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Abstract

Given an exchange economy consisting @onsumers, there is an associated collective demand function, which is the sum of
the individual demand functions. It maps the price sysjeto a goods bundle (p). Conversely, given a map — x(p), it is
natural to ask whether it is the collective demand function of a market economy. We answer that question in the cass when
less than the number of goodsThe proof relies on finding convex solutions to a strongly nonlinear system of partial differential
equations.

0 2005 Elsevier SAS. All rights reserved.

Résumé

La fonction de demande agrégée d'une société composgendividus résulte de la sommation deonctions de demandes
individuelles. Elle fait correspondre a un systeme de prixin vecteur de bieng(p). Inversement, étant donnée une fonction
p — x(p), est-elle une fonction de demande agrégée ? Nous apporterons une réponse a cette question dans le cas ou il y a moi

de consommateurs que de biens.
0 2005 Elsevier SAS. All rights reserved.
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1. The disaggregation problem

Consider an exchange economy consisting obnsumers. The space of good®i§ and agent is characterized
by a strictly quasi-concave utility functiom; and a wealth;. Given a set of non-negative pricese R” , agenti
chooses its consumptiofi(p) by solving the optimization problem:
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maxu; (x), (1)
p'x <q. 2

Assume that, for every belonging to a convex subsgt of R”, the solutionx; (p) exists, and satisfies'x; (p) = ¢;.
This will be the case, for instance, if the are increasing with respect to every argument, and we can2akeR”.
The individual demands; (p) are then well-defined of2, and adding them up, we obtain thearket demand

k
x(p):=)_xi(p). 3)

i=1
It obviously satisfies the Walras law:

k
Pr(p)=> ci=c. 4
i=1

We are interested in the inverse problem: given a map x(p) from a subset? c R” into R”, an integek, and
numbersw;, 1< i <k, can one find strictly concave utility functioms(x), 1 <i <k, such that the decomposition
(3) holds,x; (p) being the solution of problem (1)? An obvious necessary condition isxthat should satisfy the
Walras law, but is it sufficient?

This is the famous disaggregation problem, which has a long history. In the casek\v#hen(there are more
consumers than goods), it was proved by Chiappori and Ekeland in [4] that the Walras law is sufficient. Much earlier
in a celebrated series of papers, Sonnenschein, Mantel and Debreu had investigated the same question in the cas
excess demanthat is when the linear constraint is of the fopix < p’w;, wherew; € R" is the initial endowment of
agenti. They proved that ik > n, the Walras law was sufficient. We refer to [13] for a history of the Sonnenschein—
Debreu—Mantel results, and to [5] for a recent proof, in the spirit of the present paper.

Much less is known in the case whén< n, except in the case= 1, where the group reduces to one person, so
that collective demand coincides with individual demand. It is the aim of the present paper to fill that gap in the case
of market demand. We do not treat the case of excess demand, which, to our knowledge, still remains open.

The cas& = 1 is classical. It was first treated by Antonelli [1], whose results went forgotten and were rediscovered
by Slutsky [14]. We summarize these results, and sketch part of the proof; the reader will find the full argument in [12],
for instance.

Here and later, we denote differentiation by the symBpko thatDu denotes the Jacobian matrix of the map

i\ 1i<n
(3
i /1<j<n
and D?u denotes the matrix of second derivatives of the function

5 ( azu )1<i<n
Du = .
0pjopj /) 1<j<n

Proposition 1. Let 2 be a convex open subset®f, andx(p) be aC! map froms2 into R” satisfying the Walras
law. A necessary and sufficient condition iatp) to be the individual demand associated with some quasi-concave
utility functionu is that the restriction oDx(p) to [x(p)]+ is symmetric and negative definite for every 2.

In other words, we can write:
Dx=Q +&x

where Q is a symmetric,negative definite matrix, ahds a vector (so that the last term in the above equation is a
matrix of rank 1). This is known in the literature as Slkeitsky conditionFor an analogue of this condition in the case
of individual excess demand, we refer to [5].

