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Abstract. We address the theoretical problems of optical flow estima-
tion and image registration in a multi-scale framework in any dimension.
We start by showing, in the translation case, that convergence to the
global minimum is made easier by applying a low pass filter to the images
hence making the energy “convex enough”. In order to keep convergence
to the global minimum in the general case, we introduce a local rigidity
hypothesis on the unknown deformation. We then deduce a new natural
motion constraint equation (MCE) at each scale using the Dirichlet low
pass operator. This allows us to derive sufficient conditions for conver-
gence of a new multi-scale and iterative motion estimation/registration
scheme towards a global minimum of the usual nonlinear energy instead
of a local minimum as did all previous methods. We then use an im-
plicit numerical approach. We illustrate our method on synthetic and
real examples (Motion, Registration, Morphing).

1 Introduction

Registration and motion estimation are one of the most challenging problems in
computer vision, having uncountable applications in various domains [13, 14, 6,4,
10,23]. These problems occur in many applications like medical image analysis,
recognition, visual servoing, stereoscopic vision, satellite imagery or indexation.
Hence they have constantly been addressed in the literature throughout the de-
velopment of image processing techniques. As a first example (Figure 1) consider
the problem of finding the motion in a two-dimensional images sequence. We
then look for a displacement (hi(z1,22), ha(z1,22)) that minimizes an energy
functional:

/ / L (2,) — L@ + b (2,),y + ha(z, )P dedy.

Next consider the problem of finding a rigid or non rigid deformation (fi (z1,x2), fo(x1,x2))
between two images (Figure 1), minimizing an energy functional:

/ / L (2. 9) — B(fy (2. ), folz,y)) Pdudy.



Fig.1. Two images on the left: finding the motion in a two-dimensional images se-
quence. Two images on the right: finding a non rigid deformation.

At last consider the stereoscopic matching problem: given a stereo pair, the
epipolar constraint allows to split the two-dimensional matching problem into a
series of line by line one-dimensional matching problems. One has just to find,
for every line, the disparity h(z) minimizing:

/ 1 (2) = Is(a + h(x))|da.

Although most papers deal only with motion estimation or matching de-
pending on the application in view, both problems can be formulated the same
way and be solved with the same algorithm. Thus the work we present can be
applied both to registration for a pair of images to match (stereo, medical or
morphing) or motion field / optical flow for a sequence of images. In this paper
we will focus our attention on these problems assuming grey level conservation
between both signals or images to be matched. Let us denote by I;(z) and
I,(x) respectively the study and target signals or images to be matched, where
re€D=[-MM4C RY, and d > 1. In the following I; and I, are supposed to
belong to the space Cg (D) of continuously differentiable functions vanishing on
the domain boundary dD. We will then assume there exists a homeomorphism
f* of D which represents the deformation such that:

L(z)=10 f*(z), Yz € D.

In the context of optical flow estimation, let us denote by h* its associated motion
field defined by h* = f* — Id on D. We thus have:

L(x) = I + b (x)). (1)
h* is obviously a global minimum of the nonlinear functional

Eni(h) = % /D I () — L(x + h(z))|da. 2)

We can deduce from (1) the well known Motion Constraint Equation (also called
Optical Flow Constraint):

I (z) — I(z) < VIy(z),h"(z) >, Yz € D. (3)



Eny is classically replaced in the literature by its quadratic version substituting
the integrand with the squared difference between both left and right terms of
the MCE, yielding the classical energy for the optical flow problem:

Ep(h) = % /D |I,(z) — Iy(z)— < VIs(z),h(z) > |*dz.

Here V denotes the gradient operator. Since the work of Horn and Schunk [13],
MCE (3) has been widely used as a first order differential model in motion
estimation and registration algorithms. In order to overcome the too low spatio-
temporal sampling problem which causes numerical algorithms to converge to
the closest local minimum of the energy Fy, instead of a global one, Terzopoulos
et al. [18,23] and Adelson and Bergen [8, 22] proposed to consider it at different
scales. This led to the popular coarse-to-fine minimizing technique [14,9, 10, 19,
11]. Tt is based on the remark that MCE (3) is a first order expansion which
is generally no longer valid with h* searched for. The idea is then to consider
signals or images at a coarse resolution and to refine iteratively the estimation
process. Since then many authors pointed out convergence properties of such
algorithms towards a dominant motion in the case of motion estimation [7,9,
12], or an acceptable deformation in the case of registration [10,19,20], even if
the initial motion were large. Let us mention that many authors assume that
deformation fields have some continuity or regularity properties, leading to the
addition of some particular regularizing terms to the quadratic functional [13,
5,23,3,2]. This very short state-of-the-art is far from being exhaustive but it
allows to raise four common features shared by all most effective differential
techniques:

a motion constraint equation,

a regularity hypothesis on the deformation,
a multi-scale approach,

an iterative scheme.

