
Regularization properties for MinimalGeodesics of a Potential EnergyLaurent COHEN1 and Ron KIMMEL21 CEREMADE, U.R.A. CNRS 749, Universit�e Paris IX-Dauphine, Place du Marechalde Lattre de Tassigny, 75775 Paris CEDEX 16, Francecohen@ceremade.dauphine.fr2 Lawrence Berkeley Laboratory, University of California, Berkeley, Mailstop 50A-2129 LBL UC Berkeley, California 94720, USAron@csr.lbl.govAbstract. Some new results on our approach [2] of edge integration for shape mod-eling are presented. It enables to �nd the global minimum of active contour models'energy between two points. Initialization is made easier and the curve cannot betrapped at a local minimum by spurious edges. We modi�ed the \snake" energyby including the internal regularization term in the external potential term. Ourmethod is based on the interpretation of the snake as a path of minimal length ona surface or minimal cost. We then make use of level sets propagation to �nd theshortest path which is the global minimum of the energy among all paths joiningtwo endpoints.We show that our energy, though only based on a potential integration along thecurve, has a regularization e�ect like snakes. We show a relation between the max-imum curvature along the resulting contour and the potential generated from theimage.Keywords: Shape modeling, Deformable Models, Weighted distance transform,Shape Segmentation, Feature Extraction, Energy Minimization, P.D.E.'s, CurveEvolution.1. IntroductionAn active contour model for boundary integration and features extraction,introduced in [7], has been considerably used and studied during the lastyears.Although the smoothing e�ect of the snakes may overcome small defaultsin the data, spurious edges generated by noise or in a complex imagemay stopthe evolution of the curve so that it might be trapped by an insigni�cant localminimum of the energy. The ination or expansion force [3] helps to preventthe contour from being trapped by isolated edges into a local minimum.In this paper we present some results on a new approach, introducedin [2], for �nding the global minimum for energy minimizing curves. Onlyendpoints are needed as an easy initialization and we are guaranteed thatthe global minimum is found between these points and spurious edges cannotlead to a local minimum. The deformable contour model is a mapping C(s) =(x(s); y(s)) where s 2 
 = [0; 1] with an energy of the following form:E(C) = Z
 w12 kCs(s)k2 + w22 kCss(s)k2 + P (C(s))ds (1.1)where P is the potential associated to the external forces.



2. Paths of Minimal ActionThe minimization problem we are trying to solve is slightly di�erent fromthe deformable models, though there is much in common. The reason wemodi�ed the energy is that we now have an expression where the internalregularization energy is included in the potential term. We can then solvethe energy minimization in a similar way to that of �nding the shortest pathon a surface using the method developed in [8]. The energy of the new modelhas the following form:E(C) = Z
 wkCs(s)k2 + P (C(s))ds = Z
 ~P (C(s))ds = wL+ Z
 P (C(s))ds (2.1)Here C is in the space of all curves connecting two given points (restrictedby boundary conditions): C(0) = p0 and C(L) = p1, where L is the length ofthe curve. Contrary to the classical snake energy, here s represents the arc-length parameter, which means that kCs(s)k2 = 1. This makes the energydepend only on the geometric curve and not on the parameterization (see[1]). The regularization term with w, now exactly measures the length of thecurve. Having the above minimization problem in mind, we �rst search forthe surface of minimal action U starting at p0 = C(0). At each point p of theimage plane, the value of this surface U corresponds to the minimal energyintegrated along a path starting at p0 and ending at p.U (p) = infC(L)=p�ZC ~Pds� (2.2)In [8], a method to determine the shortest path on a surface between a startpoint p0 and a destination p1 was presented. Applying these ideas to minimizeour energy (2.1), it is possible to formulate a partial di�erential evolutionequation describing the set of equal energy contours L in `time'. These arethe level set curves of U de�ned by equation (2.2). The evolution equation isof the form: @L(s; t)@t = 1~P n(s; t); (2.3)where ~P = P + w and n(s; t) is the normal to the closed curve L(:; t) :S1 ! IR2. This evolution equation is initialized by a curve L(s; 0) which isa small circle surrounding the point p0. It corresponds to a null energy. Thisevolution equation (2.3) is similar to a balloon evolution [3] with an inationforce depending on the potential.This equation is solved using the Eulerian formulation for curve evolutionintroduced in [10] to overcome numerical di�culties and handle topologicalchanges.



