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Abstract

This paper is devoted to stability results for the Gaussian logarithmic Sobolev in-
equality, with explicit stability constants.
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1. Introduction

1.1. Main result

Let d ≥ 1, and let us consider the Gaussian logarithmic Sobolev inequality

‖∇u‖2
L2(Rd ,dγ)

≥ 1

2

∫
Rd

|u|2 log

 |u|2
‖u‖2

L2(Rd ,dγ)

dγ ∀u ∈ H1(Rd ,dγ) (LSI)

where dγ= γ(x)d x is the normalized Gaussian probability measure with density

γ(x) = (2π)−
d
2 e−

1
2 |x|2 ∀x ∈Rd .

According to [18, 4], equality in (LSI) is achieved by any function in the manifold

M := {
wa,c : (a,c) ∈Rd ×R}

where wa,c (x) = c ea·x ∀x ∈Rd

and only by functions in M .
The issue of stability in functional inequalities is either (a) to estimate the dis-

tance to M by the deficit in (LSI), i.e., by the difference of the two sides in the in-
equality, or (b) to obtain an improved inequality, i.e., an improved constant in the
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inequality, under appropriate conditions. In fact, (b) amounts to establish (a) but
for a restricted class of functions. More details will be given later. Our main result is
in the spirit of (b). By two-homogeneity of (LSI), we may consider functions in

H :=
{

u ∈ H1(Rd ,dγ) : ‖u‖L2(Rd ,dγ) = 1
}

without loss of generality and state an improved (LSI) inequality as follows.

Theorem 1. Let d ≥ 1. For any ε> 0 and C > 0, there is an explicit η ∈ (0,1) such that

(
1−η)‖∇u‖2

L2(Rd ,dγ)
≥ 1

2

∫
Rd

|u|2 log |u|2 dγ

for any u ∈H such that ∫
Rd

x |u|2 dγ= 0 (1)

and Ï
Rd×Rd

|u(x)|2 |u(y)|2 e ε |x−y |2 dγ(x)dγ(y) ≤ C. (2)

The constant η depends only on C and ε, but not directly on the dimension d . This
is consistent with [21]. In the special case of compactly supported functions, the
improvement η is an explicit function of the size of the support.

To the best of our knowledge, it is the first time such that Condition (2) appears in
the study of stability of (LSI). Simpler conditions can also be given: for instance, (2)
holds true for any function u ∈H such that∫

Rd
e2ε |x|2 |u|2 dγ≤

p
C,

as a consequence of the estimate eε |x−y |2 ≤ e2ε |x|2 e2ε |y |2 .

Our strategy goes as follows. Under Condition (2), a density h(t = 0, ·) = |u|2
evolved by the Ornstein–Uhlenbeck flow on Rd ,

∂h

∂t
=L h , (t , x) ∈R+×Rd , (3)

where L h :=∆h − x ·∇h denotes the Ornstein–Uhlenbeck operator, is such that the
measure dµT = h(T, ·)dγ satisfies a Poincaré inequality after some finite time T ≥ 0,
as a consequence of the results of H.-B. Chen, S. Chewi, and J. Niles-Weed in [21].
According to M. Fathi, E. Indrei, and M. Ledoux in [33], this measure also satisfies an
improved version of (LSI). Using a backward in time argument based on the carré du
champ method, we deduce an improved (LSI) inequality for the initial density |u|2
from the improved (LSI) inequality for the measure dµT . This completes the sketch
of the proof of Theorem 1.

This paper is organized as follows. The remainder of the introduction is dedi-
cated to a partial review of the literature. In Section 2, we discuss the distinction be-
tween improved inequalities and stability results, collect various observations, give
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stability results for which we do not claim much originality (but with new proofs and
simple, explicit constants) and state the key backward in time argument. Section 3
is devoted to the proof of Theorem 1. In Section 4, we state an additional stability
result for log-concave functions and establish a dimension-free estimate for com-
pactly supported functions that arises as a consequence of Theorem 1.

1.2. A partial review of the literature

In 1975, the Gaussian logarithmic Sobolev inequality (LSI) was shown in [36] by
L. Gross to be equivalent to the hypercontractivity of the Ornstein–Uhlenbeck semi-
group. A scale invariant (but dimension-dependent) version of the Euclidean form
of the inequality appeared in [54, Theorem 2], which was already known from [48,
Inequality (2.3)] in dimension d = 1. By using a duality argument, (LSI) is also related
to a Keller type estimate, see [34]. The reader interested in further historical details
is invited to refer to [52, Section 1.3.2] and also to [51, 49, 50] for further background
references in information theory. More references can also be found in [29, 33]. The
optimality case in the inequality has been characterized in [18], but can also be de-
duced from [4]. The logarithmic Sobolev inequality can be seen as a limit case of
a family of Gagliardo-Nirenberg-Sobolev inequalities, as observed in [24] in the Eu-
clidean setting, or as a large dimension limit of the Sobolev inequality according
to [8] (see also [17] for detailed computations and further references). For books
on (LSI), we refer to [1, 37, 46, 5].