W=

However, most of the multi-scale approaches assume that the MCE is more
“valid” at lower resolutions. But to our knowledge and despite the huge lit-
erature, no theoretical analysis can confirm this. It may come from the fact
that blurred signals or images are always “more similar”. Choosing a particular
low pass operator II, (here o > 0 is proportional to the number of considered
harmonics in the Fourier decomposition) and some deformation f* = Id + h*
satisfying a local rigidity hypothesis with respect to a signal or image I, we
shall find a linear operator P! depending on I; such that:

1, (11 - 12) ~ Pl (h"), (4)

the sharpness of this approximation being decreasing with respect to both h
norm and resolution parameter o. We are faced with the following motion
size/structure hypothesis trade-off: for some fixed estimation reliability, the larger
the motion, the poorer its structure. This transforms the problem to solving the



energy minimization in a finite dimensional subspace of approximation obtained
through Fourier Decomposition. In this context we are led to consider the new
energy to be minimized:

Er(h) = %/D |1, (I, — I) — P (h)|?dz.

Considering general linear parametric motion models for h*, we give suffi-
cient conditions for asymptotic convergence of the sequence of combined motion
estimations towards h* together with the numerical convergence of the sequence
of deformed templates towards the target I>. Roughly speaking, the shape of the
theorem will be the following:

Theorem: If

1. at each step the residual deformation is “locally rigid”, and the associated
motion can be linearly decomposed onto an “acceptable” set of functions the

cardinal of which is not too large with respect to the scale,
2. the initial motion norm is not too large, and the systems conditionings do

not decrease “too rapidly” when iterating,
3. the estimated deformations Id + h; are invertible and “locally rigid”,

Then the scheme “converges” towards a global minimum of the energy Enp.

The outline of the paper is as follows. In Section 2 we recall the energy con-
vexifying properties of multi-scale approaches together with fast convergence in

case of purely translational motion. In Section 3 we turn to the general motion
case and introduce a new local rigidity hypothesis and a low pass filter in order
to derive a new MCE of the type of equation (4). In Section 4 we design an
iterative motion estimation/registration scheme based on the MCE introduced
in Section 3 and prove a convergence theorem. In order to avoid the a priori mo-
tion representation problem, we adopt an implicit approach and constrain each
estimated deformation to be at least invertible. We show numerical results for
some signals and the stereo problem in dimension 1, and for large deformations
problems in dimension 2. Section 6 gives a general conclusion to the paper.

2 Purely translational motion estimation

In this section we assume the motion to be found is only translational. This
simple case will allow us to show the energy convexifying properties of multi-
scale approaches together with fast convergence of iterative algorithms.

2.1 Synthetic 1D energy convexifying example

Consider a test signal (Figure 2) and its purely translated copies. The energy
given by the mean quadratic error between shifted test signals and considered
as a function of the translational parameter can be convexified using signals at
a poorer resolution. Indeed we show the energy as a function of the translation
parameter calculated with original test signals (Figure 2) and with same signal



at a poorer resolution (Figure 2), namely signals reconstructed with only 5 and 3
first harmonics of the Fourier base. This readily yields more and more convexified
energies as the resolution is lower. Based on this convexifying property, a generic
algorithm for estimating the translational parameter is as follows:

1. Find the finest resolution j for which the energy is convex enough.

2. Minimize the MCE-based energy with signals at resolution j.
3. Refine the result by increasing the resolution and minimizing the new energy.

2.2 Convergence conditions

In [16] we prove that this iterative process can converge to the solution provided
the initial motion norm is not too important with respect to the chosen signal or
image resolution. This one-dimensional result was easily extended to dimension
d > 1 (see [17]).