Let us sketch the proof that the Slutsky condition is necessary. Assume that the utilitity fumatiotine sole
agent isC2, and that the restriction ab?u(x(p)) to [p]* is negative definite. Then the individual demangp) is
characterized by the first-order optimality condition:
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Du(x(p)) =r(p)p.
p'x(p)=c

whereX(p) > 0 is the Lagrange multiplier. Applying the Inverse Function Theorem to this system, one finds that the
mapx (p) and the functior.(p) are well-defined and'! on £2.
Introduce now the indirect demand function:

v(p) = mxax{u(x) | p'x < c}. (5)

The functionv(p) is quasi-convex and?. More precisely, the restriction @2v(p) to [x(p)]* is positive definite.
In addition,u(x) can be obtained from(p) by the formula:

u(x)zmpin{v(p) |p/x>c}. (6)

Let us differentiate(p) by applying the envelope theorem to the formulg) = max, {u(x) — A(p)(c — p'x)}.
We get:

Dv(p) = —M(p)x(p), (7

x(p) =—up(p)Dv(p) 8
whereu(p) = 1/A(p). Differentiating, we get:

Dx = —uD?v + (D) (Dv)'.

The last term on the right-hand side vanish[ep)]+ = [Dv(p)]+, so that the restriction abx(p) to [x(p)]*+
is negative definite, and the Slutsky condition is indeed necessary. The fact that it is also sufficient is proved by using
formula (6); we refer to [12] for detalils.

In the casek > 1, there is a natural extension of the Slutsky condition, which was first described by Diewert [6]
and by Geanakoplos and Polemarchakis [9] in the context of market demand:

Definition 2. Let £2 be a convex open subset®f, andx(p) be aC2 map froms2 into R” satisfying the Walras law.
We shall say that (p) satisfies the generalized Slutsky conditionf@onsumers, abbrevieated to G§ if for every
p € 2 we have:

k
Dx(p)=Q(p)+ Y _&(pIni(p) ©)

i=1
whereQ(p) is symmetric and negative definite, and the vectprsl < i < k, containx(p) in their linear span.
Proposition 3. Let £2 be a convex open subset®f, andx(p) be aC? map froms2 into R” satisfying the Walras
law. A necessary condition far(p) to be the market demand for an exchange economymdtnsumers is that if
x(p) satisfiesdcS(k) on £2.

Proof. Rewrite formula (3), using formula (8) for each individual demang). We get:

k
x(p) == _ ui(p)Dv;(p). (10)

i=1
Now we differentiate:

k k
Dx=— Z,U«iDzvi - Z Dui(Dv;)'. (11)
i—1 i—1

The first term on the right is a symmetric matrix, and the second has the desiremp@in;, with n; = Dv;.
Because of relation (10)(p) belongs to the-dimensional spacé (p) = Span(Dv;(p)) | 1 < i < k]. Finally,
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Er(p)* is the intersection of all théDv; (p)1+ = [xi(p)]+, and the restriction oD2v; (p) to [x;(p)]* is positive
definite because of the Slutsky condition. So the restrictioR.ofp) to Ex(p)- must be negative definite. Writing:

k k k
Dx = (— > uiD?v; — Zaioviwvi)/) — D (D +; Dvi)(Dvy)’
i=1 i=1 i=1
and takinge; > O large enough, we find that the first term on the right-hand side is symmetric and negative definite,
and this is the G&) condition. O

This paper aims at showing that the GBcondition is sufficient. We will prove the following:

Theorem 4.Letx(p) be an analytic map from some convex neighbourh@gadf p € R” into R” satisfyingp’x(p) =
w for somew > 0. Assume that (p) satisfies theGS(k) condition on2y for somek > 1. Then, given any family
w; > 0,1<i <k, suchthat)_ w; = w, there exists some convex neighbourhéhdc ¢ of p, such thatc(p) is the
market demand function for an exchange economy withnsumers with wealthss, .. ., wy.