Data : given by ~P and the two endpoints p0 and p1.Step 1 : MinimalAction U0 from p0 using front propagation which�nds level set curves L of U0 starting from an in�nitesimalcircle centered at p0 (Osher-Sethian).Step 2 : Backpropagation: tracking the minimal path by gradientdescent on U0 starting from p1 ending at p0.We have just presented a sketch of the algorithm. A synthetic example ispresented in Figure 2.1. Observe the way the level curves propagate fasteralong the road.Fig. 2.1. Line image. From left to right: original, potential, minimal action (ran-dom look up table to show the level set propagation starting from the bottom left),minimal path between bottom left and top right.3. Regularization properties3.1 Curvature BoundWe now show how the constant w and the potential P in the energy of (2.1)inuence the smoothness of the solution minimizing the energy E and makeit behave like a regular snake.We shall make use of the following lemmas to introduce an upper boundon the curvature along the resulting contour C(s) by controlling the potentialP .Lemma 3.1. The curvature magnitude j�j = kCssk along the geodesics min-imizing Z
 P (C(s))ds; (3.1)where s is the arclength parameter, is bounded byj�j � sup
 �krPkP � : (3.2)



Proof. Following [1], the Euler-Lagrange equation of (3.1) is given byPCss � hrP; CsskCsski CsskCssk = 0:Using the geometrical relation Css = �n we can rewrite the above expression,that indicates the curve's behavior at the minima of (3.1), asP�n� hrP;nin = 0:This yields the following expression for the curvature along the geodesics ofP : � = hrP;niP :Since n is a unit vector, the numerator is a projection on a unit vectoroperation. Thus, we can conclude that along any geodesic path minimizing(3.1) the curvature magnitude is bounded by Equation (3.2). utUsing Lemma 3.1, an a priori bound of the curvature magnitude may beobtained by evaluation of sup and inf of P over the image domain D insteadof the curve domain 
 in (3.2). We readily have the following result whichapplies to our case with the energy of (2.1):Lemma 3.2. Given a potential P � 0, and let ~P = w + P , the curvaturemagnitude j�j = kCssk along the geodesics minimizing the energy of (2.1) isbounded by j�j � supDfkrPkgw : (3.3)Proof. Since P � 0 we have that infDf ~Pg � w. Using this relation andEquation (3.2), we have:j�j � sup
 (kr ~Pk~P ) = sup
 � krPkP + w� � supD � krPkP + w�� supDfkrPkgw utEquation (3.3) enables us to control the behavior of any geodesic mini-mizing (2.1), and especially the minimal geodesics that interest us. Lemma3.1 also gives a nice interpretation of the connection between the curvature ofthe resulting contour, and the ratio between the gradient magnitude and thevalue of the potential P . When the curve's normal is orthogonal to the slopeof P , so that the curve is directed towards the valley, then the curvature iszero implying a straight line. While if the curve travels along a contour ofequal height in P , then the normal n coincides with the slope of P and thecurvature increases causing the curve to bend and direct the curve to owinto the valley, where the potential is lower.



