ously related. Only end points are needed as an easyinitialization and we are guaranteed that the globalminimum is found between these points.We modify the snake energy in a way that makesit `intrinsic' or free of the parameterization. Most ofthe classical snake models are non-intrinsic models.Therefore, di�erent parameterizations of the same (i.e.having the same geometric shape) initial curve, couldlead to di�erent solutions.The modi�cationwe follow enables us to include theinternal regularization term in the external potentialterm in a natural way, since the snake energy dependsonly on the location of the point and not on the geom-etry of the curve at this point. We use an evolutionscheme that provides at each image pixel an output ofthe energy along the path of minimal integrated en-ergy joining that pixel to the given start point. Weuse the Sethian fast marching method [7, 8, 9]. Thesearch for a global minimum is then done e�ciently.While this minimum is restricted to connect two givenpoints, we also present a topology{based saddle searchthat helps in automatically closing contours by click-ing on a single point along the boundary.An upper bound of the curvature along the minimalpath is introduced. This justify the fact that althoughour approach is a path integration, it also incorporatethe regularization of the path like a \snake" model.2 Deformable ContoursWe refer to [10] for an overview of the di�erent ap-proaches for active contour models.Since the introduction of \snakes" [1], deformablemodels have been extensively used to integrateboundaries and extract features from images. Thedeformable contour model is a mapping C(v) =(x(v); y(v)). In some cases v is chosen to be the arc-length parameter, ranging on 
 = [0; L] where L isthe length of the curve1. The energy of the model has1We shall refer to arc-length parameter as s, to di�er froman arbitrary parameter v1



the following form:E(C) = Z
 w12 kCv(v)k2 + w22 kCvv(v)k2 + P (C(v))dv;where Cv and Cvv are the �rst and second derivativesof C with respect to v, and P is the potential associ-ated to the external forces. For the problem to bewell-posed, the space of admissible deformations Ais restricted by boundary conditions. These may befree boundaries, as in the original snakes [1], cyclicboundaries by using periodic closed curves [11], or�xed boundaries by giving C(0), Cv(0), C(1) and Cv(1)[2, 12].A geometric approach for deformable models wasrecently introduced in [3, 4]. A level set approach forcurve evolution [13, 14] is used to implement a planarcurve evolution of the form:@C(s; � )@� = P (C)(Css + w ~n); (1)where s is the arc-length parameter of the curve C inthis case. Therefore, Css � �~n is the curvature vector(~n being the unit normal), and w is some prede�nedconstant. This constant term is thus similar to thepressure force introduced for the balloon model [2].It was recently proven that introducing the `gra-dient of potential' (rP ) term of the classical energyminimization snakes [1, 12] into the geometric snakes[3, 4] is based on geometrical as well as energy min-imization reasoning, leading to the \geodesic activecontour" [5].These were shown to `behave' better than both its`ancestors' since they enjoy the advantages of both. Itis shown in [5] that their curve evolution is a resultof minimizing the functional E(C) = R
 P (C(s))ds;where s is the arclength (or E(C) = R
 P (C(v))kCvkdv,for the arbitrary parameter v).Although our work is related to [5], it is a totallyindependent approach. We note that following theformulation of [5], the minimization of the classicalenergy (1) may be modi�ed into the problem of �nd-ing local geodesics in a Riemannian metric computedfrom the image, where we propose to �nd the minimalgeodesics in a similar Riemannian metric (see Equa-tion (2) in the following section). Although it is shownin [5] that �nding the solution of active contour mod-els is closely related to �nding geodesics, no method isproposed to �nd the minimal ones. In [5], like in mostof the previous approaches, the algorithms search forsome local minimum that is close to the initial guess,while we propose a method for �nding the global mini-mum of the same energy between two points as a min-imal path (minimal geodesic).3 Paths of Minimal ActionGiven some potential P that takes lower values nearthe edges or features, our goal is to �nd a single con-tour that best �ts the boundary of a given object or aline of interest. This `best �t' question leads to algo-rithms seeking for the minimal path, i.e. paths along