In a classical result on stability in functional inequalities, G. Bianchi and H. Eg-
nell proved in [9] that the deficit in the Sobolev inequality measures the Ḣ1(Rd ,d x)
distance to the manifold of the optimisers. The estimate has been made construc-
tive in [26], where a new L2(Rd ,dγ) stability result for the logarithmic Sobolev in-
equality is also established (also see [38, 39] for further negative and positive results
in other norms, for instance in strong norms like H1(Rd ,dγ)). To our knowledge,
the first result of stability for the logarithmic Sobolev inequality is a reinforcement
of the inequality due to E. Carlen in [18] where he introduces an additional term in-
volving the Wiener transform. An improved (LSI) inequality appeared in [33] based
on a Mehler formula for the Ornstein–Uhlenbeck semigroup, which gives deficit es-
timates in various distances for functions inducing a Poincaré inequality. It is a re-
sult in the spirit of (b) and [33] is crucial for our proof of Theorem 1. Under the
condition ‖x u‖L2(Rd ,dγ) =

p
d , a stability result measured by a relative Fisher in-

formation is also given in [29], on the basis of simple scaling properties of the Eu-
clidean form of the logarithmic Sobolev inequality. For sequential stability results
in strong norms, we refer to [39] when assuming a bound on u in L4(Rd ,dγ) and
to [38] when assuming a bound on |x|2 u in L2(Rd ,dγ). Stability according to other
notions of distance has been studied in [43, 42, 35]. Stability results where the dis-
tance to M appears with a non-optimal exponent are known for instance from [12,
Theorem 1.1] where it is deduced from the HWI inequality due to F. Otto and C. Vil-
lani [45]. Such estimates have even been refined in [30]. There are now several other
proofs. Various stability results have also been proved in Wasserstein’s distance: we
refer to [40, 12, 33, 39, 41, 13, 30, 38]. Stability in logarithmic Sobolev inequality can
be related to deficit in Gaussian isoperimetry and we refer to [12] for an introduction
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to early results in this direction, [6] for a sharp, dimension-free quantitative Gaus-
sian isoperimetric inequality, and [30] for recent results and further references.

In this paper, we carefully distinguish (a) stability results where a distance to M
is controlled by the deficit, and (b) improved inequalities under appropriate con-
straints. Even if functions are normalized and centered, this is in some cases not
enough for obtaining improved inequalities as shown in [38]. In fact, many counter-
examples to stability are known, involving Wasserstein’s distance for instance in [40,
12, 33, 39, 41], weaker distances like p-Wasserstein, or stronger norms like Lp or H1:
see for instance [39, 38]. The classical counter-examples that apply to our setting
are those of [41, Theorem 1.3] and [30, Theorem 4] but, as already noted in [39],
they are based on the fact that the second moment diverges along a sequence of test
functions. In case of Theorem 1, this is forbidden by Assumption (2).

A large part of our intuition comes from the fact that the heat flow (or the Orn-
stein–Uhlenbeck flow) preserves log-concavity: see, e.g., [15, 47]. Log-concavity is
a natural property in this framework for several reasons, see for instance [23]. By
J. Cheeger’s inequality [20], from log-concavity follows an explicit Poincaré inequal-
ity that we can use to establish an improved form of (LSI). Also see [19] and refer-
ences therein. However, what really matters is the Poincaré inequality, as noted by
M. Fathi, E. Indrei and M. Ledoux in [33]. Condition (2) comes from the result of [21]
obtained by H.-B. Chen, S. Chewi, and J. Niles-Weed: such a Poincaré inequality
holds under the evolution of the Ornstein–Uhlenbeck flow, after some explicit delay.
The study of Poincaré inequalities evolved under (3) (or equivalently under convo-
lutions with Gaussian measures) has many applications, cf. [21]. The study of this
question has been initiated in [55, 56] and further investigated in [53, 7, 21].

In [33, Theorem 1], the assumption is that |u|2dγ satisfies a Poincaré inequality.
According to [10, Equation (4.3)], this also implies the exponential moment condi-
tion

∫
Rd eθ |x| u2 dγ<∞, for some θ > 0. Condition (2) is stronger than the exponen-

tial moment condition, the classical example being the mesure |u(x)|2dγ(x) = e−|x|
which satisfies a Poincaré inequality but not (2). On the other hand, (2) is, in some
cases, less restrictive than the assumption of [33, Theorem 1], for instance, in the
case of a compactly supported function u with several disconnected components.
Whether Theorem 1 can be extended, eventually with additional restrictions, to the
case of an exponential moment condition is, to our knowledge, an open question.