3 General motion multiresolution estimation

In Section 2 we have considered only purely translational motion estimation and
registration. Our purpose here is to take over the general case for the motion.
Our approach is based on the fact that the motion is hidden in the difference
between both functions to be matched. This will lead us to analyze this difference
at some particular resolution. Making some assumptions on the structure and
local behaviour of the motion and the type of scale-space, we will find a new
MCE and show that we can control the sharpness of it, which has not been taken
care of previously.

3.1 Controlling the residuals when mixing differential and
scale-space techniques

Using a regularizing kernel G, at scale o, Terzopoulos et al. [18,23] and Adelson
and Bergen [8] were led to consider the following modified MCE:

G, * (I — I)(z) < Gy * VIy(z), h*(z) >

Fig. 2. Test Signal. First line: on the left, the second signal is the same shifted by
200; on the right: energy as a function of shift parameter. There are numerous local
minima around the global minimum at z = 200 at scale 7.. Second line: same energy
with signals reconstructed with only 5 harmonics (left) and 3 harmonics (right) using
the multiresolution pyramid spanned by the first elements of the Fourier base.



Fig. 3. An example of motion h = f — Id of a &-rigid deformation f for image I,. We
show a level set of image I, and the fields VI; and h along its boundary. h varies only
along the direction of VI;.

To our knowledge and despite the huge literature on these approaches, no theo-
retical error analysis can be found when such approximations are done. However
it has been reported from numerical experiments that the modified MCE was
not performing well at very coarse scales, thus betraying its progressive lack
of sharpness. Assuming a local rigidity hypothesis and adopting the Dirichlet
operator II,, we will find a different right hand side featuring a “natural” and
unique linear operator P/1 in the sense that:

I, (I, = I)(z) = P;* (h*) (=), ()

with remainder of the order of ||A*||?

the scale is coarser.

for some particular norm and vanishing as

3.2 Local rigidity property
In this paragraph we introduce our local rigidity property of deformations.
Definition 1. f € Hom(D) is &-rigid for I € CH(D) iff:

Jac(f)'.VI, = det(Jac(f))VI, (6)

where Jac(f) denotes the Jacobian matriz of f and det(A) the determinant of
matriz A, and Hom(D) the space of continuously differentiable and invertible
functions from D to D (homeomorphisms).

All &-rigid deformations have the following properties (see [15] for the proofs).
Assume f* is &-rigid for I € C3(D) and I; = I o f*. Then,

1. equation (6) is always true if dimension d is 1;
2. suppose d = 2: then,
3. if Jac(f*) is symmetric, then (6) means that if |VI;| # 0,

— direction n = g—?‘ is eigenvector (A = det(Jac(f) is an eigenvalue);

— direction £ = |V—1111\ is “rigid” (A = 1 is an eigenvalue);
then for all x € D where I; is not locally constant we have h(z) = h*(z).



3.3 The Dirichlet operator

Let D = [-M,M]% S, = {k € Z% Vi € [1,d], |ki] < Mo®}; cx(I) denotes
the Fourier coefficient of I defined by: ¢, (I) = ( 1\2)4 I I(:z:)e’“ri\ljr’m> dz. Then
2 2

the Dirichlet operator II, is the linear mapping associating to each function
I € C}(D) the function II,(I) = G, = I, where the convolution kernel G, is
defined by its Fourier coefficients as follows:

lifkesS,
0 elsewhere

cr(Gy) = {

3.4 New MCE by Linearization for the Dirichlet projection
Now that we have introduced our rigidity property of deformations and the
Dirichlet projection, we obtain the

Theorem 1. If f* = Id+ h* is &-rigid for I} = Iz o f* € C§(D), then we have:
T gu 1
Lo (I = I2) = Py (h*)|| 2 < §ffd“||h*|vh|é 1Z2-

This inequality is nothing but the sharpness of MCE (5): II,(I; — L)(x) =~
PlLi(h*)(z), at scale o. It clearly expresses the fact that measuring the motion
(e.g perceiving the optical flow) h* is not relevant outside of the support of |VI;|.

Proof. See [17] |

4 Theoretical iterative scheme and convergence theorem

In section 3 we found a new MCE and showed that we can control the sharpness
of it. In this section we will make a rather general assumption on the motion in
the sense that it should belong to some linear parametric motion model without
being more specific on the model basis functions. Though it is somewhat restric-
tive to have motion fields in a finite dimensional functional space, this structural
hypothesis will be a key to bounding the residual motion norm after registration
in order to iterate the process. This makes it possible to consider a constraint
on motion when there is a priori knowledge (like for rigid motion) or consider
multi-scale decomposition of motion for an iterative scheme.