which the integration over P is minimal. As men-tioned earlier, snakes start from a path close to the so-lution and converge to a local minimum of the energy.Given only the end points, our goal is to �nd the min-imal path between these points, thereby simplifyingthe initialization process and avoiding erroneous localminima. Motivated by the ideas put forward in [15, 16]we develop an e�cient and consistent method to �ndthe path of minimal cost between two points, usingthe surface of minimal action [16] and the fact thatoperating on a given potential (cost) function helpsin �nding the solution for our path of minimal action(also known as minimal geodesic, or path of minimalpotential). Thereby, we are able to isolate the bound-ary of a given object in the image.3.1 Problem FormulationThe minimization problem we are trying to solve isslightly di�erent from the deformable models, thoughthere is much in common. One may still di�er be-tween \internal" and \external" forces, yet now allterms are geometric which means a result of an in-trinsic energy functional. Contrary to the classicalsnake energy, here s represents the arc-length param-eter, i.e. kCs(s)k = 1. The reason we modi�ed theenergy is that we now have an expression in which theinternal regularization energy is included in the po-tential term in a natural way. We can then solve theenergy minimization in a similar way to that of �nd-ing the shortest path on a surface [15]. The fact thatthe energy integral is now intrinsic will also help usto explore the relation between the smoothness of theresult and the potential. The energy E(C) of the newmodel has the following form:Z
wkCsk2 + P (C)ds = wL + Z
 P (C)ds = Z
 ~P (C)ds(2)where ~P (p) = w + P (p) and the energy is minimizedon Ap0 ;p1 , the space of all curves connecting two givenpoints (restriction by boundary conditions): C(0) = p0and C(L) = p1, where L is the length of the curve.Contrary to the classical snake energy, here s repre-sents the arc-length parameter. This makes the energydepend only on the geometric curve and not on theparameterization. The regularization term multipliedby the constant w, now exactly measures the length ofthe curve. We note that a similar regularization e�ectmay be also achieved by smoothing the potential P[17].Having the above minimization problem in mind,we �rst search for the surface of minimal action U0starting at p0 = C(0). At each point p of the imageplane, the value of this surface U0 corresponds to theminimal energy integrated along a path starting at p0and ending at p.U0(p) = infC(L)=p�ZC ~Pds� = infAp0;p E(C); (3)We next present an approach to determine the valueof U0 everywhere in the image domain.2



3.2 Shortest Paths As a SetFollowing [15], given the minimal action surfaces U0to p0 and U1 to p1, then the minimal geodesic betweenp0 and p1 is exactly the set of coordinate points pg thatsatisfyU0(pg) + U1(pg) = infp2IR2fU0(p) + U1(p)g: (4)Usually, the set of points pg needs to be re�nedfrom a given "fat" set of points into a curve. In [16] athinning algorithm was applied. The above is a globalway for extracting the global minimum. In our exper-iments we have preferred to use a back propagationprocedure that results in a single curve (see Section3.5.2.)3.3 Minimal Action Level SetsEvolutionIn what follows, we assume that P � 0. Applyingthe ideas of the previous section to minimize our en-ergy (2), it is possible to formulate a partial di�erentialevolution equation describing the set of equal energycontours L in `time', where t is in fact the value ofthe energy. These are the level sets of U0 de�ned byEquation (3). In the evolution equation t representsthe height of the level set of U0:@L(v; t)@t = 1~P ~n(v; t); (5)where ~P = P + w and ~n(v; t) is the normal to theclosed curve L(:; t) : S1 ! IR2. The motivation forthis evolution is that we need to propagate with a ve-locity that is proportional to the inverse of the penalty.So that at `low cost' area the velocity is high while ata `high cost' area the velocity is low.The curve L(v; t) corresponds here to the set ofpoints p for which the minimal energy U0(p) is t:fL(v; t); v 2 S1g = fp 2 IR2 j U0(p) = tg: (6)This evolution equation is initialized by a curveL(v; 0) which is an in�nitesimal circle around the pointp0. It corresponds to a null energy. It then evolvesaccording to Eq. (5), similar to a balloon evolu-tion [2] with an ination force depending on the po-tential. Considering the (x; y; t)-space, the family ofcurves L(v; t) construct the level sets of the surfaceU (x; y) : IR2 ! IR+ de�ned in (3). The t level setof U is exactly the curve L(:; t). Although a rigorousproof of this statement can be found in [18], it can beunderstood simply by the following geometric inter-pretation. Observe that adding to a path ending at apoint of L(:; t) a small segment in the normal directionto L(:; t) and of length 1~P dt will add to the accumu-lated energy of (2) a contribution of ~P 1~P dt = dt. Thismeans that the new point is on the level t + dt, thatis on the curve L(:; t+ dt) . Figure 4 presents such asurface U and its corresponding level sets.It is possible to compute the surface U in severalways. We shall describe three of them that are consis-tent with the continuous case while implemented on arectangular grid.

