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very precise polygon approximation and it maybe fastidious to use when we deal with a largenumber of images. In a sequence of images wherethere are small changes between two successive im-ages, once initialization is made for the �rst im-age, it is possible to use the resulting contour ofthe �rst image as initial condition for the secondand so on, as proposed in (Kass et al. 1988). Us-ing the balloon model (Cohen 1991) allows a lessdemanding initialization since any initial closedcurve inside an object may be used to obtainits complete boundary. In some cases, it en-ables a completely automatic initialization. Forexample, in (Cohen 1991) preprocessing is used



2 Cohen and Kimmelto get an initial guess that has to be inside thedesired area. The same property can be re-alized using the geometric model introduced in(Caselles et al. 1993), (Malladi et al. 1994) andrecently improved in (Caselles et al. 1995). In(Neuenschwander et al. 1994), only two endpoints on the boundary are needed to follow thecontour. Also, based on simulated annealing, aminimal path between two points is obtained in(Grzeszczuk and Levin 1994).Although the smoothing e�ect of the snakesmay overcome small defaults in the data, spuri-ous edges generated by noise or in a complex im-age may stop the evolution of the curve so thatit might be trapped by an insigni�cant local min-imum of the energy. The ination or expansionforce (Cohen 1991) may help the contour to avoidisolated edges that may trap it into a local mini-mum. A region based approach introduced in(Cohen et al. 1993) also makes the solution lesssensitive to local minima and initialization. Itconsiders a mixed energy including a snake liketerm on the boundary and an homogeneous valueconstraint inside the region.For segmenting several objects simultane-ously or an object with holes, it is possi-ble (Caselles et al. 1993), (Malladi et al. 1994)to model the contour as a level set of asurface, allowing it to change its topol-ogy in a natural way. These approacheshave motivated many other recent workslike (Caselles et al. 1995), (Caselles et al. 1996),(Whitaker 1995), (Kichenassamy et al. 1995),(Tek and Kimia 1995) for 2D and 3D implicitdeformable models. Other models that canhandle topology changes have also been usedfor curves (McInerney and Terzopoulos 1995)or surfaces (Leitner and Cinquin 1991),(Szeliski and Tonnesen 1992), (Szeliski et al. 1993).In this paper we present a new approach for�nding the global minimum of energy minimizingcurves given only one or two end points. Our goalis to help the user to solve the boundary detec-tion problem by mapping it into a single minimumproblem. The proposed method contributes to theimprovement of the �rst two items above, initial-ization and minimization which are obviously re-lated. Only end points are needed as an easy ini-

tialization and we are guaranteed that the globalminimum is found between these points.We modify the snake energy in a way thatmakes it `intrinsic' or free of the parameteriza-tion. Most of the classical snake models are non-intrinsic models. Therefore, di�erent parameteri-zations of the same initial curve (i.e. having thesame geometric shape), could lead to di�erent so-lutions. The modi�cation we follow enables us toinclude the internal regularization term in the ex-ternal potential term in a natural way. The snakeenergy now depends only on the location of thepoint and not on the geometry of the curve atthis point.We use an evolution scheme that computesat each image pixel the energy along the pathof minimal integrated energy joining that pixelto the given start point. We use Sethian's FastMarching Method (Sethian 1996), (Sethian 1995),(Adalsteinsson et al. 1996). The search for a min-imal path is then done e�ciently. While this pathis restricted to connect two given points, we alsopresent a topology{based saddle search that helpsin automatically closing contours by clicking ona single point along the boundary. We stressthe fact that the proposed algorithm is based ona search for the minimal path and may there-fore lead to meaningless classi�cations in somecases. Yet, since the whole process is controlledby the user, such pathological cases may be easilyavoided.An upper bound for the curvature along theminimal path is introduced. It enables a directcontrol over the �nal result by simple changesof the potential function. This justi�es thefact that although our approach is a path in-tegration, it also incorporates the regularizationof the path like a \snake" model. Qualita-tively, the relation between the potential and thesmoothness of the result was understood and usedin (Fischler et al. 1981), long before the age ofsnakes. Here, we introduce a quantitative boundexpressing the connection between the curvatureand the generated potential. This bound is usefulin many applications.The structure of the paper is as follows: Sec-tion 2 explores the relation of deformable modelsto the proposed model. Section 3 gives a formalde�nition of our edge integration procedure for



Global Minimum for Active Contour Models: A Minimal Path approach 3the shape modeling problem, and a description oftwo numerical methods, leading to Sethian's FastMarching Method. In Section 5, we explore therelation between the smoothing properties of ourmodel and the potential. Section 6 presents anextension of our minimal path approach to �nd aclosed boundary given a single point. Section 7presents results of applying the proposed proce-dure to real images.2. Deformable ContoursThe inherent di�culty in active contour modelsis that searching for a minimum over a non con-vex functional is possible only under prede�nedlimitations that lead to the desired solution. Onepossibility is to allow the user to specify an initialguess that is close to a local minimum. Start-ing from the user selection, like an initial givencontour, a minimization scheme re�nes the initialguess to �t it to the given image data. The globalminimum of the given functional does not neces-sarily make sense and initial and boundary con-ditions are important in the process of locatingthe desired local minimum. A global minimum ismeaningless in the case of free end points or closedcurves, since in both cases, the curve can vanishinto a single point at a global minimumof the po-tential (which is then 0). In other cases, wheresome points known to be part of a contour aregiven as �xed end points or as a constraint for aclosed curve to pass through, it is more sensibleto search for the minimal path between the endpoints. Roughly speaking, we can distinguish be-tween \good" and \bad" local minima for snakes.The bad local minima that we would like to avoidare those that trap the curve in noisy areas asshown in Figure 8. The desired solution is usu-ally found by active contours with an adequateinitialization. It is also a local minimum when ithas free ends, and actually each boundary in theimage corresponds to such a minimum. However,when the curve is forced to pass through somegiven points along the same boundary, we mayassume that the global minimum is the desiredsolution, since the potential should be the small-est along the path that joins the end points1. Ourapproach gives the global minimum path between

two end points, and thereby simpli�es the initial-ization process in this case.To motivate the proposed solution let us ex-plore its relation to the classical active contourmodel.Since the introduction of \snakes"(Kass et al. 1988), deformable models have beenoften used to integrate boundaries and extractfeatures from images. The extraction of local fea-tures is speci�ed by initial conditions that lead tothe selection of one of the local minima. Snakesare a special case of deformable models as pre-sented in (Terzopoulos 1987). The deformablecontour model is a mapping:C(v) : 
 �! IR2 (1)v 7�! (x(v); y(v));where 
 = [0; 1] is the parameterization interval.In some cases v is chosen to be the arc-length pa-rameter, and then 
 = [0; L] where L is the lengthof the curve2. In some other cases, like periodicclosed curves, 
 = S1 is the unit circle (in thiscase the parameter v is a mapping from the unitcircle to the curve). The deformable model is aspace of admissible paths or deformations A anda functional E. This functional represents the en-ergy of the model which will be minimized on Aand has the following form:E : A ! IR (2)C 7! E(C) =Z
 w12 kC0(v)k2 + w22 kC00(v)k2 + P (C(v))dv;where C0 and C00 are the �rst and second deriva-tives of C with respect to v, and P is the po-tential associated to the external forces. Thepotential is computed as a function of the im-age data according to the desired goal. If, forexample, we want the snake to be attracted byedges, the potential should depend on the im-age gradient. For the problem to be well-posed,the space of admissible deformations A is re-stricted by boundary conditions. These maybe free boundaries, as in the original snakes(Kass et al. 1988), cyclic boundaries by using pe-riodic closed curves (Terzopoulos 1987), or �xedend points by giving C(0), C0(0), C(1) and C0(1)



