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Abstract. We address the theoretical problems of optical flow estima-
tion and image registration in a multi-scale framework in any dimen-
sion. Much work has been done based on the minimization of a distance
between a first image and a second image after applying deformation
or motion field. We discuss the classical multiscale approach and point
out the problem of validity of the motion constraint equation (MCE)
at lower resolutions. We introduce a new local rigidity hypothesis allow-
ing to write proof of such a validity. This allows us to derive sufficient
conditions for convergence of a new multi-scale and iterative motion es-
timation/registration scheme towards a global minimum of the usual
nonlinear energy instead of a local minimum as did all previous meth-
ods. Although some of the sufficient conditions cannot always be fulfilled
because of the absence of the necessary a priori knowledge on the motion,
we use an implicit approach. We illustrate our method by showing re-
sults on synthetic and real examples (Motion, Registration, Morphing),
including large deformation experiments.

Keywords:motion estimation, registration, optical flow, multi-scale, mo-
tion constraint equation, global minimization, stereo matching

1 Introduction

Registration and motion estimation are one of the most challenging problems in
computer vision, having uncountable applications in various domains [17,18,6,4,
13, 30]. These problems occur in many applications like medical image analysis,
recognition, visual servoing, stereoscopic vision, satellite imagery or indexation.
Hence they have constantly been addressed in the literature throughout the
development of image processing techniques. For example (Figure 1) consider
the problem of finding the motion in a two-dimensional images sequence. We
then look for a displacement (h;(z1,%2), ha(z1,2)) that minimizes an energy
functional:

/ / L (2,) — Loz + b (2,), 4 + ha(z,y)) Pdedy.



Next consider the problem of finding (fi(x1,%2), f2(x1,22)) a rigid or non rigid
deformation between two images (Figure 2), minimizing an energy functional:

/ / (2, y) = L(fi(@,9), falz,y) Pdedy.

Although most papers deal only with motion estimation or matching depend-
ing on the application in view, both problems can be formulated the same way
and be solved with the same algorithm. Thus the work we present can be applied
both to registration for a pair of images to match (stereo, medical or morphing)
or motion field / optical flow for a sequence of images. In this paper we will
focus our attention on these problems assuming grey level conservation between
both images to be matched. Let us denote by I (x) and I»(z) respectively the
study and target images to be matched, where z € D = [-M, M]¢ C R?, and
d > 1. In the following I; and I» are supposed to belong to the space Ci (D) of
continuously differentiable functions vanishing on the domain boundary 0D. We
will then assume there exists a homeomorphism f* of D which represents the
deformation such that:

Li(z) =Lo f*(x), Vz € D.

In the context of optical flow estimation, let us denote by A* its associated motion
field defined by h* = f* — Id on D. We thus have:

Li(z) = L(z + h*(z)). (1)
h* is obviously a global minimum of the nonlinear functional

Bwi(h) = % /D I1(2) — (w + h(z))2da. @)

We can deduce from (1) the well known Motion Constraint Equation (also called
Optical Flow Constraint):

I(z) — I (z) ~< VIy(z),h*(z) >, Vz € D. (3)

Fig. 1. Finding the motion in a two-dimensional images sequence



Eny is classically replaced in the literature by its quadratic version substituting
the integrand with the squared difference between both left and right terms of
the MCE, yielding the classical energy for the optical flow problem:

By (h) = %/D 1(2) — I(2)— < VIx(z), h(z) > [2dz.

Here V denotes the gradient operator. Since the work of Horn and Schunk [17],
MCE (3) has been widely used as a first order differential model in motion
estimation and registration algorithms. In order to overcome the too low spatio-
temporal sampling problem which causes numerical algorithms to converge to
the closest local minimum of the energy E, instead of a global one, Terzopoulos
et al. [24,30] and Adelson and Bergen [8,29] proposed to consider it at different
scales. This led to the popular coarse-to-fine minimizing technique [18,11,13,
25,14]. Tt is based on the remark that MCE (3) is a first order expansion which
is generally no longer valid with h* searched for. The idea is then to consider
images at a coarse resolution and to refine iteratively the estimation process.
Using a regularizing kernel G, at scale o, Terzopoulos et al. [24,30] and
Adelson and Bergen [8] were led to consider the following modified MCE:

Gy * (It — ) (2) =< Gy * VI(2), h* (2) > (4)

Remark.
One could also consider regularizing both left and right terms of the original
MCE, yielding the following alternative:

Gy (I — I)(2) = Gy x (< VI, h™ >)(x)

At finest scales it can be shown that these two propositions are equivalent.