3.4 Numerical ImplementationThe numerical schemes we propose are consistentwith the continuous propagation rule. The consistencycondition guarantees that the solution converges to thetrue one as the grid is re�ned. This is known not tobe the case in general graph search algorithms thatsu�er from digitization bias due to the metrication er-ror when implemented on a grid. This gives a clearadvantage to our method over minimal path estima-tion using graph search. To evaluate and minimize thesnake energy (1), the \internal" terms can be evalu-ated only by using the shape of the curve, leading tocurve deformation and evolution schemes from an ini-tial curve. Based on the new energy de�nition (2),we are able to compute the �nal path without evolv-ing an initial contour, by using the surface of minimalaction. To �nd the surface of minimal action, graphsearch and dynamic programming techniques were of-ten used, considering the image pixels as vertices in agraph [17]. We review and compare these algorithmsto our approach in [10]. These algorithms are indeede�cient, yet su�er from `metrication errors'. Our phi-losophy here is di�erent. We propose to deal with thecontinuous problem as long as possible. In that, wefollow the numerical analysis community, by �rst an-alyzing the underlying problem in the continuous do-main. Then, at the last stage which involves numericalimplementation we will consider the image given as agrid of pixels, compute optimal paths and the surfaceof minimum action in a relatively e�cient way, whileat the same time enjoy the `consistency' property ofconverging to the desired continuous solution as thegrid is re�ned. The main reason is obviously accuracywhich is important for example in medical applica-tions.3.4.1 Front Propagation ApproachAccording to this �rst continuous approach, the curveevolution L(t) of Equation (5) is reformulated into anevolution of an implicit representation of the curvede�ned by an evolving surface � : IR2 � [0; T ) ! IR,where for each value of t, L = ��1(0). This meansthat curve L(t) is the zero level set of �(t) : IR2 ! IR.This Eulerian formulation for curve evolution was in-troduced by Osher and Sethian in [13, 14] to overcomenumerical di�culties and handle topological changes.As initialization for L(0), we start with an in�nites-imal circle around the start point p. The function �is initialized at t = 0 to be negative in the interiorand positive in the exterior of the curve L(0). Thisis obtained by setting one pixel to �1 and the rest to+1. The evolution rule of � is then given by:@�@t = � 1~P kr�k: (7)For a fast implementation, of order O(M R ds�t ) whereM is the number of points in a narrow band aroundthe front and �t is the time step of the scheme, of theabove approach we refer to [19].3



3.4.2 Shape from Shading ApproachThe second approach is based on a shape from shadingmethod introduced by Rouy and Tourin [20, 21] andsearches for the surface U itself instead of trackingits level sets. In this case the surface may be foundaccording to the following minimization procedure:Given U = 0 at the start point as boundary condi-tion, @U@� = ~P � krUk; (8)where the solution U is the steady state of U(p; � )when � is large. The limit value U = U1 is such thatkrUk = ~P ; (9)with obviously U = 0 at the start point. We canagain give a geometric interpretation that relates (5)to (9). The gradient of U is normal to its level setsL(t), and the gradient norm is thus the value of thespatial directional derivative in the normal direction.As U increases by dt, the normal displacement ofthe level set L(t) is dt~P from (5). So the derivative@U@~n = hrU;~ni = krUk is equal to dt=dt~P = ~P . Here,boundary conditions are given in the form of �xing thepoint C(0) = p0, i.e. U(p0; � ) = 0 for all � . Authorsof [20] also presented a direct numerical approach tosolve (9) and gave a convergence proof to that min-imization procedure in the viscosity solutions frame-work. We shall discuss this method and its discretiza-tion in more details in the following section. Themethod we recommend is presented in the followingsection. It is in some sense a hybrid of both methodsjust described.3.4.3 Sethian Fast Marching MethodIn his recent report [7], Sethian presents a fast ande�cient method for solving Eq. (9). It is based ona clever way for propagating the information on thegrid. Motivated by the two methods above and bythe narrow band approach [19], his method uses theproposed numerical scheme in [13, 20]. However, bymarching in an ordered way, the problem is solved af-ter a �xed number of steps, and by that contradictingRemark 5 in [20]. We recommend this method for anyreal time application.Given the potential values Pi;j = P (i�x; j�y) ona grid (e.g. the pixel grid), the numerical methodapproximating Ui;j in Eq. (9) is given by(maxfu� Ui�1;j; u� Ui+1;j; 0g)2+(maxfu� Ui;j�1; u� Ui;j+1; 0g)2 = P 2i;j; (10)where, for simplicity, we assume �x = �y = 1. In[20] the numerical viscosity solution was obtained bysolving the above equation at each grid point, select-ing for Ui;j the largest u that satis�es Eq. (10). Thegrid points were selected in an arbitrary way, and thusit was claimed that convergence is obtained after in�-nite number of such iterations. Where each iteration