4 Cohen and Kimmel(Cohen 1991), (Cohen and Cohen 1993). The me-chanical properties of the model are controlled bythe functions or constants wj.If C is a local minimum of E, it satis�es theassociated Euler-Lagrange equation:� �(w1C0)0 + (w2C00)00 +rP (C) = 0given boundary conditions. (3)In this formulation each term appears as a forceacting on the curve. A solution can be viewed ei-ther as satisfying the equilibrium of the forces inthe Euler Lagrange equation or as reaching a min-imum of the energy. Thus the curve is under thecontrol of two kinds of forces:� The internal forces (the �rst two terms) whichimpose the regularity on the curve. The choiceof constants w1 and w2 determines the elastic-ity and rigidity of the curve.� The image force (the potential term) pushesthe curve to the signi�cant lines which cor-respond to the desired attributes. It is de�nedby a potential of the form Z 10 P (C(v))dv wherefor exampleP (C) = g(krI(C)k): (4)Here, I denotes the image and g(�) isa decreasing function. In the classicalsnakes (Kass et al. 1988), we have g(x) =�x2. The curve is then attracted by thelocal minima of the potential, i.e. edges(see (Fua and Leclerc 1990) for a more com-plete discussion of the relationship betweenminimizing the energy and locating contours).Other forces can be added to impose con-straints de�ned by the user. As introducedin (Cohen 1991), previous local edge detectionmight be taken into account as data for de�ningthe potential.A geometric approach for deformable modelswas recently introduced in (Caselles et al. 1993),(Malladi et al. 1995). A level set approachfor curve evolution (Osher and Sethian 1988),(Sethian 1989) is used to implement a planarcurve evolution of the form:@C(s; � )@� = P (C)(@2C@s2 +w ~n); (5)

where s is the arc-length parameter of the curveC in this case. Therefore, @2C@s2 � �~n is the cur-vature vector (~n is the unit normal), and w issome prede�ned constant. This constant termis thus similar to the pressure force introducedfor the balloon model (Cohen 1991). It is alsorelated to the dilatation transform in mathe-matical morphology and the grass-�re transform(Leymarie and Levine 1993).It was shown that the geometric snakes modelperforms better than the classical snakesin some cases like topology changes when im-plemented by the implicit embedding func-tion technique proposed by Osher and Sethian(Osher and Sethian 1988). It was recently proventhat introducing the `gradient of potential' (rP )term of the classical energy minimization snakes(Kass et al. 1988), (Cohen and Cohen 1993),(Leymarie and Levine 1993) into the geometricsnakes (Caselles et al. 1993), (Malladi et al. 1995),(Malladi et al. 1994) is based on geometri-cal as well as energy minimization reason-ing, leading to the \geodesic active contour"(Caselles et al. 1995).The basic idea of the geometric model is thatthe curve follows an evolution by expansion in thenormal direction, with lower speed when P (C) issmall. Yet, it never comes to a complete stop, andheuristic stopping procedures are used to switcho� the evolution process when an edge is reached.The `gradient of potential' term added in the ge-ometric model forces it to stop at the boundarysimilar to the image force in the classical activecontours.The geodesic active contours (Caselles et al. 1995)were shown to `behave' better than both its `an-cestors' since they enjoy the advantages of both.Given an initial curve C(s; 0), the geodesic activecontours is based on the planar evolution equation@C(s; � )@� = P (C)@2C@s2 � hrP;~ni~n; (6)where s is the arclength. There is a major dif-ference between (5) and (6). In (5), the geomet-ric snake evolution is slower when the potential issmall but the curve does not necessary stop com-pletely at the boundary. It may reduce its speedbut keep on propagating since it never reaches an



Global Minimum for Active Contour Models: A Minimal Path approach 5equilibrium. This might be a drawback when partof the initial curve is close to the boundary andpart of it is far. When the further part of thecurve has reached the boundary, the closer partmay already have passed through. In (6), thecurve reaches an equilibrium which is similar tothe classical snakes. The rP term is a projectionof the attraction force �rP on the normal to thecurve. This force balances the other term close tothe boundary and causes the curve to stop there.It is shown in (Caselles et al. 1995) that (6) isa result of minimizing the functionalE(C) = Z
 P (C(s))ds; (7)where s is the arclength (or E(C) =R
P (C(v))kC 0(v)kdv, for the arbitrary parameterv). The curve evolution equation is then reformu-lated and implemented using the Osher-Sethiannumerical algorithm (Osher and Sethian 1988).Similar geometric models were also introducedin (Kichenassamy et al. 1995), (Whitaker 1995),(Shah 1996) and extended to color and texture in(Sapiro 1996).Although our work is related to(Caselles et al. 1995), it is a totally independentapproach. Actually, the geodesic active contoursmay be considered as a natural re�nement pro-cedure to the proposed approach. We note thatfollowing the formulation of (Caselles et al. 1995),the minimization of the classical energy (2) may bemodi�ed into the problem of �nding local geodesicsin a Riemannianmetric computed from the image,where we propose to �nd the minimal geodesicsin a similar Riemannian metric (see Equation (8)in the following section). Although it is shown in(Caselles et al. 1995) that the solution of activecontour models is closely related to geodesics, nomethod is proposed to �nd the minimal ones. Ingeneral, active contours models search for a localminimum that is close to the initial guess, whilewe propose a method to �nd the minimal path(minimal geodesic) of the same energy betweentwo points.

3. Paths of Minimal ActionGiven some potential P that takes lower valuesnear the edges or features, our goal is to �nda single contour that best �ts the boundary ofa given object or a line of interest. This `best�t' question leads to algorithms that seek for theminimal path, i.e. paths along which the inte-gration over P is minimal. As mentioned earlier,snakes start from a path close to the solutionand converge to a local minimum of the energy.Given only the end points, our goal is to �ndthe minimal path between these points, therebysimplifying the initialization process and avoid-ing erroneous local minima. At �rst glance, thislimits the problem to the type of boundary con-ditions with �xed end points, however, as wewill see in Section 6, the proposed approach mayalso be used for closed contours. Motivated bythe ideas put forward in (Kimmel et al. 1995),(Kimmel et al. 1996) we develop an e�cient andconsistent method to �nd the path of minimal costbetween two points, using the surface of minimalaction (Rutovitz 1968), (Kimmel et al. 1996),(Verbeek and Verwer 1990) and the fact that op-erating on a given potential (cost) function helpsin �nding the solution for our path of minimalaction (also known as minimal geodesic, or pathof minimal potential). Thereby, we are able toisolate the boundary of a given object in the im-age.3.1. Problem FormulationThe minimization problem we are trying to solveis slightly di�erent from the deformable models,though there is much in common. One may stilldi�er between \internal" and \external" forces,yet now all terms are geometric, which meansa result of an intrinsic energy functional. Con-trary to the classical snake energy, here s repre-sents the arc-length parameter, which means thatk@C@s (s)k = 1. The reason we modi�ed the energyis that we now have an expression in which the in-ternal regularization energy is included in the po-tential term in a natural way. We can then solvethe energy minimization in a similar way to thatof �nding the shortest path on a surface using themethod developed in (Kimmel et al. 1995). The