Bounds on the Poincaré constant of a probability measure may depend on the
dimension and degenerate for large dimensions according to [19, 22]. As a conse-
quence, the same issue arises for the improvement of (LSI) of [33, Theorem 1]. For
strongly log-concave measures u2 dγ, one has a Poincaré inequality with a dimen-
sion-independent estimate of the constant according to [4], but this class falls into
the much wider class considered in Theorem 1.
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2. Preliminary observations, an important tool and some simple consequences

2.1. A discussion on stability estimates and improved inequalities

Let us define the deficit functional of (LSI) by

δ[u] := ‖∇u‖2
L2(Rd ,dγ)

− 1

2

∫
Rd

|u|2 log

 |u|2
‖u‖2

L2(Rd ,dγ)

dγ .

The goal of stability estimates is to find a notion of distance d, an explicit constant
β> 0 and an explicit exponent α> 0 such that

δ[u] ≥β inf
w∈M

d(u, w)α ∀u ∈H . (4)

It is known from [26, Corollary 1.2] that for some explicit, dimension-independent
constant β> 0, one has

δ[u] ≥β inf
w∈M

‖u −w‖2
L2(Rd ,dγ)

∀u ∈ H1(Rd ,dγ) . (5)

In this paper we consider improved inequalities in the form

δ[u] ≥βd(u,1)α ∀u ∈H . (6)

Any estimate ofα and β for (6) is also an estimate for (4), as infw∈M d(u, w) ≤ d(u,1),
because w ≡ 1 ∈M . When d(u, w) = ‖u−w‖L2(Rd ,dγ), α= 2, and β as in (5), Inequal-
ities (4) and (6) are in fact equivalent if u is nonnegative, normalized and centred
as proven in [38, Lemma 1]. The equivalence between (4) and (6) does not hold for
d(u, w) = ‖∇u −∇w‖L2(R,dγ) because the best possible exponent α in (4) and (6) dif-
fer, as the following example shows. Assume that d = 1 and consider the functions

uε(x) = 1+εx ∀x ∈Rd (7)

in the limit as ε→ 0. With d(u, w) = ‖u′−w ′‖L2(R,dγ), we have

d(uε,1)2 = ‖u′
ε‖2

L2(R,dγ) = ε2 and δ[uε] = 1
2 ε

4 +O
(
ε6) as ε→ 0.

Hence, the best we can hope for in (6) written with wu = 1 is β= 1/2 and α= 4. On
the other hand, using the test function waε,cε ∈M where aε = 2ε and logcε =−a2

ε/4,
we obtain

inf
w∈M

d(uε, w)2 ≤ d
(
uε, waε,cε

)2 = 1
2 ε

4 +O
(
ε6)= δ[uε]+O

(
ε6) as ε→ 0,

which would allow for β= 1 and α= 2 in (4). Up to a Gaussian Poincaré inequality,
this is compatible with the fact that (5) still yields a stability estimate with α = 2.
On the other hand, the example of uε given by (7) suggests that, for non-centred
functions, α= 4 is the best possible exponent in (6) for the distance d(u, w) = ‖∇u −
∇w‖L2(R,dγ).
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To establish improved inequalities with strong notions of distance d, one needs,
unlike in (4), an additional condition. In the case of d(u, w) = ‖∇u −∇w‖L2(Rd ,dγ), at

least a control on the second-order moment K = ∫
Rd |x|2 u2 dγ is necessary: in [39,

41], for any K > d , the authors build sequences (uε)ε>0 of functions in H which
satisfy (1) such that

lim
ε→0+

δ[uε] = 0 and lim
ε→0+

W2
2

(
u2
ε γ,γ

)= 1

2
(K−d)

where W2 denotes the 2-Wasserstein distance. By (LSI) and the Talagrand inequality,

2‖∇uε‖2
L2(Rd ,dγ)

≥
∫
Rd

|uε|2 log |uε|2 dγ≥ 1

2
W2

2

(
u2
ε γ,γ

)
,

so that (6) cannot hold along such a sequence with a distance d that controls W2.
Moreover, in [38, Theorem 1], E. Indrei proves that, for any sequence (un)n∈N of
functions in H such that (1) holds, one can deduce that limn→+∞ ‖∇un‖L2(Rd ,dγ) = 0

from limn→+∞δ[un] = 0 if and only if the condition limn→+∞ ‖x un‖L2(Rd ,dγ) =
p

d is
satisfied. Nevertheless, several results are available under a second moment condi-
tion [12, 29], fourth moment condition [38] and in the class of probability densities
which satisfy a Poincaré inequality [33]. See also Corollary 4 for a result under a
second moment condition.

