
Image Registration, Optical Flow and LocalRigidityMartin Lef�ebure1 and Laurent D. Cohen21 Current address: 69 rue Perronet, 92200 Neuilly Sur Seine, France,was with Poseidon Technologies. Email: mlefebure@compaqnet.fr2 CEREMADE, Universit�e Paris-Dauphine, 75775 Paris cedex 16, France,cohen@ceremade.dauphine.frAbstract. We address the theoretical problems of optical 
ow estima-tion and image registration in a multi-scale framework in any dimension.We start by showing, in the translation case, that convergence to theglobal minimum is made easier by applying a low pass �lter to the imageshence making the energy \convex enough". In order to keep convergenceto the global minimum in the general case, we introduce a local rigidityhypothesis on the unknown deformation. We then deduce a new naturalmotion constraint equation (MCE) at each scale using the Dirichlet lowpass operator. This allows us to derive su�cient conditions for conver-gence of a new multi-scale and iterative motion estimation/registrationscheme towards a global minimum of the usual nonlinear energy insteadof a local minimum as did all previous methods. We then use an im-plicit numerical approach. We illustrate our method on synthetic andreal examples (Motion, Registration, Morphing).1 IntroductionRegistration and motion estimation are one of the most challenging problems incomputer vision, having uncountable applications in various domains [13, 14, 6, 4,10, 23]. These problems occur in many applications like medical image analysis,recognition, visual servoing, stereoscopic vision, satellite imagery or indexation.Hence they have constantly been addressed in the literature throughout the de-velopment of image processing techniques. As a �rst example (Figure 1) considerthe problem of �nding the motion in a two-dimensional images sequence. Wethen look for a displacement (h1(x1; x2); h2(x1; x2)) that minimizes an energyfunctional: Z Z jI1(x; y)� I2(x+ h1(x; y); y + h2(x; y))j2dxdy:Next consider the problem of �nding a rigid or non rigid deformation (f1(x1; x2); f2(x1; x2))between two images (Figure 1), minimizing an energy functional:Z Z jI1(x; y)� I2(f1(x; y); f2(x; y))j2dxdy:
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Fig. 1. Two images on the left: �nding the motion in a two-dimensional images se-quence. Two images on the right: �nding a non rigid deformation.At last consider the stereoscopic matching problem: given a stereo pair, theepipolar constraint allows to split the two-dimensional matching problem into aseries of line by line one-dimensional matching problems. One has just to �nd,for every line, the disparity h(x) minimizing:Z jI1(x)� I2(x+ h(x))j2dx:Although most papers deal only with motion estimation or matching de-pending on the application in view, both problems can be formulated the sameway and be solved with the same algorithm. Thus the work we present can beapplied both to registration for a pair of images to match (stereo, medical ormorphing) or motion �eld / optical 
ow for a sequence of images. In this paperwe will focus our attention on these problems assuming grey level conservationbetween both signals or images to be matched. Let us denote by I1(x) andI2(x) respectively the study and target signals or images to be matched, wherex 2 D = [�M;M ]d � IRd, and d � 1. In the following I1 and I2 are supposed tobelong to the space C10 (D) of continuously di�erentiable functions vanishing onthe domain boundary @D. We will then assume there exists a homeomorphismf� of D which represents the deformation such that:I1(x) = I2 � f�(x), 8x 2 D:In the context of optical 
ow estimation, let us denote by h� its associated motion�eld de�ned by h� = f� � Id on D. We thus have:I1(x) = I2(x+ h�(x)): (1)h� is obviously a global minimum of the nonlinear functionalENL(h) = 12 ZD jI1(x) � I2(x + h(x))j2dx: (2)We can deduce from (1) the well known Motion Constraint Equation (also calledOptical Flow Constraint):I1(x) � I2(x) '< rI2(x); h�(x) > , 8x 2 D: (3)