6 Cohen and Kimmelfact that the energy integral is now intrinsic willalso help us to explore the relation between thesmoothness of the result and the potential. Theenergy of the new model has the following form:Ap0;p1 ! IR (8)C 7! E(C) = Z
wk@C@s (s)k2 + P (C(s))ds= wL(C) + Z
 P (C(s))ds = Z
 ~P (C(s))ds;with ~P (p) = w + P (p): (9)Here Ap0;p1 is the space of all curves connectingtwo given points (restriction by boundary condi-tions): C(0) = p0 and C(L) = p1, where L isthe length of the curve. Contrary to the classi-cal snake energy, here s represents the arc-lengthparameter. So, Eq. (8) should actually be read asC 7! E(C) = Z
 (w + P (C(v))) kC 0(v)kdv; (10)for an arbitrary parameter v. This makes the en-ergy depend only on the geometric curve and noton the parameterization. The regularization termmultiplied by the constant w, now measures thelength of the curve. We note that a similar regu-larization e�ect may be also achieved by smooth-ing the potential P (Fischler et al. 1981). Section5 gives more details about the smoothing e�ectsof the energy.Having the above minimization problem inmind, we �rst search for the surface of minimalaction U0 that starts at p0 = C(0). At each point pof the image plane, the value of this surface U0 cor-responds to the minimal energy integrated alonga path that starts at p0 and ends at p.U0(p) = infC(L)=p�ZC ~Pds� = infAp0 ;pE(C); (11)where s is the arclength parameter.We next show how to determine the value of U0everywhere in the image domain.

3.2. Shortest Paths As a SetFollowing (Kimmel et al. 1995), (Kimmel 1995),given the minimal action surfaces U0 to p0 andU1 to p1, then the minimal geodesic between p0and p1 is exactly the set of coordinate points pgthat satisfyU0(pg) + U1(pg) = infp2IR2fU0(p) + U1(p)g: (12)Usually, the set of points pg needs to be re-�ned from a given \fat" set of points into acurve. Since we operate on a discrete data, inorder to keep the two end points connected bythe minimal set we need to threshold the func-tion U0 + U1 using a value larger than its in�-mum. This operation results in a fat set. In(Kimmel et al. 1996) a thinning algorithm wasapplied. In our case, a natural re�nement of thisset is to select any curve in the set connectingthe two points, and apply a local minimizationbased on the Euler-Lagrange equations minimiz-ing the same functional. The geodesic active con-tours without the constant term and �xed endpoints is the right ow for this case. Observethat it should operate only within the \fat" set,which can be considered as a �xed narrow band(Adalsteinsson and Sethian 1995), thereby reduc-ing drastically the computational complexity ofthis re�ning.When there are two or more minimal paths, aswe will see in Section 6, the destination point p1is a saddle point and each path can be obtainedfrom one of the decreasing directions at p1. Byusing the sum of the two distances, one can simul-taneously obtain all minimal paths.The above is a global way for extracting theglobal minimum. In our experiments we have pre-ferred to use a back propagation procedure thatresults in a single curve (see Section 4.5.)3.3. Minimal Action Level SetsEvolutionIn what follows, we assume that P � 0. Forthe minimization of our energy (8), let us �rst for-mulate a partial di�erential evolution equation forthe set of equal energy contours L in `time', where



Global Minimum for Active Contour Models: A Minimal Path approach 7t is in fact the value of the energy. These are thelevel sets of U0 de�ned by Equation (11). In theevolution equation, t represents the height of thelevel set of U0:@L(v; t)@t = 1~P ~n(v; t); (13)where ~P = P +w and ~n(v; t) is the normal to theclosed curve L(:; t) : S1 ! IR2. The motivationfor this evolution is that we need to propagatewith a velocity that is proportional to the inverseof the penalty. So that at `low cost' area the veloc-ity is high while at a `high cost' area the velocityis low.The curve L(:; t) corresponds here to the set ofpoints p for which the minimal energy U0(p) is t:fL(v; t); v 2 S1g = fp 2 IR2 j U0(p) = tg: (14)This evolution equation is initialized by acurve L(:; 0) which is a small circle around thepoint p0. It corresponds to a null energy. Itthen evolves according to Equation (13), similarto a balloon evolution (Cohen 1991) with an ina-tion force depending on the potential. Consideringthe (x; y; t)-space, the family of curves L(:; t) con-structs the level sets of the surface U (x; y) : IR2 !IR+ de�ned in (11). The t level set of U is exactlythe curve L(:; t). Although a rigorous proof ofthis statement can be found in (Bruckstein 1988),it can be understood simply by the following geo-metric interpretation. Observe that when we addto a path that ends at a point of L(:; t) a smallsegment in the normal direction to L(:; t) and oflength 1~P dt, we add to the accumulated energy of(8) a contribution of ~P 1~P dt = dt. This means thatthe new point is on the level t+ dt, that is on thecurve L(:; t+dt) . Figures 13 and 14 presents sucha surface U and its corresponding level sets.It is possible to compute the surface U in sev-eral ways. We shall describe three of them thatare consistent with the continuous case while im-plemented on a rectangular grid. It is, however,possible to implement a simple approximation likethe shading from shape algorithm introduced in(Verbeek and Verwer 1990), or even graph search

based algorithms (see Section 4.1), if consistencywith the continuous case is not important, see also(Rutovitz 1968).4. Numerical ImplementationThe numerical schemes we propose are consis-tent with the continuous propagation rule. Theconsistency condition guarantees that the solu-tion converges to the true one as the grid is re-�ned. This is known not to be the case in gen-eral graph search algorithms that su�er from dig-itization bias due to the metrication error whenimplemented on a grid (Mitchell et al. 1987),(Kiryati and Sz�ekely 1993). This gives a clear ad-vantage to our method over minimal path estima-tion using graph search. Before we introduce theproposed method, let us review the graph searchbased methods that try to minimize the energygiven in (8).4.1. Graph Search Algorithmsand Metrication ErrorTo evaluate and minimize the snake energy (2),the \internal" terms can be evaluated only fromthe shape of the curve, leading to curve deforma-tion and evolution schemes from an initial curve.Based on the new energy de�nition (8), we areable to compute the �nal path without evolv-ing an initial contour, by using the surface ofminimal action. To �nd the surface of minimalaction, graph search and dynamic programmingtechniques were often used, where the image pix-els serve as vertices in a graph (Montanari 1971),(Fischler et al. 1981), (Chandran et al. 1991).A description of A� and F � algorithms,applied to road detection, can be found in(Fischler et al. 1981). The distance image is ini-tialized with value1 everywhere except at a startpoint with value zero. At each iteration, the A�algorithm expands to a neighbor pixel a previouslyobtained minimal path ending at the vertex withsmallest current cost value. Since at each iter-ation one pixel gets a �nal value, and a searchfor the minimal vertex to update is performed,the algorithm complexity is O(NlogN ) where Nis the number of pixels in the image. Our ap-proach solves a continuous version of the problem.



