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Abstract. Some new results on our approach [2] of edge integration for shape mod-
eling are presented. It enables to find the global minimum of active contour models’
energy between two points. Initialization is made easier and the curve cannot be
trapped at a local minimum by spurious edges. We modified the “snake” energy
by including the internal regularization term in the external potential term. Our
method is based on the interpretation of the snake as a path of minimal length on
a surface or minimal cost. We then make use of level sets propagation to find the
shortest path which is the global minimum of the energy among all paths joining
two endpoints.

We show that our energy, though only based on a potential integration along the
curve, has a regularization effect like snakes. We show a relation between the max-
imum curvature along the resulting contour and the potential generated from the
image.
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Evolution.

1. Introduction

An active contour model for boundary integration and features extraction,
introduced in [7], has been considerably used and studied during the last
years.

Although the smoothing effect of the snakes may overcome small defaults
in the data, spurious edges generated by noise or in a complex image may stop
the evolution of the curve so that it might be trapped by an insignificant local
minimum of the energy. The inflation or expansion force [3] helps to prevent
the contour from being trapped by isolated edges into a local minimum.

In this paper we present some results on a new approach, introduced
in [2], for finding the global minimum for energy minimizing curves. Only
endpoints are needed as an easy initialization and we are guaranteed that
the global minimum is found between these points and spurious edges cannot
lead to a local minimum. The deformable contour model is a mapping C(s) =
(z(s),y(s)) where s € £2 = [0, 1] with an energy of the following form:

E(C) = /Q SHICSIP + FCes ()17 + P(C(s))ds (L.1)

where P is the potential associated to the external forces.



2. Paths of Minimal Action

The minimization problem we are trying to solve is slightly different from
the deformable models, though there is much in common. The reason we
modified the energy is that we now have an expression where the internal
regularization energy is included in the potential term. We can then solve
the energy minimization in a similar way to that of finding the shortest path
on a surface using the method developed in [8]. The energy of the new model
has the following form:

E(C):/QwHCs(S)Hz—I—P(C(s))ds:/

Qﬁ(C(s))ds:wL—l—/ P(C(s))ds (2.1)
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Here C is in the space of all curves connecting two given points (restricted
by boundary conditions): C(0) = py and C(L) = p1, where L is the length of
the curve. Contrary to the classical snake energy, here s represents the arc-
length parameter, which means that ||C;(s)||*> = 1. This makes the energy
depend only on the geometric curve and not on the parameterization (see
[1]). The regularization term with w, now exactly measures the length of the
curve. Having the above minimization problem in mind, we first search for
the surface of minimal action U starting at py = C(0). At each point p of the
image plane, the value of this surface U corresponds to the minimal energy
integrated along a path starting at py and ending at p.

Ulp) = C(iLn)f:p {/Cﬁds} (2.2)

In [8], a method to determine the shortest path on a surface between a start
point pg and a destination p; was presented. Applying these ideas to minimize
our energy (2.1), it is possible to formulate a partial differential evolution
equation describing the set of equal energy contours £ in ‘time’. These are
the level set curves of U defined by equation (2.2). The evolution equation is
of the form:

0L(s,t) 1
o =Y 2

where P = P + w and n(s,t) is the normal to the closed curve L£(.,1) :
S' — IR?. This evolution equation is initialized by a curve L(s,0) which is
a small circle surrounding the point pg. It corresponds to a null energy. This
evolution equation (2.3) is similar to a balloon evolution [3] with an inflation
force depending on the potential.

This equation is solved using the Eulerian formulation for curve evolution
introduced in [10] to overcome numerical difficulties and handle topological
changes.



Data: given by P and the two endpoints py and p;.

Step 1: Minimal Action Uy from pg using front propagation which
finds level set curves £ of Uy starting from an infinitesimal
circle centered at py (Osher-Sethian).

Step 2: Backpropagation: tracking the minimal path by gradient
descent on Uy starting from p; ending at pg.

We have just presented a sketch of the algorithm. A synthetic example is
presented in Figure 2.1. Observe the way the level curves propagate faster
along the road.

Fig. 2.1. Line image. From left to right: original, potential, minimal action (ran-
dom look up table to show the level set propagation starting from the bottom left),
minimal path between bottom left and top right.

3. Regularization properties

3.1 Curvature Bound

We now show how the constant w and the potential P in the energy of (2.1)
influence the smoothness of the solution minimizing the energy £ and make
it behave like a regular snake.

We shall make use of the following lemmas to introduce an upper bound
on the curvature along the resulting contour C(s) by controlling the potential

P.

Lemma 3.1. The curvature magnitude || = ||Css|| along the geodesics min-
mizing

/QP(C(s))ds, (3.1)

where s is the arclength parameter, is bounded by

| SSI{JZP{HVP%PH} (3.2)



Proof. Following [1], the Euler-Lagrange equation of (3.1) is given by
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Using the geometrical relation C;; = kn we can rewrite the above expression,
that indicates the curve’s behavior at the minima of (3.1), as

Pen — (VP n)n = 0.