4.1 Linear parametric motion models and least square estimation

Let us assume the motion A* has to be in a finite dimensional space of de-
formation generated by basis functions ¥(z) = (¢;(x))i=1..n. Thus h* can be
decomposed in the basis: 3 @* = (0);=1., unique, such that:

h*(z) =< ¥(x), 0" >:Z 07 (x), Vo € Supp(|VI]).

i=1l..n



MCE (5) viewed as a linear model writes: I, (I; — Iz) =< PI1(¥),0* > . Now
set, for o s.t. the P/1(¢);) be mutually linearly independent in L?:

MO’ = ZD(JI'1 (W) ®Pz711(!p)7 Ya’ = Ha(ll - [2),

where ® stands for the tensorial product inAL2. Then applying basic results from
the classical theory of linear models yields: h =< ¥,0 >=< ¥, M- 1B, >, where
column B,’s components are defined by (B,); =< Pl (¢;),Y, >.

4.2 Estimation error and residual motion
Given the least square estimation of the motion of last paragraph, we have

Lemma 1. In this framework the motion estimation error is bounded by in-
1

equality ||(h — W) V1 }llp2 < 3042 (Tr(M, 1)) 10V [F ]

Proof. See [17] |

If Id + h is invertible, we can define:

Li=1Io (1d+ ﬁ)fl. (7)

Letting r1 denote the residual motion such that I 1 = Iy o (Id + 71), if Id + h
is &-rigid for I; then a variable change yields equality ||(h — h*)|V 11|22 =
||r1|V1171|%||L2, thus giving by Lemma 1 the following bound on the residual
motion norm:

1
1 m — 20 1
IV I3 e < S0 (Tr(ae7 1)) TIIn* VA E | (8)

In view of equality (7) and inequality (8), iterating the motion estimation/registration
process looks completely natural and allows for pointing out sufficient conditions

for convergence of such a process. Indeed, provided the same assumptions are
made at each step, relations (7) and (8) can be seen as recurrence ones, yielding
both r, and I, , sequences.

4.3 Theoretical iterative scheme

Having control on the residual motion after one registration step, we deduce the
following theoretical iterative motion estimation / registration scheme:

1. Initialization: Enter accuracy € > 0 and the maximal number of iterations
N. Set pP= 0, and 1170 = 11.
2. Iterate while (||[1, — || > e & p < N)
(a) Enter the set of basis functions ¥, = (¥p,i)i=1..n, that linearly and
uniquely decompose r, on the support of |V ,|.
(b) Enter scale o, and compute: h, =< ¥,, M, By, > .

(c) Set I, pr1 = I o (Id+hy)~ L.



4.4 Convergence theorem

Now that we have designed an iterative motion estimation / registration scheme,
let us infer sufficient conditions for the residual motion to vanish. This leads us
to state our following main result:

Theorem 2. [f:

1.Vp>0, I, ~ Ir (as defined in Section 3.2), and residual motion r, can be
linearly and uniquely decomposed on a set of basis functions {1y, % =1.ny};

2. ¥p > 0, there exists a scale o, > 0 such that the set of functions { P, " (1pi),1 =

1..ny} be free in L? and, for p=0, we assume that :

1 T 1\t
VLI e < (500 Tr(Mos)?)

~1
Set Co = (3042 Tr(Mo.00) IR [V [ l12)
e . . . . 0d+2TT(Mp+1 - )

3. The sequence of conditioning ratios satisfy criteria: Vp > 0, £ et

[N

. it (My,0,) %
4. ¥p >0, estimated deformations Id + h, € Hom(D) and are {-rigid for ﬁ,p;

Then, limy_o0 ||Irp| V11 p*?|| 12 = 0.

Proof. See [17] |

4.5 Numerical algorithm requirements

Firstly, due to the fact that ™ is unknown we have to make an arbitrary choice
for the scale at each step. Secondly we at least have to ensure that Id + h be
invertible at each step. Finally we are faced with the motion basis functions
choice.