8 Cohen and KimmelSethian Fast Marching Method (Sethian 1996),described in section 4.4, has a similar complexity,yet it is consistent!The A� algorithm has to search among all ver-tices, the one to expand at each iteration. Thisis why the F � algorithm was preferred in sev-eral applications. The F � algorithm (so calledin (Fischler et al. 1981)) computes the distancewith a sequential update of the pixels. It is sim-ilar in spirit to the algorithm used in Section 4.3(see also (Dupuis and Oliensis 1994)), except thatEquation (18) is again consistent. Using the F �,the global minimum is reached only after the im-age is scanned iteratively top to bottom, row byrow, left to right followed by right to left, andthen bottom to top. The number of such passesdepends on the shape of the minimal path, whichis usually unknown in advance. If that path ex-pands from the starting point monotonically withrespect to the row index, one pass is su�cient.However, if it has a spiral shape from the startingpoint, it needs as much iterations as turns in thepath, to propagate the information from the startpoint to the end point. The resulting complexityis of O(N R �ds), where the integral is along thelongest path and � is the curvature (R �ds=2� =number of loops of a planar curve). In practice,the iterations are stopped either when there is nomore change in the process (this has to happen ina �xed number of iterations) or after a given num-ber of passes. This kind of approach was usedto compute distance maps in (Borgefors 1984),(Danielsson 1980). It was also used forroad detection in (Merlet and Zerubia 1993),(Merlet and Zerubia 1994), using some improve-ments in the potential de�nition. The authors alsoadd some constraints on the curvature by takinginto account sets of three vertices instead of two inthe graph search to update the distance. In theiralgorithm, they �nd that 8 passes are su�cient fortheir applications.Such an algorithm was used by(Geiger et al. 1995) for interactive boundarydrawing giving a sequence of points on theboundary and �nding the path between twosuccessive data points. A similar approachis used in an interactive tool called live-wire(Mortensen and Barrett 1995).

A simpli�ed F � algorithm is used in(Chandran et al. 1991) to minimize a snake en-ergy. It assumes the path expands from the start-ing point only in a restricted range of directionsand makes only one pass. Thus, it only �nds theglobal minimumamong all paths restricted by thiscondition. This is a problem for non monotonicpaths. In case there are gaps in the potential thatcan lead the expansion of the path in a wrongdirection, then the algorithm has no way to cor-rect itself and to �nd the right path. Althoughthese last authors generalize their approach to thecontinuous case, they solve it only for the discretegraph approach and their approach, as well asother graph search algorithms, is also subject tometrication error.A completely di�erent approach re-lated to dynamic programming for detec-tion of salient boundaries was introduced in(Shaashua and Ullman 1988). It de�nes itera-tively at each pixel of the image a value of themaximal energy of a path passing through thispixel. Then high valued pixels are grouped to getsalient curves. The context is di�erent there sinceeach pixel or vertex is considered as a start pointand the algorithm should �nd simultaneously allinteresting feature curves.Dynamic programming has also been used forsnakes, starting with (Amini et al. 1990). Al-though a complete theoretical description of con-tinuous dynamic programming is reviewed, theproposed application to active contours is di�erentfrom the ones above and our approach. The dy-namic programming minimization is not appliedthere to �nd a minimal path between two pointsbut to �nd the local deformation from an initialcurve that gives the best energy descent. Thisis applied iteratively from an initial curve, ex-actly as in the classical curve evolution schemefor snakes. However, instead of using gradient de-scent, it �nds at each iteration the global min-imization among all possible local deformations,i.e. paths obtained by giving each node of thecurve the ability to move in a small neighborhood(3 � 3 pixels usually). This reduces considerablythe size of the graph, since the vertices are thenodes on the curve and the possible values forthese are only the eight neighbors of the initial ver-tex. In (Fujimura et al. 1992), the range of possi-
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P2

P1Fig. 1. An L1 norm causes the shortest path to su�er fromerrors of up to 41%. In this case both P1 and P2 are opti-mal, and will stay optimal no matter how much we re�nethe (4-neighboring) grid.ble local deformations is broadened using a multi-scale dynamic programming algorithm. However,in both approaches, this kind of graph search doesnot avoid undesirable local minima of the energy,and the solution remains very sensitive to the ini-tialization, as in classical snakes. Also, like classi-cal snakes, it is non intrinsic and the same lookingtwo initial contours with di�erent control pointsmay lead to completely di�erent solutions.One may argue that using previously men-tioned graph search algorithms like the A�, Dijk-stra (Dijkstra 1959), (Sedgewick 1988), or F � asproposed in (Fischler et al. 1981) for road track-ing, might be su�cient. These algorithms are in-deed e�cient, yet su�er from `metrication errors'.The graph based algorithms consider the imageas a graph in which each pixel is a node, andthe 4 (or 8) connections to the neighboring pixelsare the vertices of the graph. The weights alongthese vertices are usually taken as the average ofthe potential at the two end pixels, multiplied bythe length of the L1 \city block" distance betweenthese pixels (1 for horizontal and vertical connec-tions). However, it is clear that measuring lengthof the shortest path between the lower left and theupper right corners of the graph in Figure 1 thisway, the length of P1 is equal to that of P2. It doesnot matter how �ne the grid gets, P2 is still anoptimal path. Our goal is to get the diagonal con-nection as the optimal path with the `right' Eu-clidean distance measure (L2) in this simple case.Our problem is that in graph search algorithmswe are obligated to the distance measure imposedby the graph (L1 in Figure 1).Of course the result of the graph-searchcould be improved by taking a larger neigh-

Fig. 2. Illustration of metrication error for computation ofthe distance map to a single point, showing level sets of thedistance. On the left: a graph search-like discrete distancecomputation gives squares; On the right: the distance isobtained by our approach, giving circles.borhood as structuring element, giving betterapproximations of the distance in some direc-tions (like p2 for the diagonals) (Borgefors 1984),(Thiel and Montanvert 1992).These give a di�erent polygonal approxima-tion of the circle, but there will always be anerror in some direction that will be invariant tothe grid resolution, which is not the case in theapproach we use. Also, some �xes that mini-mize the average error by modifying the weightsalong the connections between the pixels were pro-posed in (Kiryati and Sz�ekely 1993) and used in(Kimmel and Kiryati 1994). We show the exam-ple of Figures 1 and 2 for the simplest case ofgraph search, to clarify the metrication error ef-fect.Our philosophy here is di�erent. We proposeto deal with the continuous problem as long aspossible. In that, we follow the numerical analy-sis community, by �rst analyzing the underlyingproblem in the continuous domain. Then, at thelast stage which involves numerical implementa-tion we will consider the image given as a grid ofpixels, compute optimal paths and the surface ofminimumaction in a relatively e�cient way, whileat the same time enjoy the `consistency' propertyof converging to the desired continuous solutionas the grid is re�ned. The main reason is obvi-ously accuracy which is important for example inmedical applications. As an illustration, Figure 2shows the isodistance curves using a graph-searchapproach and the continuous level-set approach.These curves are squares in the �rst case, not de-pending of the size of the grid, while in our case,the curves are getting closer to a perfect circlewhen the size of the grid is re�ned.