Let us comment on our main result Theorem 1. We aim at results in the strongest
possible notion of distance, i.e., d(u, w) = ‖u−w‖H1(Rd ,dγ) where w ∈M . From The-
orem 1 and by the Gaussian Poincaré inequality, we find

δ[u] ≥ η‖∇u‖2
L2(Rd ,dγ)

≥ η

2
‖u −1‖2

H1(Rd ,dγ)

for all u ∈ H1(Rd ,dγ) satisfying (1) and (2): this proves (6) for α = 2 and β = η/2.
Notice that by two-homogeneity of δ, α= 2 is the best possible exponent. Assump-
tion (1) is crucial, as illustrated by the functions uε defined by (7). Condition (2) is
sharp in the following sense: for any 0 < ε< 1/2, there exists a sequence (uε,n)n∈N of
functions in H built as in [39, 41] and satisfying (1) such that

lim
n→∞

∫
Rd

e2ε |x|2 |uε,n |2 dγ=+∞ , liminf
n→∞ ‖∇uε,n‖2

L2(Rd ,dγ)
> 0 and lim

n→∞δ[uε,n] = 0,

so that limn→∞δ[uε,n]/‖∇uε,n‖2
L2(Rd ,dγ)

= 0. How to fill the gap between a control on

the second-order moment, which is a necessary for (6), and the much more restric-
tive condition of Theorem 1, is an open question.

2.2. The Ornstein–Uhlenbeck equation and the carré du champ method

Let us recall some classical results on (3). If h0 ∈ L1(Rd ,dγ) is nonnegative, then
there exists a unique nonnegative weak solution to (3) (see for instance [32]). The
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two key properties of the Ornstein–Uhlenbeck operator L h =∆h −x ·∇h are∫
Rd

h1 (L h2)dγ=−
∫
Rd

∇h1 ·∇h2 dγ and [∇,L ]h =−∇h .

As a consequence, we obtain the two identities∫
Rd

(L h)2 dγ=
∫
Rd

‖Hessh‖2 dγ+
∫
Rd

|∇h|2 dγ (8)

and ∫
Rd

L h
|∇h|2

h
dγ=−2

∫
Rd

Hessh :
∇h ⊗∇h

h
dγ+

∫
Rd

|∇h|4
h2 dγ , (9)

where Hessh = (∇⊗∇)h is the Hessian matrix of h. Here we use the following nota-
tions. If a and b take values inRd , a⊗b denotes the matrix (ai b j )1≤i , j≤d . With matrix

valued m = (mi , j )1≤i , j≤d and n = (ni , j )1≤i , j≤d , we define m : n =∑d
i , j=1 mi , j ni , j and

‖m‖2 = m : m. If h is a nonnegative solution of (3), we also notice that v =p
h solves

∂v

∂t
=L v + |∇v |2

v
. (10)

Let us fix ‖v‖L2(Rd ,dγ) = 1. The entropy and the Fisher information, respectively de-
fined by

E [v] :=
∫
Rd

|v |2 log |v |2 dγ and I [v] :=
∫
Rd

|∇v |2 dγ ,

evolve along the flow (10) according to

d

d t
E [v(t , ·)] =−4I [v(t , ·)] and

d

d t
I [v(t , ·)] =−2

∫
Rd

(
(L v)2 +L v

|∇v |2
v

)
dγ

if v solves (10). Using (8) and (9), we obtain the classical expression of the carré du
champ method

d

d t
I [v(t , ·)]+2I [v(t , ·)] =−2

∫
Rd

∥∥∥∥Hess v − ∇v ⊗∇v

v

∥∥∥∥2

dγ (11)

as for instance in [3, 27, 5]. By writing that

d

d t
δ[v(t , ·)] ≤ 0 and lim

t→+∞δ[v(t , ·)] = 0,

we recover the standard proof of the entropy – entropy production inequality (LSI),
by the carré du champ method of [4].

Several of the above expression can be rephrased in terms of the pressure variable

P :=− logh =−2 log v
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using the following elementary identities

∇v =− 1

2

p
h∇P ,

∇v ⊗∇v

v
= 1

4

p
h∇P ⊗∇P ,

Hess v =− 1

2

p
h HessP + 1

4

p
h∇P ⊗∇P ,

so that, by taking into account v ∇P =−2∇v and h = v2, we have

I [v] = 1

4

∫
Rd

|∇P |2 h dγ and
∫
Rd

∥∥∥∥Hess v − ∇v ⊗∇v

v

∥∥∥∥2

dγ= 1

4

∫
Rd

‖HessP‖2 h dγ .

2.3. A backward in time estimate

Although rather elementary, this key tool of our paper is based on the following
observation: if a solution h of (3) is such that (LSI) holds for v =p

h with an improved
constant at some time T > 0, then this is also the case for the initial datum. A similar
approach was used in [14, Lemma 2.9] in the case of a different flow.

Lemma 2. Let u ∈H be such that (1) holds and consider the solution v of (10) with
initial datum u. If for some T > 0 we have δ[w] ≥ c ‖∇w‖2

L2(Rd ,dγ)
with w := v(T, ·) for

some c > 0, then
δ[u] ≥ c e−2T ‖∇u‖2

L2(Rd ,dγ)
.

Proof. The (LSI) ensures that Q(t ) := I [v(t , ·)]/E [v(t , ·)] ≥ 1/2 for all t ≥ 0. By our
assumption, (1− c)Q(T ) ≥ 1/2 and we learn from (11) that

dQ

d t
≤ 2Q (2Q−1) .

The conclusion follows from an integration on (0,T ), which shows that

Q(0) ≥ 1

2

1

1−e−2T c
.