3ENL is classically replaced in the literature by its quadratic version substitutingthe integrand with the squared di�erence between both left and right terms ofthe MCE, yielding the classical energy for the optical 
ow problem:EL(h) = 12 ZD jI1(x)� I2(x)� < rI2(x); h(x) > j2dx:Here r denotes the gradient operator. Since the work of Horn and Schunk [13],MCE (3) has been widely used as a �rst order di�erential model in motionestimation and registration algorithms. In order to overcome the too low spatio-temporal sampling problem which causes numerical algorithms to converge tothe closest local minimum of the energy ENL instead of a global one, Terzopouloset al. [18, 23] and Adelson and Bergen [8, 22] proposed to consider it at di�erentscales. This led to the popular coarse-to-�ne minimizing technique [14, 9, 10, 19,11]. It is based on the remark that MCE (3) is a �rst order expansion whichis generally no longer valid with h� searched for. The idea is then to considersignals or images at a coarse resolution and to re�ne iteratively the estimationprocess. Since then many authors pointed out convergence properties of suchalgorithms towards a dominant motion in the case of motion estimation [7, 9,12], or an acceptable deformation in the case of registration [10, 19, 20], even ifthe initial motion were large. Let us mention that many authors assume thatdeformation �elds have some continuity or regularity properties, leading to theaddition of some particular regularizing terms to the quadratic functional [13,5, 23, 3, 2]. This very short state-of-the-art is far from being exhaustive but itallows to raise four common features shared by all most e�ective di�erentialtechniques:1. a motion constraint equation,2. a regularity hypothesis on the deformation,3. a multi-scale approach,4. an iterative scheme.However, most of the multi-scale approaches assume that the MCE is more\valid" at lower resolutions. But to our knowledge and despite the huge lit-erature, no theoretical analysis can con�rm this. It may come from the factthat blurred signals or images are always \more similar". Choosing a particularlow pass operator �� (here � � 0 is proportional to the number of consideredharmonics in the Fourier decomposition) and some deformation f� = Id + h�satisfying a local rigidity hypothesis with respect to a signal or image I1, weshall �nd a linear operator P I1� depending on I1 such that:���I1 � I2� ' P I1� (h�); (4)the sharpness of this approximation being decreasing with respect to both hnorm and resolution parameter �. We are faced with the following motionsize/structure hypothesis trade-o�: for some �xed estimation reliability, the largerthe motion, the poorer its structure. This transforms the problem to solving the



4energy minimization in a �nite dimensional subspace of approximation obtainedthrough Fourier Decomposition. In this context we are led to consider the newenergy to be minimized:EL(h) = 12 ZD j��(I1 � I2)� P I1� (h)j2dx:Considering general linear parametric motion models for h�, we give su�-cient conditions for asymptotic convergence of the sequence of combined motionestimations towards h� together with the numerical convergence of the sequenceof deformed templates towards the target I2. Roughly speaking, the shape of thetheorem will be the following:Theorem: If1. at each step the residual deformation is \locally rigid", and the associatedmotion can be linearly decomposed onto an \acceptable" set of functions thecardinal of which is not too large with respect to the scale,2. the initial motion norm is not too large, and the systems conditionings donot decrease \too rapidly" when iterating,3. the estimated deformations Id+ ĥi are invertible and \locally rigid",Then the scheme \converges" towards a global minimum of the energy ENL.The outline of the paper is as follows. In Section 2 we recall the energy con-vexifying properties of multi-scale approaches together with fast convergence incase of purely translational motion. In Section 3 we turn to the general motioncase and introduce a new local rigidity hypothesis and a low pass �lter in orderto derive a new MCE of the type of equation (4). In Section 4 we design aniterative motion estimation/registration scheme based on the MCE introducedin Section 3 and prove a convergence theorem. In order to avoid the a priori mo-tion representation problem, we adopt an implicit approach and constrain eachestimated deformation to be at least invertible. We show numerical results forsome signals and the stereo problem in dimension 1, and for large deformationsproblems in dimension 2. Section 6 gives a general conclusion to the paper.2 Purely translational motion estimationIn this section we assume the motion to be found is only translational. Thissimple case will allow us to show the energy convexifying properties of multi-scale approaches together with fast convergence of iterative algorithms.2.1 Synthetic 1D energy convexifying exampleConsider a test signal (Figure 2) and its purely translated copies. The energygiven by the mean quadratic error between shifted test signals and consideredas a function of the translational parameter can be convexi�ed using signals ata poorer resolution. Indeed we show the energy as a function of the translationparameter calculated with original test signals (Figure 2) and with same signal