This theorem will be a consequence of another one, which we state in the next section.
2. A system of nonlinear PDEs

Let us rephrase the disaggregation problem as a system of partial differential equations. We are given a:constant
and a mapx(p) satisfyingp’x(p) = ¢ > 0. We choose positive constants . .., ¢, which sum up tac, and we seek
mapsxi(p), ..., xx(p) such thatp’x; (p) = ¢; andx;(p) solves the optimization problem (1), (2) for some strictly
quasi-concave functiom’ . Substituting the expression (8) for eaglip), we get the system of equations:

k
x(p) ==Y _ wi(p)Dvi(p), (12)
i=1
Ci
mi(p)’
Conversely, if there is a set of functions(p) and ; (p), 1 <i < k, satisfying this system, if the;(p) are C?
with D2v; positive definite, and if thet;(p) are positive, then the; (x) defined by formula (6) will bec? and
strictly quasi-concave, and(p) will maximize «; (x) under the constraint’x < w;. So the disaggregation problem
is equivalent to finding solution@;, u;), 1 <i <k, of the system (12), (13) with thg convex and the.; positive.
Let us rewrite the system as follows:

p'Dvi(p) =— 1<i<k. (13)

k

R
Yl ), 1<j<n, (14)
iz P
" 81),' .
—wi Y pi—=ci, 1<i<k. (15)
=1 P

Theorem 5.Letx(p) be an analytic map from some convex neighbourh@gaf p € R” into R” satisfyingp’x(p) =
Zle ¢i. If x(p) satisfies th&S(k) condition ons2p for somek > 1, then there exists some neighbourha@@dc 29
of p, and analytic functions; (p) and u;(p), 1<i <k, defined ons21, with D?v; positive definite ange; > 0,
satisfying equationél4) and (15).

Of course, we can eliminate the from the equations. We then get a systennafonlinear partial differential
equations for thé unknown functions;:
k

.. Sv: )
Y o= 1<i<n (16)
i—1 22j=1Pjgp; oPi
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This can be written in a more transparent way by introducing the vector field:
n
d
7T(P)=ij? 17)
— O
J
and recognizing in the denominator of (16) the derivative;dh the directiorvr, which we denote by/dr:

k
S 6 2P _ iy, 1< <n. (18)
= ov; /0w

Again, the problem consists in finding convex solutiens. . ., v, of system (18), and the answer is provided by
Theorem 5: it is possible, provided thé(p) satisfy the Walras law and the @GS condition, and they are analytic.

Before we proceed with the proof, let us comment on related results<lIfi, the system is clearly overdeter-
mined (there are more equations than unknown functions), and some compatibility condition on the right-hand sides
x/(p), 1<i <n,is needed in order to find solutions; this is what Theorem 5 provides, with the added twist that we
want the solutions to be convex.

When there is a single equatioh= 1, the results of the preceding section show that there is a quasi-convex
solutionvy(p) = v(p) provided thex/ (p) satisfy the Walras law and the Slutsky condition. This solution is defined
globally (there is no need to restrict the initial neighbourhood), and it does not require that théve analytic:C? is
enough. On the other hand, it does not give a convex solution, only a quasi-convex one, so the conclusion might seer
to be weaker. This is not so; indeed, given a quasi-convex functéord a pointp, we can always find a functiap(r)
such thaiy o v is convex in some neighbourhood @f and we then take advantage of the following remark.

Lemma 6. If (v1,...,v;) is a solution of systenfl8) near p and theg, :R — R satisfiese’(v;(p)) # 0, then
(p1ov1,...,pr o vg) is also a solution of syste(d8) near p.

Proof. Clear. O

Whenk > n, then the G8) condition is vacuous, and all we are left with is the Walras law. Indeed, it has been
proved by Chiappori and Ekeland [4] that in that case, the system (14), (15) always has local sojdiays; , with
thev; convex and the; positive, provided only that the (p) are analytic and satisfy” pjxj (p)=> ci.

Whenk < n, and we consider only part of the system, that is equations (14) but not the constraints (15), then it
has been proved by Ekeland and Nirenberg [8] that there are local solutians i;, with thev; convex and the;
positive, provided the/ (p) areC? (not necessarily analytic) and satisfy the @Scondition.