2.4. Some simple stability estimates

In this section, we collect various stability estimates and provide new proofs or
explicit estimates which are new. We put the emphasis on the use of the Ornstein–
Uhlenbeck equation (3) and on the improvements based on the carré du champ
method.

2.4.1. Improvements under moment constraints
In standard computations of the carré du champ method, one usually drops the

Hessian terms, as those in right-hand side of (11). Keeping track of the remainder
terms provides us with improvements as shown in [2, 25, 28] in various interpolation
inequalities but generically fails in the case of the logarithmic Sobolev inequality. We
remedy to this issue by introducing moment constraints.
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Lemma 3. If
p

h = v ∈ H ∩H2(Rd ,dγ) is such that (1) holds and x v ∈ L2(Rd ,dγ),
then

4I [v] ≤
√

d
∫
Rd

‖HessP‖2 h dγ+
∫
Rd

|x|2 h dγ−d .

Proof. Using h∇P =−∇h, we obtain

4I [v] =
∫
Rd

|∇P |2 h dγ=−
∫
Rd

∇P ·∇h dγ=
∫
Rd

h (L P )dγ .

After recalling that L P =∆P −x ·∇P , we deduce that

−
∫
Rd

h x ·∇P dγ=
∫
Rd

x ·∇h dγ=
∫
Rd

h
(|x|2 −d

)
dγ=

∫
Rd

|v |2 (|x|2 −d
)

dγ

using an integration by parts, which proves

4I [v] ≤
∫
Rd

(∆P )h dγ .

The use of the Cauchy-Schwarz inequality and the arithmetic-geometric inequality

(∆P )2 ≤ d ‖HessP‖2

completes the proof.

With the estimate of Lemma 3 on I [v], we have the following result.

Corollary 4. Let Ψ(s) := s − d
4 log

(
1+ 4

d s
)
. For all u ∈ H such that (1) holds and

‖x u‖2
L2(Rd ,dγ)

≤ d, we have the stability estimate

δ[u] ≥Ψ
(
‖∇u‖2

L2(Rd ,dγ)

)
. (12)

Notice that Ψ is such that Ψ(s) = 2
d s2 +o(s2) as s → 0+, so that α= 4 is the minimal

admissible exponent in Inequality (6), at least for results obtained by this method.

Proof of Corollary 4. Let h = v2 be the solution of (3) with initial datum h0 = u2.
Since x 7→ (|x|2 − d

)
is an eigenfunction of L with corresponding eigenvalue −2

and L is self-adjoint on L2(Rd ,dγ), we have that K (t ) := ∫
Rd

(|x|2 −d
)

h dγ satisfies

dK

d t
=

∫
Rd

(|x|2 −d
)

(L h)dγ=
∫
Rd

h L
(|x|2 −d

)
dγ=−2K . (13)

The sign of t 7→K (t ) is conserved and in particular we have that
∫
Rd |x|2 |v |2 dγ≤ d

for any t ≥ 0. For any i = 1, 2. . . d , we also notice that x 7→ xi is also an eigenfunction
of L with corresponding eigenvalue −1 so that

d

d t

∫
Rd

x h dγ=−
∫
Rd

x h dγ

9



and, as a consequence
∫
Rd x h(t , ·)dγ= 0 for all t ≥ 0 because

∫
Rd x h0 dγ= 0.

For smooth enough solutions, we deduce from Lemma 3, (11) and (LSI) that

d

d t
I [v(t , ·)]+2I [v(t , ·)] ≤− 8

d
I 2[v(t , ·)] ≤ 1

2d

d

d t

(
E [v(t , ·)]

)2

if v solves (10). The fact that limt→+∞I [v(t , ·)] = 0 follows from a Gronwall esti-
mate relying on d

d t I [v(t , ·)] ≤−2I [v(t , ·)] and limt→+∞E [v(t , ·)] = 0 is obtained as

a consequence of (LSI). Since t 7→ I [v(t , ·)]− 1
2 E [v(t , ·)]− 1

2d

(
E [v(t , ·)]

)2 is mono-
tone nonincreasing with limit 0 as t →+∞, we conclude that it is nonnegative for
any t ≥ 0 and, as a special case, at t = 0, thus proving that

δ[u] =I [u]− 1

2
E [u] ≥ 1

2d

(
E [u]

)2 . (14)

A better estimate goes as follows. Let

Φ(s) := d

4

(
e

2
d s −1

)
∀ s ≥ 0.

Using d
d t E [v(t , ·)] =−4I [v(t , ·)], we notice that

d

d t

(
I [v(t , ·)]−Φ(

E [v(t , ·)]
))≤− 8

d

(
I [v(t , ·)]−Φ(

E [v(t , ·)]
))

I [v(t , ·)].

As before, we know that

lim
t→+∞

(
I [v(t , ·)]−Φ(

E [v(t , ·)]
))= 0.