Multi-scale strategy. The scale choice expresses both a priori knowledge on
the motion range and its structure complexity. Here we assume that (o), is an
increasing sequence, starting from oy > 0 such that:

#S,, > #{expected independent motions}. 9)

Then let a €]0,1[. In order to justify the minimization problem at new scale
Op+1 > 0p, we will choose it such that:

(o, = o) )(I1 pr1 — Iz > ol pr1 — Bol2, (10)
Invertibility of Id + fALp. Let 8 > 0. We will apply to I, the inverse of the

N
maximal invertible linear part of the computed deformation e.g. (I d+t*.hp) ,

where .
t* = sup {t / det(Jac(Id + t.hy)) > B}. (11)
te[o,1]
Choosing the set of basis functions. A major difficulty arising in the the-
oretical scheme comes from the lack of a priori knowledge on the finite set of
basis functions to be entered at each step. In Section 5 we will use an implicit
approach via the optimal step gradient algorithm when minimizing the quadratic
energy associated to MCE (5).

< Cy;
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5 Implicit approach of basis functions and Results

We now use the optimal step gradient algorithm for the minimization of the
quadratic functional associated to MCE (5). There are at least two good reasons
for doing this:

— the choice of base functions is implicit: it depends on the signals or images

I, and I, and the scale space.
— we can control and stop the quadratic minimization if the associated operator

is no longer positive definite.
The general algorithm does not guaranty that the resulting matrix M, ,, be
invertible. Hence we suggest to systematically use a stopping criteria to control
the quadratic minimization, based on the descent speed or simply a maximum
number of iterations Ng. In that case our final algorithm writes:

1. Initialization: Enter accuracy € > 0 and the maximal number of iterations
N.Set p=0, I o = I1, and choose first scale oy according to (9).
2. Iterate while (|1, — k|| >e& p< N & o, <1)
(a) Choose o, satistying (10).
(b) Apply N¢ iterations of the optimal step gradient algorithm for the min-
imization of E,(h) = ||, (I1 , — I2) — Pa2® (h)[|2..
(c) Compute I py1 = I, o (Id + t*.h,)"" with #* defined by (11) and
increment p.

Fig. 4. Registration movie of a target to a ’C’ letter. Again, each image corresponds
to a step in the iterative scheme.

In the following experiments we have set a = 2.5%, Ng = 5, 8 = 0.1. In [17], we
show results on one-dimensional synthetic and real signals, and with all intensity
lines of a stereo pair. Recall that {-rigidity is not a constraint when d = 1 and
thus ho is relevant only when |I] (z)| # 0.

We illustrate the algorithm on pairs of images with large deformation for regis-
tration applications and movies for motion estimation applications.
Registration problems involving large deformation: In figure 4 we show
the different steps of the algorithm performing the registration between the first
and last images. In Figure 5, we show the study and target images, and the
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Fig.5. Scene registration example: Study image (left), deformed Study image onto
Target image (center), and Target image (right).

Fig. 6. On the left, registered sequence of the original sequence onto first image using
the computed backward motions. On the right, movie obtained by deforming only the
first image of Cronkite movie using the sequence of computed motions

deformed study image after applying the estimated motion.

Optical Flow estimation examples: in Figure 6 we show the sequence of the
registered images of the original Cronkite sequence onto first image using the
sequence of computed backward motions. The result is expected to be motion-
less. On top of Figure 6, we show the complete movie obtained by deforming
iteratively only the first image of Cronkite movie. For that we use the sequence
of computed motions between each pair of consecutive images of the original
movie. In Figure 6 on the bottom, we see the error images.

6 Conclusion
We have addressed the theoretical problems of motion estimation and registra-

tion of signals or images in any dimension. We have used the main features
of previous works on the subject to formalize them in a framework allowing a
rigorous mathematical analysis. More specifically we wrote a new ridigity hy-
pothesis that we used to infer a unique Motion Constraint Equation with small
remainder at coarse scales. We then showed that upon hypotheses on the motion
norm and structure/scale tradeoff, an iterative motion estimation/registration
scheme could converge towards the expected solution of the problem e.g. the
global minimum of the nonlinear least square problem energy. Since each step
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of the theoretical scheme needs a set of motion basis functions which are not
known, we have designed an implicit algorithm and illustrated the method in
dimension one and two, including large deformation examples.
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