10 Cohen and Kimmel4.2. Front Propagation ApproachAccording to this �rst continuous approach, thecurve evolution L(:; t) of Equation (13) is refor-mulated into an evolution of an implicit represen-tation of the curve de�ned by an evolving surface� : IR2 � [0; T ) ! IR, where for each value of t,L = ��1(0). This means that curve L(:; t) is thezero level set of �(t) : IR2 ! IR. This Eulerianformulation for curve evolution was introducedby Osher and Sethian (Osher and Sethian 1988),(Sethian 1989) to overcome numerical di�cultiesand handle topological changes. As initializa-tion for L(:; 0), we start with an in�nitesimal circlearound the start point p. We mean a small one forpractical implementation. The function � is ini-tialized at t = 0 to be negative in the interior andpositive in the exterior of the curve L(:; 0). Thisis obtained by setting one pixel to �1 and the restto +1. The evolution rule of � is then given by:@�@t = � 1~P kr�k: (15)It was this same idea of considering thecurve as the zero level set of an evolving sur-face that initiated the geometric snake approach(Caselles et al. 1993), (Malladi et al. 1995) de-scribed in the end of Section 2. For a fastimplementation, of order O(M R ds�t ) where Mis the number of points in a narrow bandaround the front and �t is the time step ofthe scheme, of the above approach we refer to(Adalsteinsson and Sethian 1995).4.3. Shape from Shading ApproachThe second approach is based on Rouy-Tourin shape from shading method(Rouy and Tourin 1992), (Dupuis and Oliensis 1994)and searches for the surface U itself instead oftracking its level sets as in the previous approach.In this case the surface may be found as solutionof the Eikonal equationkrUk = ~P; (16)

with U (p0) = 0 at the start point. The solution Uis obtained as the steady state of U (p; � ) when �is large, where U(p; � ) satis�es the following evo-lution equation:@U@� = ~P � krUk; (17)given U(p0; � ) = 0 at the start point as boundarycondition. The limit value U = U1 is solution ofthe Eikonal equation (16).We can again give a geometric interpretationthat relates (13) to (16). The gradient of Uis normal to its level sets L(:; t), and the gra-dient norm is thus the value of the spatial di-rectional derivative in the normal direction. AsU increases by dt, the normal displacement ofthe level set L(:; t) is dt~P from (13). So thederivative @U@~n = hrU;~ni = krUk is equal todt=dt~P = ~P . A rigorous proof of this ideacan be found for example in (Bruckstein 1988).(see also Bellman (Bellman and Kalaba 1965) fora nice proof on the orthogonality of the wavefronts and the geodesics). Here, boundary con-ditions are given in the form of �xing the pointC(0) = p0, i.e. U(p0; � ) = 0 for all � . Au-thors of (Rouy and Tourin 1992) also presenteda direct numerical approach to solve (16) andgave a convergence proof to that minimizationprocedure in the viscosity solutions framework(Crandall et al. 1992). We shall discuss thismethod and its discretization in more details inthe following section. The method we recom-mend is presented in the following section. It isin some sense a hybrid of both methods just de-scribed.4.4. Sethian Fast Marching MethodIn his recent report (Sethian 1996), Sethianpresents a fast and e�cient method for solv-ing Equation (16). It is based on aclever way for propagating the informationon the grid. Motivated by the two meth-ods above, this method uses the proposednumerical scheme in (Osher and Sethian 1988),(Rouy and Tourin 1992). However, by marching



Global Minimum for Active Contour Models: A Minimal Path approach 11in an ordered way, the problem is solved after a�nite number of steps, and by that contradictingRemark 5 in (Rouy and Tourin 1992). We recom-mend this method for any real time application.Given the potential values Pi;j = P (i�x; j�y)on a grid (e.g. the pixel grid), the numericalmethod approximating Ui;j in Eq. (16) is givenby(maxfu� Ui�1;j; u� Ui+1;j; 0g)2 (18)+ (maxfu� Ui;j�1; u� Ui;j+1; 0g)2 = P 2i;j;where, for simplicity, we assume �x = �y = 1.In (Rouy and Tourin 1992) the numerical viscos-ity solution was obtained by solving the aboveequation at each grid point, selecting for Ui;j thelargest u that satis�es Eq. (18). The grid pointswere selected in an arbitrary way, and thus it wasclaimed that convergence is obtained after in�nitenumber of such iterations. Where each iterationinvolves an arbitrarily selection of a grid point(i; j), and updating the value of Ui;j at that point.In practice, it means many passes on the image.The Fast Marching Method introduces order inthe selection of the grid points. It is based onthe fact that information is propagating from thesource point `outwards'. It needs only one pass onthe image (see beginning of Section 4.1). Follow-ing (Sethian 1996), the method goes as follows:� Initialization:For each point in the grid, let Ui;j = 1(large positive value). Label all points asfar.Set the start point (i; j) = p0 to be zero:Up0 = 0, and label it trial.� Marching Loop:Let (imin; jmin) be the trial point with thesmallest U value.Label the point (imin; jmin) as alive, andremove it from the trial list.For each of the 4 neighboring grid points(k; l) of (imin; jmin):� If (k; l) is labeled far, then label it trial.� If (k; l) is not alive, then compute Uk;laccording to Eq. (18), selecting thelargest solution to the quadratic equa-tion, which is the only valid solution.

i.e. solve with respect to u(maxfu�minfUk�1;l; Uk+1;lg; 0g)2 (19)+ (maxfu�minfUk;l�1; Uk;l+1g; 0g)2 = P 2k;l;and let Uk;l = u.The algorithm is based on the fact that solvingequation (19), the value at a pixel (k; l) dependsonly on those neighboring pixels that have lowervalue than Uk;l. For e�ciency, the trial list is keptas min heap structure. We refer to (Sethian 1996),(Sethian 1995), (Adalsteinsson et al. 1996),(Kimmel and Sethian 1996) for further details onthe above algorithm, as well as a proof of correctconstruction. Using a min-heap structure forthe trial list, the algorithm computational com-plexity is O(NlogN ) where N is the number ofgrid points. It has similar complexity to thatof graph search based algorithms like the A� orDijkstra (Dijkstra 1959), (Sedgewick 1988). Forexample on a SPARC 1000, it took a second tocompute the U surface of a 256�256 image. Thisis a �rst order numerical scheme. As an examplefor accuracy we should note that the Euclideandistance (Pi;j = 1) from a straight line is accuratewith sub pixel accuracy (error = 0). In general,the consistency condition guarantees that as thegrid is re�ned, the solution converges to the truecontinuous one.4.5. Global Snake MinimizationBetween Two End PointsShortest path between p0 and p1. Usingthe approach of (Kimmel et al. 1995) describedin Section 3.2, the shortest path between a startpoint p0 and a destination point p1, accordingto the energy minimization is the set of pointspm = (xm; ym) that satisfy:(U0 + U1)(xm; ym) = inf(x;y)f(U0 + U1)(x; y)g; (20)where U0 and U1 correspond to the minimal ac-tion obtained in the previous section with pathsstarting at p0 and p1 respectively. A naturalcombination is to use the above method in orderto locate the minimal set, and then let the modelde�ned in (Caselles et al. 1995) take over and re-