Moreover, Gronwall estimates show that I [v(t , ·)]−Φ(
E [v(t , ·)]

)
cannot change sign

and an asymptotic expansion as t →+∞ as in [16, Appendix B.4] is enough to ob-
tain that I [v(t , ·)]−Φ(

E [v(t , ·)]
)

takes nonnegative values for t > 0 large enough.
Altogether, we conclude that

I [v(t , ·)]−Φ(
E [v(t , ·)]

)≥ 0

for any t ≥ 0 and, as a particular case, at t = 0 for v(0, ·) = u. This provides us with
the estimate

‖∇u‖2
L2(Rd ,dγ)

≥ d

4

(
e

2
d

∫
Rd |u|2 log |u|2 dγ−1

)
.

In the general case, one can get rid of the H2(Rd ,dγ) regularity of Lemma 3 by a
standard approximation scheme, which is classical and will not be detailed here.

As in [16], an estimate in a stronger norm is achieved as follows. The function Φ
is convex increasing and, as such, invertible, so that we can also write

Φ−1(I [u]
)−E [u] ≥ 0.

10



This completes the proof of (12) with the convex monotone increasing function

Ψ(s) := s − 1

2
Φ−1(s) ∀ s ≥ 0.

As far as we know, the above proof of Corollary 4 is new, but the result was known
by other methods, as explained in Section 2.1. An inequality in the spirit of (12) is
proved in [12, Theorem 1 and Inequality (1.8)] using probabilistic tools. Inequal-
ity (12) is also established in [29] using the scaling properties of the Euclidean ver-
sion of (LSI) under the more restrictive condition ‖x u‖2

L2(Rd ,dγ)
= d . If K [u] < 0, i.e.,

‖x u‖2
L2(Rd ,dγ)

< d ,

further improvements can be achieved. Here is an example. With

J [u] :=I [u]− 1

4
K [u] ,

we notice that (LSI) can be recast as

J [u] ≥ 1

2

(
E [u]− 1

2
K [u]

)
.

Moreover, if v solves (10), then

d

d t

(
E [v(t , ·)]− 1

2
K [v(t , ·)]

)
=−4J [v(t , ·)]

and using Lemma 3, the estimate in the proof of Corollary 4 becomes

d

d t
J [v(t , ·)]+2J [v(t , ·)] = d

d t
I [v(t , ·)]+2I [v(t , ·)]

≤− 8

d
J 2[v(t , ·)] ≤ 1

2d

d

d t

(
E [v(t , ·)]− 1

2
K [v(t , ·)]

)2

.

An integration from t = 0 to +∞ shows that

δ[u] ≥ 1

2d

(
E [u]− 1

2
K [u]

)2

,

which is an improvement upon (14) under the assumption that K [u] < 0, as we
know that E [u] ≥ 0 by Jensen’s inequality.

2.4.2. A result in the framework of log-concave densities
We say that a measure dµ with density e−ψ with respect to Lebesgue’s measure

is a log-concave probability measure if ψ is a convex function.

11



Lemma 5. If dµ is a log-concave probability measure such that
∫
Rd |x − xµ|2 dµ ≤ K

where xµ =
∫
Rd x dµ, then we have the Poincaré inequality∫

Rd
|∇ϕ|2 dµ≥ 1

432K

∫
Rd

|ϕ|2 dµ ∀ϕ ∈ H1(Rd ,dµ) such that
∫
Rd
ϕdµ= 0. (15)

Proof. Let us denote by λ1(µ) the first positive eigenvalue of −Lψ where Lψ is the
Ornstein–Uhlenbeck operator Lψ := ∆−∇ψ · ∇. We learn from [11, Theorem 1.2]
and [11, Ineq. (3.4)] that 432Kλ1(µ) ≥ 1.

Lemma 6. Let us consider consider a solution h of (3) with initial datum h0 and
assume that dµ0 := h0 dγ is a log-concave probability measure. Then dµt := h(t , ·)dγ
is a log-concave probability measure for all t ≥ 0.

Proof. The function g := hγ solves the Fokker-Planck equation

∂g

∂t
=∆g +∇· (x g )

and the function f such that

f (s, x) := (1+2 s)−
d
2 g

(
1

2
log(1+2 s),

xp
1+2 s

)
∀ (s, x) ∈R+×Rd (16)

solves the heat equation

∂ f

∂s
=∆ f ∀ (s, x) ∈R+×Rd . (17)

Hence f can be represented using the heat kernel. According for instance to [47, 7],
log-concavity is preserved under convolution, which completes the proof.

Lemma 7. If h ∈ H1(Rd ,dγ) is such that
∫
Rd x h dγ= 0 and P =− logh is the pressure

variable, then ∫
Rd

∇P h dγ= 0.

Proof. The result follows from
∫
Rd ∇P h dγ=−∫

Rd ∇h dγ= ∫
Rd x h dγ= 0.

Let

C?(K) = 1+ 1

432K
(18)

where 1/432 ≈ 0.00231481.