To our knowledge and despite the huge literature on these approaches, no theo-
retical error analysis can be found when such approximations are done. Though
it has been reported from numerical experiments that the modified MCE was
not performing well at very coarse scales, thus betraying its progressive lack of
sharpness, many authors pointed out convergence properties of such algorithms
towards a dominant motion in the case of motion estimation [7,11,10,21,9, 16],
or an acceptable deformation in the case of registration [13,25,26], even if the
initial motion were large. It is widely assumed that deformation fields have some
continuity or regularity properties, leading to the addition of some particular
regularizing terms to the quadratic functional [17,5,30,3,2]. Let us emphasize
on the modified MCE (4). We note h the value of h that reaches minimum for
energy

/lGa * (I — )= < Gy x VI3, h > [dz. (5)

This multiscale approach assumes that Eqn. (4) is “valid” at lower resolutions,
which ensures that & will be close to h*.

Although it may come from the fact that flattened images are always “more
similar”, to our knowledge and despite the huge literature, no theoretical anal-
ysis can confirm this. Replacing G, by a particular low pass filter IT, (here



Fig. 2. Finding a non rigid deformation between two images

o > 0 is proportional to the number of considered harmonics in the Fourier de-
composition), we will address the problem of finding a linear operator P!* such

that P11 (h*) is close to IT, (Il — IQ). The sharpness of this approximation will

decrease with respect to both A* norm and resolution parameter ¢. This will
lead us to introduce a new local rigidity hypothesis of deformations f = Id + h
with respect to image I;. Hence such deformations allow to find the operator
Pl satisfying our validity constraint on the modified MCE.

Considering general linear parametric motion models for h*, we give suffi-
cient conditions for asymptotic convergence of the sequence of combined motion
estimations towards h* together with the numerical convergence of the sequence
of deformed templates towards the target I. Roughly speaking, the shape of the
theorem will be the following:

Theorem: If

1. at each step the residual deformation is “locally rigid”, and the associated
motion can be linearly decomposed onto an “acceptable” set of functions the
cardinal of which is not too large with respect to the scale,

2. the initial motion norm is not too large, and the systems conditionings do
not decrease “too rapidly” when iterating,

3. the estimated deformations Id + h; are invertible and “locally rigid”,

Then the iterative scheme “converges” towards a global minimum of the energy
ENL-

The outline of the paper is as follows. In Section 2 we introduce a new local rigid-
ity hypothesis and a low pass filter in order to derive a new MCE of the type of
equation (6). In Section 3 we design an iterative motion estimation/registration
scheme based on the MCE introduced in Section 2 and prove a convergence the-
orem. In order to avoid the a priori motion representation problem, we adopt an
implicit approach in Section 4 and constrain each estimated deformation Id+ h;
to be at least invertible. We show numerical results for large deformations prob-
lems in dimension 2. Section 5 gives a general conclusion to the paper.



2 Valid Modified MCE upon a new Local Rigidity
Hypothesis

Assuming a local rigidity hypothesis and adopting the Dirichlet low-pass opera-
tor I1,, we will find a different right hand side featuring a “natural” and unique
linear operator P!' in the sense that:

IT,(I, - I)(z) = Py (h*)(2), (6)

with remainder of the order of ||h*||? for some particular norm and vanishing as
the scale is coarser (o close to 0).

2.1 Local rigidity property

In this paragraph we introduce our local rigidity property of deformations.
Notations in this context are to be understood as follows:

— D =[-M,M]%in R

— I p, b p, I», are functions from R to R.
h(z), h*(x) are functions from R? to R%.
— < .,.> denotes the scalar product in IR%.
— [.,.] denotes the scalar product in L2

For technical reasons we assume that I; and I belong to C}(D), and I (z) =
Lz + h*(x)), z € D, h*(z) € R®.

Definition 1. f € Hom(D) is ¢-rigid for I € CY(D) iff:
Jac(f)L.VI = det(Jac(f))VIy, (7

where Jac(f) denotes the Jacobian matriz of f and det(A) the determinant of
matriz A, and Hom(D) the space of continuously differentiable and invertible
functions from D to D (homeomorphisms).