This paper is the first one to consider the full problem with n. The proof is provided in the next section. It relies,
as [4], on the Cartan—Ké&hler theorem, which is a very sophisticated tool for solving systems of partial differential
equations in the analytic framework; see [3] for a detailed statement and proof. Let us conclude by remarking on
the requirement that the right-hand side’p) be analytic. This means that they can be expanded in convergent
power series in the neighbourhood of any pginfhis is much stronger than simply being indefinitely differentiable:
the Taylor series has to converge. The reason this is needed is that the proof of the Cartan—K&hler theorem goes &
expanding both sides of the equations in power series and matching coefficients. Whether Theorem 5 still holds true
if the right-hand sides/(p) are only assumed to B> is not known; we have investigated the question without
success.

3. Solving the system
3.1. Some simplifications

We will give the proof only in the case= 2. This will considerably simplify the notations, and make the argument
more transparent by getting rid of half the indices. We will also take: ¢c» = 1. Let us restate the problem in that
case.

We are given an analytic mag(p) of 2o C R” into R” satisfying the Walras law:

p'x(p) =2 (19)
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and the G&) condition:
Dx(p) = Q(p) +&1(p)ni(p) + E20p)n2(p) (20)

whereQ(p) is symmetric and negative definite, an) belongs to the 2-dimensional subspace:

E2(p) = Sparfni(p)na(p)].
We want to find functiong(p), v(p), A(p) andu(p) such that: andv are convexj andu are negative, and:

9 i) :
A= (p), 1< j<n, (21)
apj ;)
- ou
A pig—=1, (22)
j=1 Pj
- av
ny piz—=1 (23)
P

This system naturally splits in two parts: thd=gs. (21), which express the veciqip) as a linear combination of
the two gradient®u and Dv:

M(p)Du + p(p)Dv = x(p) (24)
and the two Egs. (22) and (23), which are constraints on the coefficiearid u:

rMp'Du) =1, (25)
w(p’Dv) =1. (26)
If we define new variableg’ andv/ by:
i ou
opi’
i 9
opi
Egs. (21), (22) and (23) become algebraic relations betweeri the/, A andu:
Aui+uvi=xi(p), 1<i<n, (27)
n
LY pjul =1, (28)
i=1
n .
;Lijvjzl. (29)
j=1

Define M to be the set of allp;, u/, v, A, n), 1< i, j, k <n, satisfying (27), (28) and (29). The problem consists
in finding convex functiong andwv, negative functions andu such that:

(p. Du(p), Dv(p), M(p), u(p)) € M Vp. (30)
In other words, we are looking for holonomic sections\dfoverR”.

3.2. Finding general solutions

In order to study the manifold1 and to have a convenient setting for the Cartan—Kahler theorem we will change
coordinates irR". We will then apply the Cartan—Kahler theorem to find holonomic sectiongtafver R”, that is,
to find functionsu, v, A andu which solve the system (21), (22) and (23) but which do not necessarily satisfy the
further requirements of convexity and negativity.
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Define a differential 1-fornw by:
=Y x'(p)dp:. (31)
i=1
Because of the G®) condition (20), we have:
w A dw A dew=0. (32)
By the Darboux theorem (see [3] or [8]), we can find functions p), g2(p), g3(p). ga(p)) such that:

w = q1dg2 + g3dga. (33)

Find other functiong; (p), 5<i < n, such thatthég; (p), 1 <i < n, are linearly independent, and use theas
a nonlinear coordinate system negar
Note that, setting = g1/¢3, we have:

o Ado = (q3dq1 — q10g3) A dgz A dga = g5 dh A dgz A dga. (34)

If there is another splitting ab, namelyw = 1 du + u dv, then we must also have:
A
w/\dw:(udk—kdu)/\du/\dvzuzd(—)/\du/\dv. (35)
nw

Comparing formulas (34) and (35), we find th@l:, dg, dgs) and (d(%), du, dv) span the same subspace. It
follows that d: and d> must belong to the 3-dimensional subsp&gép) = Spardgz, dg4, dh]. Writing:

n

du=> "u'dg; (36)
i=1
we find that in fact:
1
du = u?dgo + u?dgs + u" dh = u?dgo + u* dga + —u" dgq — q—;uh dgs. (37)
q3 q3