Proposition 8. For all u ∈H such that (1) holds,
∫
Rd |x|2 |u|2 dγ=K and u2γ is log-

concave, with C? defined by (18), we have

‖∇u‖2
L2(Rd ,dγ)

− 1

2
C?

(
max(K,d)

)∫
Rd

|u|2 log |u|2 dγ≥ 0.

12



Proof. The solution h = v2 of (3) is such that
∫
Rd x h dγ = 0 and Lemma 7 applies.

Since h(t , ·)γ is log-concave for any t ≥ 0 by Lemma 6, we can apply (15) with f =
∂P/∂xi for any i = 1, 2,. . . d and obtain∫

Rd
‖HessP‖2 h dγ≥ 1

432 max(K,d)

∫
Rd

|∇P |2 h dγ

because, using (13), d +K = d + (K−d)e−2 t ≤ max(K,d). It follows from (11) that

d

d t
I [v(t , ·)]+2C?(K)I [v(t , ·)] ≤ 0,

and the stability result is obtained as in the standard proof of the entropy – entropy
production inequality (LSI) by the carré du champ method, cf. Section 2.2.

2.4.3. From compact support to log-concavity
The log-concavity property becomes true under the action of the flow of (3) after

some delay t? for large classes of initial data. With the notation of Lemma 6, for
any R > 0, we read from [44, Theorem 5.1] by K. Lee and J-L. Vázquez that dµt =
|v(t , ·)|2 dγ is log-concave for any

t ≥ t?(R) := log
(√

R2 +1
)

(19)

if v is solves (10) with a compactly supported initial datum u that is supported in a
ball of radius R > 0. The reduction from (10) to the heat flow (17) goes as in the proof
of Lemma 6. As a consequence, we know that (15) holds for any t ≥ t?(R).

Corollary 9. Let d ≥ 1 and assume that u ∈ H is compactly supported in a ball of
radius R > 0. Then for all u ∈H such that (1) holds, with C? defined by (18), we have∫

Rd
|∇u|2 dγ≥ C

2

∫
Rd

|u|2 log |u|2 dγ

with

C = 1+ C?(K?)−1

1+R2 C?(K?)
and K? := max

(
d ,

(d +1)R2

1+R2

)
.

Proof. Corollary 9 follows from t?(R) given by (19) so that e−2 t?(R) = 1/(1 + R2),
Proposition 8 applied at t = t?(R) with K= (d+1)R2/(1+R2) ≥K

(
t?(R)

)+d by (13),
and Lemma 2 applied with T = t?(R) and c = 1−1/C?(K?), so that

δ[u] = ‖∇u‖2
L2(Rd ,dγ)

− 1

2

∫
Rd

|u|2 log |u|2 dγ≥ C?(K?)−1(
1+R2

)
C?(K?)

‖∇u‖2
L2(Rd ,dγ)

.

3. Proof of Theorem 1

The proof of Theorem 1 is based on three ingredients:

13



1. A stability result for (LSI) obtained by M. Fathi, E. Indrei, and M. Ledoux in [33]
for a special class of initial data satisfying a Poincaré inequality,

2. The result of [21] by H.-B. Chen, S. Chewi, and J. Niles-Weed which states that
after a finite time T ≥ 0, a solution to the Ornstein–Uhlenbeck flow is in the
above class under Condition (2),

3. The backward in time argument based on the carré du champ method of Sec-
tion 2.3, as in [14], which is used on the interval [0,T ).

3.1. Evolving a Poincaré inequality by the Ornstein–Uhlenbeck flow and application

In this section we collect some information about the Poincaré inequality for
a measure v2 dγ where the function v is evolving under the Ornstein-Uhlenbeck
equation (10). As in [33], let us define P (λ), for any λ> 0, as the set of all functions u
such that the measure u2 dγ is a probability measure which satisfies a Poincaré in-
equality ∫

Rd
|∇ϕ|2 u2 dγ≥λ

∫
Rd

|ϕ|2 u2 dγ ∀ϕ ∈Hu

where Hu is the space of the functions ϕ ∈ H1(Rd ,u2 dγ) such that
∫
Rd ϕu2 dγ = 0.

The following Lemma is a key step in obtaining [33, Theorem 1] and its proof can be
found in [33, Section 2].

Lemma 10. If v(t , ·) solves (10) with initial datum v(t = 0, ·) = u such that u ∈ P (λ)
for some λ> 0, then for any t ≥ 0 we have the Poincaré inequality∫

Rd
|∇ϕ|2 |v(t , ·)|2 dγ≥ λ

λ+ (1−λ)e−2 t

∫
Rd

|ϕ|2 |v(t , ·)|2 dγ ∀ϕ ∈Hv(t ,·) .

Let us consider the function

σ(λ) := λ2 −λ−λ logλ

(λ−1)2 ∀λ ∈ (0,1)∪ (1,+∞)

and extend it by σ(1) = 1/2. We may notice that σ is monotone increasing and con-
cave, with limλ→0+ σ(λ) = 0 and limλ→+∞σ(λ) = 1. An interesting consequence of
Lemma 10 is the following stability estimate for (LSI).