All ¢-rigid deformations have the following properties (see [19] for the proofs).
Assume f* is &-rigid for I € C}(D) and I = I, o f*. Then,

1. equation (7) is always true if dimension d is 1;
2. foralld>1,
(a) ||VI1||z1 = ||[VI:||z1, where L' denotes the space of integrable functions
over D;
(b) VI, /] VL0 f*.
(c) relation ~ defined by

[[1 ~ 1] <= [3f &rigid for I s.t. Iy = I o f]

is an equivalence relation on C§(D);
3. suppose d = 2: then,
(a) if Jac(f*) is symmetric, then (7) means that if |VI;| # 0,



Fig. 3. An example of motion h = f — Id of a &-rigid deformation f for image I;. We
show a level set of image I, and the fields VI; and h along its boundary. h varies only
along the direction of VI;.

— direction n = % is eigenvector (A = det(Jac(f) is an eigenvalue);

— direction & = % is “rigid” (A =1 is an eigenvalue);
This property can be seen as a non-sliding motion property. We illus-
trated this interesting property in Figure 3, where we show a level set of
I, and a motion h = f — Id of a &-rigid deformation f for image I1. h
can vary only along the direction of VI;.
(b) k(I1) = [Tr(Jac(f*))—det(Jac(f*))]-k(Iz)o f*, where k(I)(z) stands for
the curvature of the level line of I passing through x and T'r(A) denotes
the trace of matrix A;
4. ifd=1or 2, and
— h* is known at
e 1 point %d:l)._ ) _ o _
e each isolated critical point of I; and at one interior point of each

connected constant set of I; (d = 2).
— h = h* at this(ese) point(s), and

I :IQO(Id+h) on D,
then for all z € D where I; is not locally constant we have h(x) = h*(x).

Remark.

It is an important issue to know whether such h* is unique. In case d € {1,2},
property 4 leads to uniqueness if h* is known at some isolated points. Though it
is not proved in the general case, we will assume uniqueness hereafter for sim-
plicity.

As a consequence we can show that &-rigid deformations of images can be trans-
fered to test functions. Indeed, we have the following

Lemma 1. Suppose that
1. I and I € CL(D) are such that: I, = I, o f



2. f is &-rigid for I
8. ¢ € C°(D;R), and & € C°(D;R?) s.t. divd = ¢, where C®°(D; R) de-
notes the space of indefinitely differentiable function from D to IR.

Then, [,(Ii — I)¢dx = [, < VI, o f — & > dx.
Proof. See [20] |

2.2 The Dirichlet operator

One choice for the set of test functions in Lemma 1 is the Fourier basis, the
simplest projection onto which is the Dirichlet projection operator. Let D =
[-M,M)% S, = {k € Z4,Vi € [1,d], |ki| < Mo?}; cx(I) denotes the Fourier
coefficient of I defined by:

1 in<k,2>
ce(I) = /Ixe* M dx.
k( ) (QM)% D ( )

Then the Dirichlet operator I, is the linear mapping associating to each function
I € C}(D) the function IT,(I) = G, x I, where the convolution kernel G, is
defined by its Fourier coefficients as follows:

1ifke S,
c(Go) = {0 elsewhere
2.3 New MCE by Linearization for the Dirichlet projection

Now that we have introduced our rigidity property of deformations and the
Dirichlet projection, let us choose the test functions of Lemma 1 in the Fourier
basis. Defining P11 (h*)(x) through its Fourier coefficients:

%Co(< VIl,h* >) ifk=0
ek (P (h*)) = ¢ ep(SHEsb2) i | € S, /{0}
0if k & S,

we obtain the
Theorem 1. If f* = Id+ h* is &-rigid for Iy = Ir o f* € C3(D), then we have:

* ™ * 5 ]
1, (I = &) = P} (W)llz= < 5o*2 (107 [V L2 .

This inequality is nothing but the sharpness of MCE (6):
I, (I, — I)(x) ~ Pfl (h*)(@), (8)

at scale o. It clearly expresses the fact that measuring the motion (e.g perceiving
the optical flow) h* is not relevant outside of the support of |V |.
Proof. See [20] |



3 Theoretical iterative scheme and convergence theorem

In section 2 we found a new MCE and showed that we can control the sharpness
of it. In this section we will make a rather general assumption on the motion in
the sense that it should belong to some linear parametric motion model without
being more specific on the model basis functions. Though it is somewhat restric-
tive to have motion fields in a finite dimensional functional space, this structural
hypothesis will be a key to bounding the residual motion norm after registration
in order to iterate the process. This makes it possible to consider a constraint
on motion when there is a priori knowledge (like for rigid motion) or consider
multi-scale decomposition of motion for an iterative scheme.