Comparing formulas (36) and (37), we find that:
gt +qau® =0,
u'=0, 5<i<n

and similar relations for the/.
In this coordinate systeri\t is the set ofig;, u’, v, 1, n), 1<i, j, k <n, such that:

aut + ot =0, (38)
au? 4 pv? = g1, (39)
i + pvt = ga, (40)
al +pv' =0, 5<i<n, (41)
utqr+ulg3 =0, (42)
vigr + 133 =0, (43)
A iuiPi (@)=1 (44)
i=1

where theP; (¢) are theg;-coordinates of the vector field, defined by formula (17) in thg;-coordinates.
All these equations are independent, so thdtis a submanifold of codimensiom + 2 in R¥*2, and hence
dimension 2.
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Note that all points inM satisfy additional relations. From (42) and (43) we deduce ahat! = 13/, and
equation (38) then implies that:

Al + uvs =0.

Remembering the Walras law, we also find that Eq. (44) implies a similar relatiqn for

4 4 4 4
MZUiPi = (,quiP[ +kZuiPi> —AZuiPi =1
i=1 i=1 i=1 i=1

Consider the exterior differential system ari:

4

Z du’ A dg; =0, (45)
i=1

4 .
> dv/ Adg; =0, (46)
i=1
dg1 A --- Adg, #0, (47)

where the function®; (ql, ..., q"), 1<i <n, are given.

Lemma 7. Any integral manifold of this system is the graph of a map

N (8u v . )
q PP RAT) l’l/
dqi 9q;
where the functions, v, A, u satisfy Eqs(21)—(23)in the p;-coordinates.

Proof. Condition (45) mean that the function$ do not depend on the;, 5< j, and that the cross-derivatives
du' /dq; anddu’ /dq; are equal, for K i, j < 4. By the Poincaré lemma, there is a functio@1, g2, 3, ¢4) such
thatu’ = du/dq;. Similarly, condition (46) means that there is a functioig1, g2, ¢3, ga) such that’ = dv/dg;.
These partial derivatives lie iM for all g. Going back to thep;-coordinates, this means precisely that they satisfy
all the equations (21)—(23).00

We claim that the Cartan—Kahler theorem applies, so that there is an integral manifold going through any giver
integral element. To prove it, we will have to check successively that the system is closed, that there is an integre
element through every point i, and that the Cartan test is satisfied.

It is obvious from the form of Egs. (45) and (46) that the system is closed.

Let us now look for integral elements. Setting:

n
dui = Z Ulj dq,,
j=1
dv' = Z yii dg;,
dr=Y L’ dg;,
and substituting in Egs. (45) and (46) we get:

U7 —U""=0, 1<i,j<4 i#], (48)
Vi —vIit=0, 1<i,j<4, i#], (49)
UY=0, 1<i<4% 5<] (50)

Vii=0, 1<i<4 5<j. (51)
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Note that the//, the i/, the L/ and theM/ also have to satisfy the relations obtained by differentiating Egs. (38)—
(44), which express that we are working in the Grassmannian bundieptsfnes in7* M. All these equations are
linearly independent. Egs. (48)—(51) number12(n — 4) 4+ 4(n — 4) = 8n — 20, so that the set of integral elements
has codimension = 8z — 20 in the Grassmannian.

Let us now perform Cartan’s test. Write:

4
o =du’ —ZUU dg;,
i=1

4
,Bi =dv — Zviquj.
i=1

Note that, because of relations (48) to (51), we have

Zai A dg; :Zdui Adg; =0,
> B Adgi=) dv' Adg; =0.

We then apply the Cartan procedure, as described in [3]. We have:

Ho = {0},

Hy=sparfa?, ],

Ho =sparfat, 1, o2, 7],

Hs =sparfat, g1, a2, 2,03, B3],

H; = spafja?, B, o?. f2.a% p3. 0%, p*] fora<i
and hence:

c0=0, c1=2, c2=4, ¢3=6, c4=--=c,—1=8,
C=co+ - 4+c,-1=0+2+4+6+8n—-4)=8n—20

which is exactly the codimension we found earli€r= c. So the exterior differential system passes the Cartan test.
By the Cartan—Kahler theorem, for every poigt, u’, v, A, n), 1< i, j,k <nin M, and every integral element
(U, vkt L™ M*) through that point, there is an integral manifold of the exterior differential system (45)—(47).