involves an arbitrarily selection of a grid point (i; j),and updating the value of Ui;j at that point.The `fast marching level set method' introduces or-der in the selection of the grid points. It is basedon the fact that information is propagating form thesource point `outwards'. Following [7], the methodgoes as follows:Initialization:� For each point in the grid, let Ui;j = 1 (largepositive value). Label all points as far.� Set the start point (i; j) = p to be zero: Up = 0,and label it trial.Marching Forward Loop:� Let (imin; jmin) be the trial point with the small-est U value.� Label the point (imin; jmin) as alive, and removeit from the trial list.� For each of the 4 neighboring grid points (k; l) of(imin; jmin):{ If (k; l) is labeled far, then label it trial.{ If (k; l) is not alive, then compute Uk;l ac-cording to Eq. (10), selecting the largest so-lution to the quadratic equation, which isthe only valid solution. i.e. solve(maxfu�minfUk�1;l; Uk+1;lg; 0g)2+(maxfu�minfUk;l�1; Uk;l+1g; 0g)2 = P 2k;l;and let Uk;l = u.For e�ciency, the trial list is kept as min heap struc-ture. We refer to [7, 8, 9, 22] for further details onthe above algorithm, as well as a proof of correct con-struction. Using a min-heap structure for the trial list,the algorithm computational complexity is O(NlogN )where N is the number of grid points. It has similarcomplexity to that of graph search based algorithmslike the A� or Dijkstra. For example on a SPARC1000, it took a second to compute the U surface ofa 256 � 256 image. This is a �rst order numericalscheme. As an example for accuracy we should notethat the Euclidean distance (Pi;j = 1) from a straightline is accurate with sub pixel accuracy (error = 0). Ingeneral, the consistency condition guarantees that asthe grid is re�ned, the solution converges to the truecontinuous one.3.5 Global Snake Minimization3.5.1 Shortest path between p0 and p1Using the approach described in Section 3.2, the short-est path between a start point p0 and a destinationpoint p1, according to the energy minimization is theset of points pm = (xm; ym) that satisfy:U0(xm; ym)+U1(xm; ym) = inf(x;y)fU0(x; y)+U1(x; y)g;(11)4