3.1 Linear parametric motion models and least square estimation

Let us assume the motion h* has to be in a finite dimensional space of de-
formation generated by basis functions ¥(z) = (¢i(x))i=1..n. Thus h* can be
decomposed in the basis: 3 @* = (0} );=1.., unique, such that:

h*(z) =< ¥(z),0" >=Y _ 0;¢i(x), Va € Supp(|VL]).

i=l.n
MCE (6) viewed as a linear model writes:
,(I, — I,) =< P (w),0* >
Now set, for o s.t. the P/ (1);) be mutually linearly independent in L?:
M, = Ph@) o P(W), Y, = II,(I, - L),

where ® stands for the tensorial product in L?. Then applying basic results from
the classical theory of linear models yields: h =< ¥, >=< ¥, M, 1B, >, where
column B,’s components are defined by (B,); =< Pl (¢;),Y, >.

3.2 Estimation error and residual motion

Given the least square estimation of the motion of last paragraph, we have

Lemma 2. In this framework the motion estimation error is bounded by in-
equality

1= B)IVE Bllze < 5o (T4, 1)) I VA o

Proof. See [20] |
If Id + h is invertible, we can define:

Li=Io (Id+ ﬁ) - 9)
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Letting r1 denote the residual motion such that I 1 = Iy o (Id + 7), if Id + h
is &-rigid for I; then a variable change yields equality

(A — )V |E (g2 = 1]V | B g2,

thus giving by Lemma 2 the following bound on the residual motion norm:
1
IV s < So%2 (Tr(M; 1)) I (9 . (10)

In view of equality (9) and inequality (10), iterating the motion estimation/registration
process looks completely natural and allows for pointing out sufficient conditions

for convergence of such a process. Indeed, provided the same assumptions are
made at each step, relations (9) and (10) can be seen as recurrence ones, yielding

both r, and I , sequences.

3.3 Theoretical iterative scheme

Having control on the residual motion after one registration step, we deduce the
following theoretical iterative motion estimation / registration scheme:

1. Initialization: Enter accuracy € > 0 and the maximal number of iterations
N. Set p= 0, and Il,O = Il.
2. Tterate while (|1, — L2|| > e & p < N)
(a) Enter the set of basis functions ¥, = (¢pi)i=1..n, that linearly and
uniquely decompose r, on the support of |V Iy p|.
(b) Enter scale o, and compute: h, =< ¥,, M, Bo, > .

(C) Set Il,p+1 = Il,p o (Id + ilp)il.

3.4 Convergence theorem

Now that we have designed an iterative motion estimation / registration scheme,
let us infer sufficient conditions for the residual motion to vanish. This leads us
to state our following main result:

Theorem 2. If:

1. Forallp > 0,1, ~ I (as defined in Section 2.1), and the residual motionr,
can be linearly and uniquely decomposed on a set of basis functions {¢i,1 =

l.n,};
2. For all p > 0, there exists a scale o, > 0 such that the set of functions
{PJ:,"’ (¥p,i),i = 1..np} be free in L? and, for p =0, we assume that :

* = T = -1
W VL3l < (5062 Tr(Moc)?)

-1
Set Co = (3047 Tr (Mo, ) ¥ I1*[VLi[Fl12)
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3. The sequence of conditioning ratios satisfy criteria:
1
a'd+2Tr(MP,‘7 )2
for I p;

vp > 0, 2l o
4. For allp > 6, the estimated deformations Id+ ilp € Hom(D) and are {-rigid
Then, lim,_,o0 ||rp| V11 p| /2|22 = 0.
Proof. See [20] |

3.5 Numerical algorithm requirements

Firstly, due to the fact that h* is unknown we have to make an arbitrary choice
for the scale at each step. Secondly we at least have to ensure that Id + h be
invertible at each step. Finally we are faced with the motion basis functions
choice.