Of course, the conclusion is coordinate-independent. Let us revert to the original coording&tessm thatw
no longer has the special forgn dg2 + g3dg4.The relations defining an integral element are then obtained di-
rectly by writing that they are tangent to holonomic sections\of A point in M is then specified by coordinates
(pi,ul vk, 1, ), 1<, j, k <n satisfying relations (27), (28) and (29). Introduce the notations:

E:(ul,...,u”), n:(vl,...,v”).

An integral element then is simply a 9éf, V, L, M), whereU andV are symmetria: x n matrices, and. and
M aren-vectors satisfying:

Q=AU+ puV +LE + My, (52)
AUp=—(E'pL —2E, (53)
uVp=—'p)M — un. (54)

Here §2 is the Jacobian matriﬁxi/apj. Note for future use that, by differentiating the relatiphx’ (p) p; = 2
with respect tgp, we get

n .
ax' ;
Zax,pi‘Fx/:O,

i=1 °PJ
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so that:
2p+rE+un=0. (55)
The Cartan—Kahler theorem tells us that, given such an integral elemépt &@ty, A, u), there are functions
(u, v, A, u) such that:
Du(p)=U,  D%(p)=V, (56)
Du(p) =§, Dv(p)=n. (57)

3.3. Finding convex solutions

Given relations (56) and (57), all we have to prove is that there is an integral elétherit L, M) at p with U
andV positive definite. TherD?u(p) and D?v(p) will be positive definite, and s@ andv will be strictly convex in
a neighbourhood gp.

To do this, we shall use a lemma of Pierre-Louis Lions [11]:

Lemma 8.Given a symmetric, positive definite matgx a vectorp and two vectorg; and g, satisfyinggs + g2 =
QOp, a necessary and sufficient condition for the existence of two symmetric, positive definite n@iraed Q>
such that

Q=01+ 02,

Q1p =qu1,

Q2p=q2
is that

(p.q1) >0, (58)
(p.gq2) >0, (59)
(q1, 0" 'g2) > 0. (60)

Proof. Letus setc = QY2p, y= 0Y24, andz = 0~ 124,. Set also
M=0"20,0"Y2 and N=0-Y20,0"2.

We have:
M+N=1I, (61)
Mx =y, (62)
Nx =2 (63)

andy + z = x. Soitis enough to prove the lemma for the particular case w@etel . Let us do it.
Using the three equations, we find easily:
(x,y) = (x, Mx) >0, (64)
(x,z) =(x,Nx) > 0. (65)

Both M andI — M are positive definite. This means thakQW < I in the sense of symmetric matrices, so that
M? < M. It follows that:

(y,z2) = (Mx,Nx) = (Mx, I - M)x) = (x, Mx) — (x, M?x) > 0. (66)

So the conditions (58), (59), and (60) are necessary.

Let us now prove that they are sufficient. Given three vectors, z satisfying (64), (65), and (66) we seek a
symmetric matrix( such thatMx = y and O< M < 1. Indeed, we then s&f = I — M, which is still symmetric and
positive definite, and we havéx =x — Mx =x — z =y, as desired.
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It is enough to solve the problem in the plane spanned layd y. Without loss of generality, we assume that
x|l = 1. Take an orthonormal basig;, ¢,)in that plane withx = (1, 0) andy = (y1, y2). Egs. (64), (65) and (66)

yield 0< y; <1 andy; — ||y||2 > 0.
The matrix we are looking for is:

M= (yl yz)
Y2 ¢

where we will adjust the constant Since(x, y) and(x, z) are positive, we have 8 y; < 1.
Clearly Mx = y. We will adjust the constantto have O< M < I. This requires that the determinant and the trace

of M and(I — M) are positive.
Writing that both determinants are positive, we get:

2 2
Y2 <c<1l- 2 .
1 1-y
Sinceyy > | y||2, the left-hand side is smaller than the right-hand side, so we can findsintieat interval. Since

O<y1 <1, wemusthave &c < 1.
Writing that both traces are positive, we get:

—y1<c<2-—y1.
Since O< y; < 1, this inequality follows from O< ¢ < 1. So anyc that satisfies the first inequality satisfies the

second. O
We now return to our main argument. By assumption, thékG&ondition is satisfied, so that there is a symmetric,

positive definite: x n matrix Q andr-vectorsL andM such that:
(67)

R=0+LE +My.
Lemma 9. Denote byLg and Mg the projections of. and M on [&, n]* and by Qg the restriction ofQ to [&, n]+.