5at a poorer resolution (Figure 2), namely signals reconstructed with only 5 and 3�rst harmonics of the Fourier base. This readily yields more and more convexi�edenergies as the resolution is lower. Based on this convexifying property, a genericalgorithm for estimating the translational parameter is as follows:1. Find the �nest resolution j for which the energy is convex enough.2. Minimize the MCE-based energy with signals at resolution j.3. Re�ne the result by increasing the resolution and minimizing the new energy.2.2 Convergence conditionsIn [16] we prove that this iterative process can converge to the solution providedthe initial motion norm is not too important with respect to the chosen signal orimage resolution. This one-dimensional result was easily extended to dimensiond > 1 (see [17]).3 General motion multiresolution estimationIn Section 2 we have considered only purely translational motion estimation andregistration. Our purpose here is to take over the general case for the motion.Our approach is based on the fact that the motion is hidden in the di�erencebetween both functions to be matched. This will lead us to analyze this di�erenceat some particular resolution. Making some assumptions on the structure andlocal behaviour of the motion and the type of scale-space, we will �nd a newMCE and show that we can control the sharpness of it, which has not been takencare of previously.3.1 Controlling the residuals when mixing di�erential andscale-space techniquesUsing a regularizing kernel G� at scale �, Terzopoulos et al. [18, 23] and Adelsonand Bergen [8] were led to consider the following modi�ed MCE:G� � (I1 � I2)(x) '< G� � rI2(x); h�(x) >
Fig. 2. Test Signal. First line: on the left, the second signal is the same shifted by200; on the right: energy as a function of shift parameter. There are numerous localminima around the global minimum at x = 200 at scale 7.. Second line: same energywith signals reconstructed with only 5 harmonics (left) and 3 harmonics (right) usingthe multiresolution pyramid spanned by the �rst elements of the Fourier base.
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Fig. 3. An example of motion h = f � Id of a �-rigid deformation f for image I1. Weshow a level set of image I1, and the �elds rI1 and h along its boundary. h varies onlyalong the direction of rI1.To our knowledge and despite the huge literature on these approaches, no theo-retical error analysis can be found when such approximations are done. Howeverit has been reported from numerical experiments that the modi�ed MCE wasnot performing well at very coarse scales, thus betraying its progressive lackof sharpness. Assuming a local rigidity hypothesis and adopting the Dirichletoperator ��, we will �nd a di�erent right hand side featuring a \natural" andunique linear operator P I1� in the sense that:��(I1 � I2)(x) ' P I1� (h�)(x); (5)with remainder of the order of kh�k2 for some particular norm and vanishing asthe scale is coarser.3.2 Local rigidity propertyIn this paragraph we introduce our local rigidity property of deformations.De�nition 1. f 2 Hom(D) is �-rigid for I1 2 C1(D) i�:Jac(f)t:rI1 = det(Jac(f))rI1; (6)where Jac(f) denotes the Jacobian matrix of f and det(A) the determinant ofmatrix A, and Hom(D) the space of continuously di�erentiable and invertiblefunctions from D to D (homeomorphisms).All �-rigid deformations have the following properties (see [15] for the proofs).Assume f� is �-rigid for I1 2 C10 (D) and I1 = I2 � f�. Then,1. equation (6) is always true if dimension d is 1;2. suppose d = 2: then,3. if Jac(f�) is symmetric, then (6) means that if jrI1j 6= 0,{ direction � = rI1jrI1j is eigenvector (� = det(Jac(f) is an eigenvalue);{ direction � = rI?1jrI1j is \rigid" (� = 1 is an eigenvalue);then for all x 2 D where I1 is not locally constant we have h(x) = h�(x):



73.3 The Dirichlet operatorLet D = [�M;M ]d; S� = fk 2 Zd, 8i 2 [1; d], jkij � M�2g; ck(I) denotesthe Fourier coe�cient of I de�ned by: ck(I) = 1(2M) d2 RD I(x)e� i�<k;x>M dx: Thenthe Dirichlet operator �� is the linear mapping associating to each functionI 2 C10 (D) the function ��(I) = G� � I , where the convolution kernel G� isde�ned by its Fourier coe�cients as follows:ck(G�) = �1 if k 2 S�0 elsewhere3.4 New MCE by Linearization for the Dirichlet projectionNow that we have introduced our rigidity property of deformations and theDirichlet projection, we obtain theTheorem 1. If f� = Id+h� is �-rigid for I1 = I2 � f� 2 C10 (D), then we have:k��(I1 � I2)� P I1� (h�)kL2 � �2 �d+2kh�jrI1j 12 k2L2 :This inequality is nothing but the sharpness of MCE (5): ��(I1 � I2)(x) 'P I1� (h�)(x); at scale �. It clearly expresses the fact that measuring the motion(e.g perceiving the optical 
ow) h� is not relevant outside of the support of jrI1j.Proof. See [17]4 Theoretical iterative scheme and convergence theoremIn section 3 we found a new MCE and showed that we can control the sharpnessof it. In this section we will make a rather general assumption on the motion inthe sense that it should belong to some linear parametric motion model withoutbeing more speci�c on the model basis functions. Though it is somewhat restric-tive to have motion �elds in a �nite dimensional functional space, this structuralhypothesis will be a key to bounding the residual motion norm after registrationin order to iterate the process. This makes it possible to consider a constrainton motion when there is a priori knowledge (like for rigid motion) or considermulti-scale decomposition of motion for an iterative scheme.4.1 Linear parametric motion models and least square estimationLet us assume the motion h� has to be in a �nite dimensional space of de-formation generated by basis functions 	(x) = ( i(x))i=1::n: Thus h� can bedecomposed in the basis: 9 �� = (��i )i=1::n unique; such that:h�(x) =< 	(x); �� >=Xi=1::n ��i  i(x), 8x 2 Supp(jrI1j):