Multi-scale strategy The scale choice expresses both a priori knowledge on
the motion range and its structure complexity. Here we assume that (0,), is an
increasing sequence, starting from o¢ > 0 such that:

#S,, > #{expected independent motions}. (11)

Then let o €]0,1[. In order to justify the minimization problem at new scale
Op+1 > 0p, we will choose it such that:

(s, — Iy, T1pr1 — I2)||z2 > | I1pr1 — L2||12, (12)

Invertibility of Id + in Let 8 > 0. We will apply to I; , the inverse of the

RN
maximal invertible linear part of the computed deformation e.g. (I d+ t*.hp) ,

where .
t* = sup {t / det(Jac(Id + t.hy)) > B} (13)
t€f0,1]

Remark.
Recursive version of the algorithm

Set f*(I1,I,) the solution to the correspondence problem between I; and
L. Then, f*(I1 , I2) = f*(I1 py1,I2) o (Id + hy). We thus deduce the following
alternate recursive motion estimation / registration function f*(Iy,I») defined
by:

If |I; — L) > e,

Calculate h(Iy, I5)
Deform: Iy ; = Iy o (Id + h(l1, I5)) ™
Call f = f*(l,1,12)
Return f o (Id + h(Iy, 1))
Else return Id

Then
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Choosing the set of basis functions A major difficulty arising in the theo-
retical scheme comes from the lack of a priori knowledge on the finite set of basis
functions to be entered at each step. To alleviate this problem we proposed two
different approaches. In [20] we consider splitting both images into a collection
of pairs of level sets to be matched. In Section 4 we will use an implicit approach
via the optimal step gradient algorithm when minimizing the quadratic energy
associated to MCE (6).

4 TImplicit approach of basis functions

We now use the optimal step gradient algorithm for the minimization of the
quadratic functional associated to MCE (6). There are at least two good reasons
for doing this:

— the choice of base functions is implicit: it depends on the images I; and Iy,
and the scale space.
— we can control and stop the quadratic minimization if the associated operator
is no longer positive definite.
The general algorithm does not guaranty that the resulting matrix M, , be
invertible. Hence we suggest to systematically use a stopping criteria to control
the quadratic minimization, based on the descent speed or simply a maximum
number of iterations Ng.
In that case our final algorithm writes:

1. Initialization: Enter accuracy € > 0 and the maximal number of iterations
N.Set p=0, I, = I1, and choose first scale oy according to (11).
2. Tterate while (|1, — || >e& p< N & o0, <1)
(a) Choose o, satisfying (12).
(b) Apply Ng iterations of the optimal step gradient algorithm for the min-
imization of

Ep(h) = |5, (I p = I) = P> (B)][7:-

(¢) Compute I1 py1 = I po (Id + 15’".?11))’1 with ¢* defined by (13) and
increment p.

In the following experiments we have fixed parameters to a = 2.5%, Ng = 5,
B =0.1.

Running the algorithm

We illustrate the algorithm on pairs of images with large deformation for regis-
tration applications and movies for motion estimation applications.
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Fig. 4. Registration movie of a rotated rectangle: from left to right and from top to
bottom we show the different steps of the algorithm performing the registration.

Fig. 5. Registration movie of a target to a ’C’ letter. Again, each image corresponds
to a step in the iterative scheme.

— Registration problems involving large deformation: In figures 4 and
5 we show the different steps of the algorithm performing the registration
between the first and last images. In Figures 6 to 8, we show the study and
target images, and the deformed study image after applying the estimated
motion. This was applied for two examples of faces and a turbulence image
featuring a vortex at two different states.

— Optical Flow estimation examples: in Figure 9 we show the sequence
of the registered images of the original Cronkite sequence onto first image
using the sequence of computed backward motions. The result is expected to
be motionless. On top of Figure 10, we show the complete movie obtained by
deforming iteratively only the first image of Cronkite movie. For that we use
the sequence of computed motions between each pair of consecutive images
of the original movie. In Figure 10 on the bottom, we see the error images.
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Fig. 6. Scene registration example: Study image (left), deformed Study image onto
Target image (center), and Target image (right).

Fig. 7. Registration of a face with two different expressions: Study image (left), de-
formed Study image onto Target image (center), and Target image (right).

5 Conclusion

We have addressed the theoretical problems of motion estimation and registra-
tion of images. We have introduced a new local ridigity hypothesis that we used
to infer a unique Motion Constraint Equation with small remainder at coarse
scales. We then showed that upon hypotheses on the motion norm and struc-
ture/scale tradeoff, an iterative motion estimation/registration scheme could
converge towards the expected solution of the problem e.g. the global minimum
of the nonlinear least square problem energy. Since each step of the theoretical
scheme needs a set of motion basis functions which are not known, we have de-
signed an implicit algorithm and illustrated the method with synthetic and real
images, including large deformation examples.
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Fig.10. On top, movie obtained by deforming only the first image of Cronkite
movie using the sequence of computed motions. On the bottom, enhanced (applying
I' = 255.(1 — 1/1/255)) absolute difference between original and artificially deformed
Cronkite sequences.