where U0 and U1 correspond to the minimal actionobtained in the previous section with paths startingat p0 and p1 respectively. A natural combination is touse the above method in order to locate the minimalset, and then let the model de�ned in [5] take over andre�ne the result. However, we recommend an easierway to compute the path by back propagation.3.5.2 Back propagation from p1In order to determine the minimal path between p0and p1, we need only to calculate U0 and then slideback on the surface U0 from (p1; U0(p1)) to (p0; 0).The surface of minimal action U0 has a convex likebehavior in the sense that starting from any point(q; U0(q)) on the surface, and following the gradientdescent direction, we will always converge to p0. Itmeans that U0 has only one local minimum that is ofcourse the global minimum and is reached at p0 withvalue zero. We show in Figure 4 an example of 3Drepresentation of the U0(x; y) surface and a level setimage of the same U0. Given the point p1, the pathof minimal action connecting p0 (the minimal point inU0, U (p0) = 0) and p1 is the curve ~C(�) starting at~C(0) = p1 and following the opposite gradient direc-tion on U0: @~C@� = �rU0; (12)Then the solution C(s) is obtained by arclength pa-rameterization of ~C(��) with C(0) = p0 and C(L) =p1. The minimal path can be obtained this way sincerU is tangent to the geodesic. This is a consequenceof the results in [23] that show that the light rays(geodesics, constant parameter curves) are orthogonalto the wave fronts (equal cost contours). The gradientof U is also orthogonal to the wave fronts since theseare its level sets.The back propagation procedure is a simple steep-est gradient descent. It is possible to make a simpleimplementation on a rectangular grid: given a pointq = (i; j), the next point in the chain connecting q top is selected to be the grid neighbor (k; l) for whichU (k; l) is the minimal, and so forth. Of course, a bet-ter tracking can be obtained using a more precise esti-mation of the gradient of U . In our examples we havechosen the discrete steepest descent just described, be-cause of its simplicity, and the fact that it is used onlyfor presentation purpose. We back track the path ofminimal action connecting the two points, which isthe global minimum of the snake energy de�ned inEq. (2). Being a local operation, back propagationsu�ers from angular error accumulation. In [22], amore sophisticated back propagation technique devel-oped for other purposes is introduced, it is used in theexamples of Figure 4.4 Regularization propertiesWe showed in [10] how the constant w and the po-tential P in Eq. (2) control the smoothness of the so-lution. We introduced quantitative results in the form

of geometric bounds on the curvature of the �nal con-tour. Given a potential P > 0 and let ~P = w+P , thecurvature magnitude j�j = kCssk along the geodesicsminimizing (2), R
P (C(s))ds; where s is the arclengthparameter, or R P (C(v))kCvkdv for an arbitrary pa-rameter v, is bounded by:j�j � supDfkrPkgw : (13)The conclusion is that increasing the constant w addedto P , increases the denominator without a�ectingsupDfkrPkg. This gives a justi�cation for referringto w as a regularization parameter.5 Closed Boundary ExtractionIt is often needed to detect a closed contour. Ourprevious approach of �nding a minimal path betweentwo given end points, detects the two paths that com-plete a closed contour only if both ways correspondto a global minimum. In the general case of selectingthe second point, it is clear that although both waysare local minima, only one is a global minimum. As-suming only one start point p0 is given on the closedcontour, let us compute the minimal action U fromthis start point. We should then �nd a second pointp1 that is located on the unknown contour and fromwhere the two half paths have the same energy. Thismeans we have to �nd a point p1 from which there ismore than one curve connecting it to the source p0.As can be justi�ed in [10], these special points are thesaddles of U .The saddle points may serve as clues in closing con-tours of objects that are contained within the imagedomain. When the user searches for a closed contourfrom p0, an automatic search for saddle points on Uis performed. Back propagating from a saddle pointp1 to both directions will connect the saddle to thesource point p0 by two curves. Thereby, a closed con-tour is formed representing the complete boundary ofan object.To detect such a saddle point, we can compute thegradient jrU j and the Gaussian curvature (�1�2), andcheck for jrU j < � and �1�2 < 0. Another possibilityto isolate the saddle points on U is to use a simpletest to determine the number of level crossings. Con-sider a small radius circle centered at a candidate pointq and embedded in the horizontal plane (x; y; U (q)).Denote the number of level crossings to be the num-ber of points this circle intersects with the surface(x; y; U (x; y)). It can be shown that this number ata saddle point is equal to four, while for most surfacepoints it is two, and at maximumand minimumpointsthere are no level crossings. In our implementation ofthe number of level crossings, for each point (i; j) inthe pixels grid, we simply count the number of signchanges in U (k; l)�U (i; j) while traveling around the8 neighbors (k; l) of the point.Although there are only few saddle points in U (seeFigure 5 for example), �nding the level crossing for ev-ery point q in the domain is not enough. It is necessary5