The conclusion is that to decrease the limit of the curvature magnitudeof the geodesics in equation (3.3), and thereby lead to a smoothing e�ect onthe resulting contour, we have two di�erent ways:{ Smoothing the potential (or the image) to decrease supDfkrPkg.{ Increasing the constant w added to P increases the denominatorw withouta�ecting supDfkrPkg. This gives a justi�cation for calling w a regular-ization parameter in Section 2..Figure 3.1 shows the e�ect of changing w on the solution. The potential isbased on the image gradient like in [7].
Fig. 3.1. Regularization e�ect by increasing the coe�cient w from left to right.3.2 Case of Attraction PotentialAs introduced in [3], previous local edge detection might be taken into accountas data for de�ning the potential. Indeed, since the gradient norm usuallychanges its values along a boundary contour, this operation assigns an equalattraction weight along the boundary. Edge points are scattered over theimage domain and serve as the key points in generating a single boundarycontour. The di�culty here is that there is no order in the set of points andthat it is unknown in advance which points belong to the boundary. This isde�ned as implicit constraints in [4]. One possible way of de�ning a potentialP is as a function of the distance map [5], where each point p is assigned witha value representing the shortest Euclidean distance to an edge point:d(p) = infq 2 edgefdist(p; q)g; and P (p) = f(d(p)) (3.4)



where dist(p; q) is the Euclidean distance between the two points p and q andf is an increasing function. An example of distance map is shown in Figure2.1. Consistent numerical approximations of (3.4) for the computation of dEon a sequential computer involves in high complexity. Quick sequential al-gorithms [6] were used for de�ning the attraction potential in [5]. Sub-pixelestimation of the distance using a parallel algorithm was presented in [9]. Itgives a high sub-pixel precision of the distance. This is one possible appli-cation of shortest path estimation [8]. Note also that the distance potentialselection P may be also considered as the normalized force introduced in [3]for stabilizing the results (i.e. for P = dE we have krPk = rPkrPk ) sincekrdEk = 1 almost everywhere. This last equality is useful in the contextof the previous section to get an estimation of the curvature's bound when~P = w + dE . From equation (3.3), we have:j�j � 1w; (3.5)i.e. w is the minimum curvature radius along the �nal contour. In the case~P = w + f(dE ), the upper bound becomesj�j � supd f 0(d)w + d: (3.6)This bound can be easily found for the usual functions f(d) = �d2 orf(d) = 1� e��d2 which corresponds to robust statistics (see [4]).4. Examples and ResultsWe demonstrate the performance of the proposed algorithm by applying itto several real images. The images were scaled to 128 � 128 pixels. In the�rst example, we are interested in a road detection between two points inthe image of Figure 4.1. Road areas are lighter and correspond to highergray levels. The potential function P was thus selected to be the opposite ofthe gray level image itself: P = �I. Minimizing this potential along a curveyields a path that follows the middle of the road. Our approach can be usedfor the minimization of many paths emerging from the same point in onesingle calculation of the minimal action. Given a start point in the upper leftarea, the path achieving the global minimum of the energy is found betweenthis point and four other given points to determine the roads graph in ourprevious image.In the second example, we want to extract the left ventricle in an MRimage of the heart area. The potential is a function of the distance to theclosest edge in a Canny edge detection image (see Figure 4.2). Since it is aclosed contour, given a single point, saddle point classi�cation [2] is used to�nd the second end point. The closed contour is formed of the two minimalpaths joining the end points.



Fig. 4.1. The initial data is shown on the left. In the middle, our path of minimalaction connecting the two black points as start and end points. On the right, manypaths are obtained simultaneously connecting the start point on the upper left to4 other points.Fig. 4.2. MRI heart image, from left to right: Original image, edge image, distancemap and Heart ventricle detection. The start point is on the lower left and theother one is the detected saddle.5. Concluding RemarksIn this paper we presented some regularization properties of a method forintegrating objects boundaries by searching for the path of minimal actionconnecting two points. The search for the global minimum makes sense onlyafter the two end points are determined, and the `action' or `potential' isgenerated from the image data. The proposed approach makes snake initial-ization an easier task that requires only one or two end points and overcomesone of the fundamental problems of the active contour model, that is beingtrapped by a local minimum.An upper bound over the curvature magnitude of the �nal contour was ob-tained by the ratio of gradient magnitude and the value of the potential. Itwas shown that controlling the smoothness of the �nal contour is possibleby adding a regularization term to the potential function, thereby decreasingthis bound.The result of the proposed procedure may be considered either as the solutionor as initial condition for classical snake models for further smoothing. Con-vergence to the proper smoothed version should now be almost immediate,
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