Corollary 11 ([33]). Let λ > 0 and u ∈ H satisfying Condition (1) and such that u ∈
P (λ), then we have that

δ[u] ≥σ(λ)‖∇u‖2
L2(Rd ,dγ)

.

The proof of Corollary 11 relies on the same strategy as in the proof of Proposition 8,
except that one has to use the Poincaré inequality of Lemma 10 to write that∫

Rd
‖HessP‖2 h dγ≥ λ

λ+ (1−λ)e−2 t

∫
Rd

|∇P |2 h dγ ∀ t ≥ 0.

The result follows from an integration on t ∈R+ of (11) using the above inequality.
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3.2. Gaussian convolutions of measures through the Ornstein-Uhlenbeck flow

For any a > 1 and b > 0, let us define the function

F (a,b) := 1

a

( a

a −1
+b

1
a−1

)−1
.

The following result is a rephrasing of the main result in [21] using the Ornstein-
Uhlenbeck flow.

Lemma 12. Let v(t , ·) be a solution to (10) with v(t = 0, ·) = u ∈ H . If u satisfies (1)
and (2) for some ε> 0 and C > 0, then

v(t , ·) ∈P
(
λ(t )

)
with λ(t ) := εe2 t F

(
ε
(
e2 t −1

)
,C

) ∀ t ≥ tε := 1

2
log

(
1+ 1

ε

)
.

(20)

Proof. As in the proof of Lemma 6, if the function f solves (17) with initial datum
|u|2γ, then

γ(x) |v(t , x)|2 = ed t f
(
s, y

)
with s = 1

2

(
e2 t −1

)
and y = e t x

by (16). By a direct application of [21, Theorem 2], we learn that f (s, ·)/
p
γ is in

P (Λ) with Λ = εF (2ε s,C) if 2s > 1/ε, i.e., if t = t (s) ≥ tε. Changing variables, if
ψ(y) =ϕ(

e−t y
)
, we have∫
Rd

|∇xϕ(x)|2 |v(t , x)|2 dγ= e2 t
∫
Rd

∣∣∇ψ(y)
∣∣2 f (s, y)d y ,∫

Rd
|ϕ(x)|2 |v(t , x)|2 dγ=

∫
Rd

∣∣ψ(y)
∣∣2 f (s, y)d y ,

for any ϕ ∈ H1(Rd , v2 dγ) with zero average with respect to the measure v2 dγ. Since
the function ψ has zero average with respect to the measure f (s, y)d y , the corre-
sponding Poincaré inequality amounts to (20) written with λ = λ(t ) = e2t Λ. This
concludes the proof.

3.3. Conclusion

We can now complete the proof of Theorem 1 as follows. We recall that v(t , ·)
solves (10) with initial datum v(t = 0, ·) = u such that (1) and (2) hold. By Corollary 10
and Lemma 12, we know that

δ[v(t , ·)] ≥σ(
λ(t )

)‖∇v(t , ·)‖2
L2(Rd ,dγ)

∀ t ≥ tε

with λ(t ) and tε given by (20). As a consequence of Lemma 2 applied with T = tε, we
have

δ[u] ≥ η‖∇u‖2
L2(Rd ,dγ)

with η= sup
t>tε

σ
(
λ(t )

)
e−2 t . (21)
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With the admissible choice of t satisfying ε (e2 t −1) = 2, we obtain the simple lower
estimate

η≥ ε

2+ε σ
(

2+ε
2(2+C)

)
.

4. Log-concavity and compactly supported functions

This section collects some additional results about stability for log-concave mea-
sures and compactly supported functions.

4.1. Stability results for log-concave measures
Here is a simple improvement of Proposition 8 based on Corollary 11.

Corollary 13. Assume ν := u2 dγ is a logarithmically concave probability measure
with u ∈ H , such that (1) is satisfied, and ‖x u‖2

L2(Rd ,dγ)
=K. Then, the stability esti-

mate

δ[u] ≥σ(λ)
∫
Rd

|∇u|2 dγ

holds with 1/λ= 432K.

Proof. This result is a simple consequence of Lemma 5 and Corollary 11.

4.2. Compactly supported functions
From Corollary 9, we obtain an improved (LSI) with a bound which depends on

the dimension d . Dimensional dependence is a huge topic in functional inequalities
and we refer to [31] for further considerations in this direction. As a final remark, let
us notice that Theorem 1 provides us with a dimension-free result.

Proposition 14. If u ∈H is supported in B(0,R) and satisfies (1), then

δ[u] ≥ α

1+R2 ‖∇u‖2
L2(Rd ,dγ)

with α= (
(1+e) log(1+e)−e

)
/e2 ≈ 0.292973.

Proof. We may notice that (2) is satisfied for every ε > 0, and C = exp(εR2). The re-
sult follows by taking the limit as ε→∞ in (21) with e2 t = 1+R2 and λ(t ) ≥ (1+e)−1.
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