to �lter out the insigni�cant saddles that have a rela-tively large value of P , i.e. those that are not close toan edge, or a too large energy U .This usually reduces the number of candidates toa relatively small number (only two remain after sim-ple �ltering of the saddles in Figure 5). Selecting theright regularization constant w will obviously �lter outmost of the saddles that are formed due to noise, yetwill obviously introduce further constraints on w. Ac-cording to our experience, selecting the right w for asmoothing e�ect reduces the number of saddles to theonly interesting ones.6 Examples and ResultsWe demonstrate the performance of the proposedalgorithm (using the minimal action algorithm de-scribed in Section 3.4.3) by applying it to several realimages. The images were scaled to 128 � 128 pixels,and the gray levels for P were normalized between 0and 1. Parameter w is usually of the order of 0:1.6.1 Open contourIn the �rst example, we are interested in a road de-tection between two points in the image of Figure 2.Road areas are lighter and correspond to higher graylevels. The potential function P was thus selected tobe the opposite of the gray level image itself: P = 1�I.Minimizing this potential along a curve yields a paththat follows the middle of the road. In the example ofFigure 1, we show how a bad initialization for classi-cal snakes leads to a wrong local minimum and in factrequires a very accurate initial guess, as in the bot-tom example, to guarantee convergence to the desiredsolution. It is shown that given two end points, theproposed procedure detects the path of minimal actionalong the right road. This example illustrates the ef-�ciency of our approach compared to classical snakes.Given a start point p0 on the bottom left, the imageof minimal action U (x; y) from this point is shown inFigure 2. Observe the way the level curves propagatefaster along the road. Note, that using a completelydi�erent approach based on classical snakes, the au-thors of [6] have also found a way to solve e�cientlythe snake problem between two end points. Althoughtheir method behaves better than classical snakes, itdoes not ensure to converge to the global minimumand may be trapped in a bad local minimum solutionas we illustrate in [10]. The interactive tool for out-lining roads in aerial or medical images presented in[6] could also make use of our method between fewerconstraint points or key-points to solve some cases inwhich there are many erroneous local minima. Ourapproach can be used for the minimization of manypaths emerging from the same point in one single cal-culation of the minimal action. Figure 3 shows an ap-plication of this operation for the road image. Givena start point in the upper left area, the path achievingthe global minimum of the energy is found betweenthis point and four other given points to determinethe roads graph in our previous image. In a secondexample, we show an application to the detection ofblood vessels in a medical angiographic image of theeye fundus. Here also, the potential is obtained from

Figure 1: Local Minimum. The initial data is shownon the left and the result on the right. Results of twodi�erent initializations of the classical snakes.
Figure 2: Top : On the right, minimal path betweentwo points given on the left. Bottom: Minimal actionU from bottom left start point. On the left, black cor-responds to lower values of U , on the right a randomlook up table is used to render the level curves of U .6



Figure 3: Many paths are obtained simultaneouslyconnecting the start point on the upper left to 4 otherpoints. The minimal action is shown on the left.the image itself to detect higher gray levels. These re-sults make use of high order ODE integrators for theback propagation as described in [22].6.2 Closed contourIn this third example, we want to extract the leftventricle in an MR image of the heart area. The po-tential is a function of the distance to the closest edgein a Canny edge detection image (see Figure 5). Sincewe are after a closed contour, we use the saddle pointsclassi�cation in closing the boundaries of a single ob-ject in the heart image (see Figure 5). Given a singlepoint, saddle point classi�cation is used to �nd thesecond end point. The closed contour is formed of thetwo minimal paths joining the start and end points.7 Concluding RemarksIn this paper we presented a method for integratingobjects boundaries by searching for the path of mini-mal action connecting two points. The search for theglobal minimum makes sense only after the two endpoints are determined, and the `action' or `potential'is generated from the image data. The proposed ap-proach makes snake initialization an easier task thatrequires only one or two end points and overcomesone of the fundamental problems of the active con-tour model, that is being trapped by an insigni�cantlocal minimum. Applying the proposed procedure toreal images gave very promising results that were com-pared to the results obtained by other approaches thatsearch for local solutions. The result of the proposedprocedure may be considered either as the solution oras initial condition for classical snake models, or evenmore naturally for geodesic active contours for furtherre�nement. In the later case, re�nement to the propersolution should be almost immediate.Acknowledgments.We thank Prof. James A. Sethian, Dr. DavidAdalsteinsson, and Dr. Ravikanth Malladi for intrigu-ing discussions on the fast marching method, and theauthors of [6] for providing the roads image. This
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Figure 5: MRI heart image: Top: Original imageon the left, edge image on the right; Middle: distancemap on the left, minimal action U with its level setson the right and represented as a graph surface below;Bottom: saddle point image on the left (after �ltering,only two of the white points remain); after �ltering thewhite pixels, the selected saddle point is used to �ndthe two half contours on the right.8