12 Cohen and Kimmel�ne the result. However, we recommend an easierway to compute the path by back propagation.Back propagation from p1. In order to de-termine the minimal path between p0 and p1, weneed only to calculate U0 and then slide back onthe surface U0 from (p1; U0(p1)) to (p0; 0). Thesurface of minimal action U0 has a convex like be-havior in the sense that starting from any point(q; U0(q)) on the surface, and following the gra-dient descent direction, we will always convergeto p0. It means that U0 has only one local mini-mum that is of course the global minimum and isreached at p0 with value zero. We show in Fig-ures 13 and 14 an example of 3D representationof the U0(x; y) surface and a level set image of thesame U0. Given the point p1, the path of min-imal action connecting p0 (the minimal point inU0, U (p0) = 0) and p1 is the curve ~C(�) startingat p1 and following the opposite gradient directionon U0: @~C@� = �rU0; ~C(0) = p1 (21)Then the solution C(s) is obtained by arclengthparameterization of ~C(��) with C(0) = p0 andC(L) = p1. The minimal path can beobtained this way since rU is tangent to thegeodesic. This is a consequence of the resultsin (Bellman and Kalaba 1965) that show that thelight rays (geodesics, constant parameter curves)are orthogonal to the wave fronts (equal cost con-tours). The gradient of U is therefore orthogonalto the wave fronts since these are its level sets.The back propagation procedure is a simplesteepest gradient descent. It is possible to makea simple implementation on a rectangular grid:given a point q = (i; j), the next point in the chainconnecting q to p is selected to be the grid neigh-bor (k; l) for which U (k; l) is the minimal, and soforth. Of course, a better tracking can be ob-tained using a more precise estimation of the gra-dient of U . In our examples we have chosen thediscrete steepest descent just described, becauseof its simplicity, and the fact that it is used onlyfor presentation purpose. Being a local operation,back propagation su�ers from angular error ac-cumulation. See (Kimmel and Sethian 1996) for

a more sophisticated high order ODE integratordeveloped for other purposes, it is used in the ex-amples of Figure 11.We back track the path of minimal action con-necting the two points, which is the global mini-mum of the snake energy de�ned in Eq. (8).Using back propagation following the gradientof U , once the surface U is available, the min-imal path between the start point p0 and anyother point p can be obtained without additionalcomputation. This approach is used for exam-ple to simultaneously track four roads in the sameimage, as shown in Figure 9. Notice that in(Merlet and Zerubia 1993), a back propagation ismade from all pixels along the image boundary.We could also apply the same idea with our ap-proach, and then deal with non the meaninglessparts of the paths.Remark that if at some point along the path,we have rU0 = 0, there may be more than onepath that reaches the global minimum. This willbe the case in Section 6 where we �nd two minimalpaths from a saddle point. In this case, we per-form back propagation with two initial oppositedirections. These directions can be found eitherdirectly, as the steepest descents on the discretegrid, or from the eigenvectors of the second di�er-ential operator.5. Discussion on the Potential term5.1. Regularization propertiesWe now show how the constant w and the poten-tial P in Eq. (8) control the smoothness of thesolution. A qualitative understanding of a similarcontrol was used in (Fischler et al. 1981). Here,we �rst introduce quantitative results in the formof geometric bounds on the curvature of the �nalcontour.We shall make use of the following lemmas tointroduce an upper bound on the curvature alongthe resulting contour C(s) by controlling the po-tential P . We also assume that the potential isgiven as a positive function.Lemma 1 Given a potential P > 0, the curva-ture magnitude j�j = k@2C@s2 k along the geodesicsminimizing
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Fig. 3. Bird image: original on the left, potential in the middle and minimal path on the right.Z
P (C(s))ds; (22)where s is the arclength parameter, orR P (C(v))kC 0(v)kdv for an arbitrary parameterv, is bounded byj�j � sup
 �krPkP � : (23)Proof: Following (Caselles et al. 1995) (seealso (Dubrovin et al. 1984)), the Euler-Lagrangeequation of (22) is given byP�~n� hrP;~ni~n = 0: (24)It indicates the curve's behavior at the minima of(22). This yields the following expression for thecurvature along the geodesics of P :

� = hrP;~niP : (25)Since ~n is a unit vector, the numerator is a pro-jection on a unit vector operation. Thus, we canconclude that along any geodesic path minimiz-ing (22) the curvature magnitude is bounded byEquation (23).Using Lemma 1, an a priori bound of the cur-vature magnitude may be obtained by evaluationof sup and inf over the image domainD instead ofthe curve domain 
 in (23). We readily have thefollowing result which applies to our case with theenergy of (8):Lemma 2 Given a potential P � 0 de�ned on theimage domain D, and let ~P = w + P , the curva-ture magnitude j�j along the geodesics minimizingthe energy of (8) is bounded by
Fig. 4. Regularization e�ect by increasing the coe�cient w from left to right.



14 Cohen and Kimmelj�j � supDfkrPkgw : (26)Proof: Since P � 0 we have that inf
f ~Pg � w.Using this relation and Equation (23) we have:j�j � sup
 (kr ~Pk~P ) = sup
 � krPkP + w� (27)� supD � krPkP + w� � supDfkrPkgw + infDfPg� supDfkrPkgw :Equation (26) enables us to control the behav-ior of any geodesic minimizing (8), and especiallythe minimal geodesics that interest us. Lemma 1also gives a nice interpretation of the connectionbetween the curvature of the resulting contour,and the ratio between the gradient magnitude andthe value of the potential P . When the curve'snormal is orthogonal to the slope of P , so thatthe curve is directed towards the valley, then thecurvature is zero implying a straight line. While ifthe curve travels along a contour of equal height inP , then the normal ~n coincides with the slope of Pand the curvature increases causing the curve tobend and direct the curve to ow into the valley,where the potential is lower.The conclusion is that to decrease the limit ofthe curvature magnitude of the geodesics in Equa-tion (26), and thereby lead to a smoothing e�ecton the resulting contour, we have two alternatives:

� Smoothing the potential (or the image) to de-crease supDfkrPkg.� Increasing the constant w added to P , in-creases the denominator without a�ectingsupDfkrPkg. This gives a justi�cation for re-ferring to w as a regularization parameter inSection 3.1.Figure 4 shows the e�ect of changing w on thesolution (it varies between 0.04 and 0.4). The po-tential shown in Figure 3 is based on the imagegradient like in (4) (the range of P and rP isnormalized between 0 and 1).A possible application of the bound in Equa-tion (26) would be to limit the domain in whichthe curve lies and thus reduce computation of theminimal action only to this area of the image.5.2. Attraction PotentialAs noted in Section 2, it is useful in some cases tode�ne a potential from an edge image. Theseedge points may be extracted from the original im-age using an edge detection operator or given as aset of data points. This kind of potential is oftenused in the literature (see (Cohen 1995) for sev-eral possibilities of selecting such potential func-tions). Choosing this potential function is usefulwhen the edge detection operation produces mostof the edge points but has gaps in the contours,as shown in Figure 5. The distance based poten-tial considers the distance from the detected edgepoints to be the penalty. In this case the gra-dient of the potential points towards the closestdetected point.
Fig. 5. Line image. From left to right: original, potential, minimal action (random look up table to show the level setpropagation starting from the bottom left), minimal path between bottom left and top right.Also, the use of such a potential may avoidnode concentration at some high gradient points. Indeed, since the gradient norm usually changesits values along a boundary contour, this oper-



Global Minimum for Active Contour Models: A Minimal Path approach 15ation assigns an equal attraction weight alongthe boundary. Several approaches of generat-ing `attraction potentials' from such data forvarious reconstruction methods were surveyed in(Cohen and Cohen 1993) and a `physical' inter-pretation was given as weak springs linking thecurve to data points.Let I(x; y) : D � IR2 ! IR+ be a given graylevel image. Applying a standard edge detectorto I results in a set of points in the image do-main (D) some of which correspond to true edgepoints. These points are scattered over the imagedomain and serve as the key points in generat-ing a single boundary contour. Finding such acontour is usually referred to as `shape modeling'that is used for object segmentation and classi�ca-tion (Malladi et al. 1995), (Malladi et al. 1994),(Malladi and Sethian 1994). The di�culty here isthat there is no order in the set of points andthat it is unknown in advance which points be-long to the boundary. This is de�ned as implicitconstraints in (Cohen 1996).Denote by E(x; y) : D ! f0; 1g a binary func-tion representing the result of applying a standardedge detector on the image I, where 1 correspondsto a detected edge point. One possible way ofde�ning a potential P : D ! IR+ is as a functionof the distance map (Cohen and Cohen 1993),where each point p is assigned with a value repre-senting the shortest Euclidean distance to an edgepoint: dE (p) = infE (q)=1fdist(p; q)g; (28)and P (p) = f(dE (p))where dist(p; q) is the Euclidean distance be-tween the two points p and q and f is anincreasing function. An example of distancemap is shown in Figure 5. Consistent nu-merical approximations of (28) for the compu-tation of dE on a sequential computer mayagain be implemented by using the fast marchingmethod (Sethian 1996). Quick sequential algo-rithms (Borgefors 1984), (Danielsson 1980) wereused for de�ning the attraction potential in(Cohen and Cohen 1993). Sub-pixel estimation ofthe distance using a parallel algorithm was pre-sented in (Kimmel et al. 1996). It gives a highsub-pixel precision of the distance. This is one

possible application of shortest path estimation(Kimmel et al. 1995), (Sussman et al. 1994) pre-sented briey in Section 3.2. Note also thatthe distance potential selection P may be alsoconsidered as the normalized force introduced in(Cohen 1991) for stabilizing the results (i.e. forP = dE we have krPk = rPkrPk ) since krdEk = 1almost everywhere. The motivation for choosingsuch a potential is that the penalty grows as afunction of the distance from the edge points.This last equality is useful in the context of theprevious section to obtain an estimation of thecurvature's bound when ~P = w+dE . From Equa-tion (26), we have:j�j � 1w; (29)i.e. w is the minimum curvature radius along the�nal contour. In the case ~P = w + f(dE ), theupper bound becomesj�j � supd f 0(d)w + d: (30)where d ranges from 0 to the maximal dis-tance in the image. The bound in (30) canbe easily found for the functions f(d) = �d2or f(d) = 1� e��d2 which corresponds to robuststatistics (see (Cohen 1996)).A synthetic example is presented in Figure 5where the potential used is obtained from a dis-tance map to the edge points. Observe the waythe level curves propagate faster along the line.6. Closed Boundary Extractionfrom a Single PointIt is often needed to detect a closed contour. Ourprevious approach of �nding a minimal path be-tween two given end points, detects the two pathsthat complete a closed contour only if both wayscorrespond to a global minimum. In the generalcase of selecting the second point, it is clear thatalthough both ways are local minima, only oneis a global minimum. Assuming only one startpoint p0 is given on the closed contour, let us com-pute the minimal action U from this start point.We should then �nd a second point p1 that is lo-cated on the unknown contour, from which thetwo geodesics have the same energy. This means
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Fig. 7. Illustrating the number of level crossings. At thetop, a maximum and a minimum points give 0, at the bot-tom left, a saddle point gives 4, and at the bottom right,other points give 2 level crossings.we have to �nd a point p1 from which there ismore than one minimal curve connecting it to thesource p0. These special points are the saddles ofU .6.1. Justi�cation of the search forsaddle pointsA saddle point is a surface point at which there aretwo descents and two ascents. The descents indi-cate reachability by two minimal geodesics in ourcase. Assuming that all the points at the bound-ary of a closed shape, belong to one of two (\left"or \right") geodesics connecting it to the startpoint. There is only one point p1 at which the\left" and \right" geodesics have the same length,i.e. their meeting point, which is a saddle of U .Since U is maximal at p1 along both ways(\left" or \right"), the derivative of U along thedirection tangent to the path is zero. As men-tioned before, the two minimal paths are orthog-

onal to the level sets of U . Thus, the derivativeof U along the normal to the path is also zero,which means that Du(p1) = 0. Since U is max-imal at p1 along the path, U has a negative sec-ond derivative in that direction. Since w > 0,at any point of the image there has to be a di-rection in which U increases, and for which thesecond directional derivative has to be positive.As a consequence, D2u(p1) has to have oppositesign eigenvalues, that is one de�nition of a saddlepoint.The saddle points may serve as clues in clos-ing contours of objects that are contained withinthe image domain. When the user searches for aclosed contour from p0, an automatic search forsaddle points on U is performed. Back propagat-ing from a saddle point p1 to both directions willconnect the saddle to the source point p0 by twocurves. (see end of Section 4.5). Alternatively,computing the minimal action surface from thesaddle point and searching for the minimal set ofthe sum of both action surfaces, yields the desiredresult as a set of points (to be re�ned). Thereby,a closed contour is formed representing the com-plete boundary of an object.6.2. Saddle points characterizationAs mentioned, to detect such a saddle point, wecan compute the gradient jrU j and the Gaussiancurvature (�1�2), and check for jrU j < � and�1�2 < 0.Another possibility to isolate the saddle pointson U is to use a simple test to determine the num-ber of level crossings. Consider a small radiuscircle centered at a candidate point q and em-bedded in the horizontal plane (x; y; U (q)). De-note the number of level crossings to be the num-ber of points this circle intersects with the sur-face (x; y; U (x; y)). It is shown in Figure 7 thatthis number at a saddle point is equal to four,while for most surface points it is two, and atmaximum and minimum points there are no levelcrossings. In our implementation of the numberof level crossings, for each point (i; j) in the pixelsgrid, we simply count the number of sign changesin U (k; l) � U (i; j) while traveling around the 8neighbors (k; l) of the point.