This yields the following expression for the curvature along the geodesics of

P:
(VP, n>

P

Since m is a unit vector, the numerator is a projection on a unit vector

K =

operation. Thus, we can conclude that along any geodesic path minimizing
(3.1) the curvature magnitude is bounded by Equation (3.2). a

Using Lemma 3.1, an a prior: bound of the curvature magnitude may be
obtained by evaluation of sup and inf of P over the image domain D instead
of the curve domain 2 in (3.2). We readily have the following result which
applies to our case with the energy of (2.1):

Lemma 3.2. Given a potential P > 0, and let P = w + P, the curvature
magnitude |k| = ||Css|| along the geodesics minimizing the energy of (2.1) is
bounded by

VP
< Sp IV}

Proof. Since P > 0 we have that infp{p} > w. Using this relation and
Equation (3.2), we have:
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(3.3)
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Equation (3.3) enables us to control the behavior of any geodesic mini-
mizing (2.1), and especially the minimal geodesics that interest us. Lemma
3.1 also gives a nice interpretation of the connection between the curvature of
the resulting contour, and the ratio between the gradient magnitude and the
value of the potential P. When the curve’s normal 1s orthogonal to the slope
of P, so that the curve 1s directed towards the valley, then the curvature is
zero implying a straight line. While if the curve travels along a contour of
equal height in P, then the normal n coincides with the slope of P and the
curvature increases causing the curve to bend and direct the curve to flow
into the valley, where the potential is lower.



The conclusion is that to decrease the limit of the curvature magnitude
of the geodesics in equation (3.3), and thereby lead to a smoothing effect on
the resulting contour, we have two different ways:

— Smoothing the potential (or the image) to decrease supp{(|VP||}.

— Increasing the constant w added to P increases the denominator w without
affecting supp{||VP||}. This gives a justification for calling w a regular-
ization parameter in Section 2..

Figure 3.1 shows the effect of changing w on the solution. The potential is
based on the image gradient like in [7].

Fig. 3.1. Regularization effect by increasing the coefficient w from left to right.

3.2 Case of Attraction Potential

Asintroduced in [3], previous local edge detection might be taken into account
as data for defining the potential. Indeed, since the gradient norm usually
changes its values along a boundary contour, this operation assigns an equal
attraction weight along the boundary. Edge points are scattered over the
image domain and serve as the key points in generating a single boundary
contour. The difficulty here is that there is no order in the set of points and
that it is unknown in advance which points belong to the boundary. This is
defined as implicit constraints in [4]. One possible way of defining a potential
P is as a function of the distance map [5], where each point p is assigned with
a value representing the shortest Euclidean distance to an edge point:

d(p)= inf {dist(p,q)}, and P(p)= f(d(p)) (3.4)
g € edge



where dist(p, ¢) is the Euclidean distance between the two points p and ¢ and
f 1s an increasing function. An example of distance map 1s shown in Figure
2.1. Consistent numerical approximations of (3.4) for the computation of dg¢
on a sequential computer involves in high complexity. Quick sequential al-
gorithms [6] were used for defining the attraction potential in [5]. Sub-pixel
estimation of the distance using a parallel algorithm was presented in [9]. Tt
gives a high sub-pizel precision of the distance. This is one possible appli-
cation of shortest path estimation [8]. Note also that the distance potential
selection P may be also considered as the normalized force introduced in [3]
for stabilizing the results (i.e. for P = d¢ we have [|[VP| = %) since

IVdgl|l = 1 almost everywhere. This last equality is useful in the context
of the previous section to get an estimation of the curvature’s bound when
P =w+dg. From equation (3.3), we have:

1
< — .
W< (3.5)

t.e. w is the minimum curvature radius along the final contour. In the case

P =w+ f(dg), the upper bound becomes
'(d)

|kl < SUp g (3.6)

This bound can be easily found for the usual functions f(d) = ad? or
f(d) =1 — e=*% which corresponds to robust statistics (see [4]).

4. Examples and Results

We demonstrate the performance of the proposed algorithm by applying it
to several real images. The images were scaled to 128 x 128 pixels. In the
first example, we are interested in a road detection between two points in
the image of Figure 4.1. Road areas are lighter and correspond to higher
gray levels. The potential function P was thus selected to be the opposite of
the gray level image itself: P = —I. Minimizing this potential along a curve
yields a path that follows the middle of the road. Our approach can be used
for the minimization of many paths emerging from the same point in one
single calculation of the minimal action. Given a start point in the upper left
area, the path achieving the global minimum of the energy is found between
this point and four other given points to determine the roads graph in our
previous image.

In the second example, we want to extract the left ventricle in an MR
image of the heart area. The potential is a function of the distance to the
closest edge in a Canny edge detection image (see Figure 4.2). Since it is a
closed contour, given a single point, saddle point classification [2] is used to
find the second end point. The closed contour is formed of the two minimal
paths joining the end points.



Fig. 4.1. The initial data is shown on the left. In the middle, our path of minimal
action connecting the two black points as start and end points. On the right, many
paths are obtained simultaneously connecting the start point on the upper left to
4 other points.

map and Heart ventricle detection. The start point is on the lower left and the
other one is the detected saddle.

5. Concluding Remarks

In this paper we presented some regularization properties of a method for
integrating objects boundaries by searching for the path of minimal action
connecting two points. The search for the global minimum makes sense only
after the two end points are determined, and the ‘action’ or ‘potential’ is
generated from the image data. The proposed approach makes snake initial-
ization an easier task that requires only one or two end points and overcomes
one of the fundamental problems of the active contour model, that is being
trapped by a local minimum.

An upper bound over the curvature magnitude of the final contour was ob-
tained by the ratio of gradient magnitude and the value of the potential. It
was shown that controlling the smoothness of the final contour is possible
by adding a regularization term to the potential function, thereby decreasing
this bound.

The result of the proposed procedure may be considered either as the solution
or as initial condition for classical snake models for further smoothing. Con-
vergence to the proper smoothed version should now be almost immediate,



since the global minimum should be close to its smoothed version obtained
by a classical snake.
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