8MCE (5) viewed as a linear model writes: ��(I1 � I2) =< P I1� (	); �� > : Nowset, for � s.t. the P I1� ( i) be mutually linearly independent in L2:M� = P I1� (	)
 P I1� (	); Y� = ��(I1 � I2);where 
 stands for the tensorial product in L2. Then applying basic results fromthe classical theory of linear models yields: ĥ =< 	; �̂ >=< 	;M�1� B� >; wherecolumn B�'s components are de�ned by (B�)i =< P I1� ( i); Y� >.4.2 Estimation error and residual motionGiven the least square estimation of the motion of last paragraph, we haveLemma 1. In this framework the motion estimation error is bounded by in-equality k(ĥ� h�)jrI1j 12 kL2 � �2�d+2�Tr(M�1� ))� 12 kh�jrI1j 12 k2L2 :Proof. See [17]If Id+ ĥ is invertible, we can de�ne:I1;1 = I1 � �Id+ ĥ��1: (7)Letting r1 denote the residual motion such that I1;1 = I2 � (Id + r1), if Id + ĥis �-rigid for I1 then a variable change yields equality k(ĥ � h�)jrI1j 12 kL2 =kr1jrI1;1j 12 kL2 ; thus giving by Lemma 1 the following bound on the residualmotion norm:kr1jrI1;1j 12 kL2 � �2�d+2�Tr(M�1� ))� 12 kh�jrI1j 12 k2L2 : (8)In view of equality (7) and inequality (8), iterating the motion estimation/registrationprocess looks completely natural and allows for pointing out su�cient conditionsfor convergence of such a process. Indeed, provided the same assumptions aremade at each step, relations (7) and (8) can be seen as recurrence ones, yieldingboth rp and I1;p sequences.4.3 Theoretical iterative schemeHaving control on the residual motion after one registration step, we deduce thefollowing theoretical iterative motion estimation / registration scheme:1. Initialization: Enter accuracy � > 0 and the maximal number of iterationsN . Set p = 0, and I1;0 = I1.2. Iterate while (kI1;p � I2k � � & p � N)(a) Enter the set of basis functions 	p = ( p;i)i=1::np that linearly anduniquely decompose rp on the support of jrI1;pj.(b) Enter scale �p and compute: ĥp =< 	p;M�1p;�pB�p > :(c) Set I1;p+1 = I1;p � (Id+ ĥp)�1.