Global Minimum for Active Contour Models: A Minimal Path approach 176.3. Saddle points �lteringAlthough there are only few saddle points in U(see Figure 14 for example), �nding the level cross-ing for every point q in the domain is not enough.It is necessary to �lter out the insigni�cant saddlesthat have a relatively large value of P or U .This usually reduces the number of candidatesto a relatively small number (only two remain af-ter simple �ltering of the saddles in Figure 14).In a favorable case where there are not many gapsin the boundary contour, another criteria that willdo the work is to consider only those saddle pointsthat are close to edge points, since it is obvi-
ous that the contour should pass close to an edgepoint. Selecting the right regularization constantw will obviously �lter out most of the saddles thatare formed due to noise, yet will obviously intro-duce further constraints on w. According to ourexperience, selecting the right w for a smoothinge�ect reduces the number of saddles to the onlyinteresting ones. Since we are dealing with a userinteractive procedure, it is possible to paint thecandidate saddle points on the image and let theuser pick the right saddle among the �ltered sad-dle points. Selecting the right saddle point willclose the contour and segment the object.

Fig. 6. Road Image. Original on the left. Minimal action U from bottom left start point: in the middle, black correspondsto lower values of U , on the right a random look up table is used to render the level curves of U .
7. Examples and ResultsWe demonstrate the performance of the proposedalgorithm (using the minimal action algorithmdescribed in section 4.4) by applying it to several real images. The images were scaled to 128� 128pixels, and the gray levels for P were normalizedbetween 0 and 1. Parameter w is usually of theorder of 0:1.
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Fig. 8. Local and global Minimum. The initial data is shown at the top and the result at the bottom. The left and middlecolumns show the results of two di�erent initializations of the classical snakes. The right example shows our path of minimalaction connecting the two black points as start and end points.7.1. Open contour: Road andMedical ImageIn the �rst example, we are interested in a roaddetection between two points in the image ofFigure 6. Road areas are brighter and corre-spond to higher gray levels. The potential func-tion P was thus selected to be the opposite ofthe gray level image itself: P = 1 � I. Mini-mizing this potential along a curve yields a paththat follows the middle of the road. This ex-ample illustrates the e�ciency of our approachcompared to classical snakes. We do not claimthat this is a road detection algorithm as onecan �nd for example in (Fischler et al. 1981),(Geman and Jedynak 1996). For such anapplication, if the two edges of the road areneeded rather than the middle way, our re-sult could be re�ned using either ribbon snakes
(Neuenschwander et al. 1994) or a thick contourpotential like in (Davatzikos and Prince 1993).Given a start point p0 on the bottom left, theimage of minimal action U (x; y) from this pointis shown in Figure 6. Observe the way the levelcurves propagate faster along the road. At the leftof Figure 8, we show how a bad initialization forclassical snakes leads to a wrong local minimumand it requires a very accurate initial guess, as inthe middle example, to guarantee convergence tothe desired solution. It is shown that given two



Global Minimum for Active Contour Models: A Minimal Path approach 19end points, the proposed procedure detects thepath of minimal action along the right road.Note, that using a completely di�erent ap-proach based on classical snakes, the authors of(Neuenschwander et al. 1994) have also found away to solve e�ciently the snake problem with�xed end points. Although their method behavesbetter than classical snakes, it does not ensureto converge to the global minimum and may betrapped in a bad local minimum solution as we il-lustrate in the following example. Using the sameroad image, Figure 10 presents two examples forwhich their method leads to a local minimum. Atthe top, taking the same end points as in Figure 8,the part of curve close to the upper right end pointis trapped by the white building below it, like inthe left example of Figure 8. At the bottom, ifthe end point is slightly shifted, the curve followsthe road correctly from both ends but at somepoint it prefers a short-cut. Note, that in bothexamples we do not present the �nal curve po-sition but its position at some intermediate timefrom which it is not possible to return back tothe correct road. The interactive tool for outlin-ing roads in aerial or medical images presentedin (Neuenschwander et al. 1994) could also makeuse of our method between fewer constraint points

or key-points to solve some cases in which thereare many erroneous local minima.
Fig. 10. Two examples of applying the approach of(Neuenschwander et al. 1994) with two slightly di�erentinitializations. In both cases the curve is trapped by alocal minimum (see text).

Fig. 9. Many paths are obtained simultaneously connecting the start point on the upper left to four other points. Theminimal action is shown on the left.Our approach can be used for the minimizationof many paths emerging from the same point inone single calculation of the minimal action. Fig- ure 9 shows an application of this operation forthe road image. Given a start point in the upperleft area, the path achieving the global minimum



20 Cohen and Kimmelof the energy is found between this point and fourother given points to determine the roads graphin our previous image.
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Global Minimum for Active Contour Models: A Minimal Path approach 21In Figure 11, we show an application to the de-tection of blood vessels in a medical angiographicimage of the eye fundus. Here also, the potentialis obtained from the image itself to detect highergray levels. These results make use of high or-der ODE integrators for the back propagation asdescribed in (Kimmel and Sethian 1996).Note that our method is very e�cient in �nd-ing boundaries in a static image. In a sequence of images, it may be faster to use it once for the �rstimage. For the subsequent images, the boundaryfound in the previous image is usually a good ini-tialization for classical or geodesic active contours(Kass et al. 1988), (Caselles et al. 1995).



22 Cohen and Kimmel7.2. Closed contour: Medical ImageIn this third example, we want to extract the leftventricle in an MR image of the heart. The po-tential is a function of the distance to the closestedge in a Canny (Canny 1986) edge detection im-age (see Figure 12). Since it is a closed contour we use the saddle points classi�cation in closingthe boundaries of a single object in the heart im-age (see Figures 13 and 14). Given a single point,saddle point classi�cation is used to �nd the sec-ond end point. The closed contour is formed ofthe two minimal paths joining the start and endpoints.
Fig. 12. MRI heart image: Original image on the left, edge image in the middle, distance map on the right.8. Concluding RemarksIn this paper we presented a method for integrat-ing objects boundaries by searching for the path ofminimal action connecting two points. The searchfor the global minimummakes sense only after thetwo end points are determined, and the `action' or`potential' is generated from the image data. Theproposed approach makes snake initialization aneasier task that requires only one or two end pointsand overcomes one of the fundamental problems ofthe active contour model, that is being trapped byan insigni�cant local minimum. Applying the pro-posed procedure to real images gave very promis-ing results that were compared to the results ob-tained by other approaches that search for localsolutions.An upper bound over the curvature magnitudeof the �nal contour was obtained by the ratio ofgradient magnitude and the value of the poten-tial. It was shown that controlling the smoothnessof the �nal contour is possible by adding a regu-larization term to the potential function, therebydecreasing this bound.The result of the proposed procedure may beconsidered either as the solution or as initial con-dition for classical snake models, or even morenaturally for geodesic active contours for furtherre�nement. In the later case, re�nement to theproper solution should be almost immediate.
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