Without loss of generality, it can be assumed that

(€' p)(n' p)LoQy Mo > 0.
Proof. Take any numbers, 8, y ands such thai8y — «é = 1. Rewrites2 as follows:

Q=0Q+LE +M7iy

with:
L=oaL+BM, M=yL+M,
E=—8+yn, i = pE —an.
We then have:
(E'p) (W p)LoQo Mo=[-8(&"p) + v ' m][BE P) — a(n' p)](aLy+ BME) Qg (v Lo + 8Mo)
=[-8E P)+y ' P][BE P) — (' p)][ey LyQy Lo+ (@8 + By) Ly Qo Mo + BEM Q5 Mo).

Set the value oé to §= (n'p). The first term on the right-hand side then changes sigm fery = (¢'p).We will
find valuesy andg, with y 8 — da = 1 such that the two other terms are non-zero#rs, y, ¢). It then follows that
the right hand side has two opposite signs@@rg, y + ¢,8) and for(a, B8,y — ¢, §), whene > 0 is small enough,

and the result obtains.O
Rewrite Eq. (67) as follows:
2=0+at& + By + (L —ag)§ + (M — B (68)
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with « andB8 > 0, so that the matrbQ + a&&’ + Bnn’ is positive definite. Let us apply the lemma of Pierre-Louis
Lions to find positive definite matrice81 and Q2 such that:
01+ Q2= 0 +at& + By,
O01p=—(E'p)(L —aé) —2&,
O2p =—('p)(M — Bn) — un.
We first check thapd1 p and Q2p add up toQp + a& (&' p) + Bn(n’p). Using (68), and (52), we have:

Q1p+ Qop=—(E'p)(L —a&) — (' p)(M — Bn) — A& — un,
Op+a&E'p)+Bnn'p)=2p — (L —a&)(E p) — (M — Bn)(0' p).

Subtracting, we get:

Op—01p— Q2p=02p+ A&+ un

and the right-hand side vanishes by relation (55).
The first condition holds, and we proceed to the others. Conditions (58) and (59) become:

—E'P[(P'L) —aE'p)—2]>0,
~'p)[(p'M) = B(y'p) — ] >0

both of which hold true forx > 0 andg > 0 large enough.
Whena, 8 — oo, we have, for anyg andn in R”:

(€, [Q + & + Bnn'] Mn) — (€0, Q5 n0)

where the subscript 0 denotes the projection[&m]+. Applying this with& = —(¢'p)(L — a€) — A€ andn =
—(n'p)(M — Bn) — un, we find:

(80, Qgtno) = (' p) (' P) L Qg Mo

and the right-hand side is positive by the lemma.

The proof is thus happily concluded in the cése 2. In the cas& > 2, the same argument goes through, except
for the last Lemma, which relies on the fact thiétand(/ — M) commute. One must then use another characterisation,
which is due to Inchakov [10]. Without loss of generality, assuine I, and consider the quadratic form:

2
(Cz,2)= Z % —(z,2).

Lemma 10.Assuméx,, y) = 0for all n. Then a necessary and sufficient condition for the existence of positive definite
matricesM,, such thatM,,y = x,, forall n and)_ M, = I isthat}_x, =y, (x,,y) > 0for all n,and(Cz, z) < O for
all z not collinear withy.

A proof of Inchakov’s lemma is provided in [7].
4. Conclusion

We would like to conclude with a remark of some economic interest. It has been shown by Browning and Chiap-
pori [2] that condition G%) is necessary in the case of household demand — that is, when there are public goods in
the economy and externalities between consumers. In other wokdgp,)ifs the demand function of a household with
k < n consumers, then it must satisfy &$. But it follows from our result that the sam& p) also is the demand
function of an exchange economy, where there are only private goods and no externalities. In other words, househol
and exchange economies cannot be distinguished by looking at the demand functions only.
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