94.4 Convergence theoremNow that we have designed an iterative motion estimation / registration scheme,let us infer su�cient conditions for the residual motion to vanish. This leads usto state our following main result:Theorem 2. If:1. 8p � 0, I1;p � I2 (as de�ned in Section 3.2), and residual motion rp can belinearly and uniquely decomposed on a set of basis functions f p;i; i = 1::npg;2. 8p � 0, there exists a scale �p > 0 such that the set of functions fP I1;p�p ( p;i); i =1::npg be free in L2 and, for p = 0, we assume that :kh�jrI1j 12 kL2 < ��2�d+20 Tr(M0;�0) 12��1;Set C0 = ��2�d+20 Tr(M0;�0) 12 kh�jrI1j 12 kL2��1;3. The sequence of conditioning ratios satisfy criteria: 8p � 0, �d+2p+1Tr(Mp+1;�p+1 ) 12�d+2p Tr(Mp;�p ) 12 � C0;4. 8p � 0, estimated deformations Id+ ĥp 2 Hom(D) and are �-rigid for I1;p;Then, limp!1 krpjrI1;pj1=2kL2 = 0:Proof. See [17]4.5 Numerical algorithm requirementsFirstly, due to the fact that h� is unknown we have to make an arbitrary choicefor the scale at each step. Secondly we at least have to ensure that Id + ĥ beinvertible at each step. Finally we are faced with the motion basis functionschoice.Multi-scale strategy. The scale choice expresses both a priori knowledge onthe motion range and its structure complexity. Here we assume that (�p)p is anincreasing sequence, starting from �0 > 0 such that:#S�0 � #fexpected independent motionsg: (9)Then let � 2]0; 1[. In order to justify the minimization problem at new scale�p+1 > �p, we will choose it such that:k(��p+1 ���p)(I1;p+1 � I2)kL2 > �kI1;p+1 � I2kL2 ; (10)Invertibility of Id + ĥp. Let � > 0. We will apply to I1;p the inverse of themaximal invertible linear part of the computed deformation e.g. �Id+ t�:ĥp��1,where t� = supt2[0;1]ft / det(Jac(Id+ t:ĥp)) � �g: (11)Choosing the set of basis functions. A major di�culty arising in the the-oretical scheme comes from the lack of a priori knowledge on the �nite set ofbasis functions to be entered at each step. In Section 5 we will use an implicitapproach via the optimal step gradient algorithm when minimizing the quadraticenergy associated to MCE (5).



105 Implicit approach of basis functions and ResultsWe now use the optimal step gradient algorithm for the minimization of thequadratic functional associated to MCE (5). There are at least two good reasonsfor doing this:{ the choice of base functions is implicit: it depends on the signals or imagesI1 and I2, and the scale space.{ we can control and stop the quadratic minimization if the associated operatoris no longer positive de�nite.The general algorithm does not guaranty that the resulting matrix Mp;�p beinvertible. Hence we suggest to systematically use a stopping criteria to controlthe quadratic minimization, based on the descent speed or simply a maximumnumber of iterations NG. In that case our �nal algorithm writes:1. Initialization: Enter accuracy � > 0 and the maximal number of iterationsN . Set p = 0, I1;0 = I1, and choose �rst scale �0 according to (9).2. Iterate while (kI1;p � I2k � � & p � N & �p � 1)(a) Choose �p satisfying (10).(b) Apply NG iterations of the optimal step gradient algorithm for the min-imization of Ep(h) = k��p(I1;p � I2)� P I1;p�p (h)k2L2 :(c) Compute I1;p+1 = I1;p � (Id + t�:ĥp)�1 with t� de�ned by (11) andincrement p.

Fig. 4. Registration movie of a target to a 'C' letter. Again, each image correspondsto a step in the iterative scheme.In the following experiments we have set � = 2:5%, NG = 5, � = 0:1. In [17], weshow results on one-dimensional synthetic and real signals, and with all intensitylines of a stereo pair. Recall that �-rigidity is not a constraint when d = 1 andthus ĥ1 is relevant only when jI 01(x)j 6= 0.We illustrate the algorithm on pairs of images with large deformation for regis-tration applications and movies for motion estimation applications.Registration problems involving large deformation: In �gure 4 we showthe di�erent steps of the algorithm performing the registration between the �rstand last images. In Figure 5, we show the study and target images, and the
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Fig. 5. Scene registration example: Study image (left), deformed Study image ontoTarget image (center), and Target image (right).

Fig. 6. On the left, registered sequence of the original sequence onto �rst image usingthe computed backward motions. On the right, movie obtained by deforming only the�rst image of Cronkite movie using the sequence of computed motionsdeformed study image after applying the estimated motion.Optical Flow estimation examples: in Figure 6 we show the sequence of theregistered images of the original Cronkite sequence onto �rst image using thesequence of computed backward motions. The result is expected to be motion-less. On top of Figure 6, we show the complete movie obtained by deformingiteratively only the �rst image of Cronkite movie. For that we use the sequenceof computed motions between each pair of consecutive images of the originalmovie. In Figure 6 on the bottom, we see the error images.6 ConclusionWe have addressed the theoretical problems of motion estimation and registra-tion of signals or images in any dimension. We have used the main featuresof previous works on the subject to formalize them in a framework allowing arigorous mathematical analysis. More speci�cally we wrote a new ridigity hy-pothesis that we used to infer a unique Motion Constraint Equation with smallremainder at coarse scales. We then showed that upon hypotheses on the motionnorm and structure/scale tradeo�, an iterative motion estimation/registrationscheme could converge towards the expected solution of the problem e.g. theglobal minimum of the nonlinear least square problem energy. Since each step
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