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J.-H. Lambert (1728–1777) is one of the founders of
non-Euclidean geometry, but he also discovered a strange and
useful property of the Keplerian motion in a Euclidean space. The
time required to reach a point B from a point A with a given
energy, under the Newtonian attraction of a mass at a fixed point
O, will not vary if we shift A and B in such a way that ‖AB‖ and
‖OA‖+ ‖OB‖ remain constant.
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P. Serret (1827–1898) and W. Killing (1847–1923) introduced the
Kepler problem in constant curvature spaces and listed its
impressive analogies with the usual Kepler problem.

We complete this list by proving that the time required to reach a
point B from a point A, under the attraction of a mass at a fixed
point O of the curved space, with given energy, does not vary if we
shift A and B in such a way that d(A,B) and d(O,A)+d(O,B)
remain constant, where d is the geodesic distance.
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We will also discuss the case of pseudo-Riemanian spaces with
constant curvature. We will mainly use the well-known formulas of
variational calculus that Hamilton introduced in 1834, and a simple
property of the eccentricity vector. This work benefited from many
discussions with Zhao Lei, from the University of Augsburg.

∗ ∗ ∗ ∗ ∗

Lambert’s theorem is a strange statement. It is answering a
question, but what was the question? For classical authors, the
question was: how to compute less? Typically they wanted to
determine the elements of the orbit of a new comet. Solving
Kepler equation l = u − e sin u in each step of the computation
makes it very long. With Lambert we can use the same Kepler
equation for several Keplerian orbits.

But let us make the question more “Hamiltonian”.
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What was the question?

Given a natural dymamical system (with a configuration space and
velocities), a departure point A and an arrival point B, there is a
one-parameter family of trajectories going from A to B. This
parameter may be locally the energy E : by the (Leibniz-)
Maupertuis- Jacobi variational principle, namely, by considering
stationary trajectories for the action

∫ tB
tA
‖q̇‖2dt for a given energy

E , we find isolated paths.

Here q is the configuration, q̇ = dq/dt is the velocity.

First question. Is there a pair of tangent vectors (δA, δB)
depending on (A,B,E ) such that shifting (A,B) along the flow
generated by (δA, δB), while keeping the same energy E , does not
change the time ∆t required to reach B from A?

answer: YES, of course
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What was the question?
First question. Is there a pair of tangent vectors (δA, δB)
depending on (A,B,E ) such that shifting (A,B) along the flow
generated by (δA, δB), while keeping the same energy E , does not
change the time ∆t required to reach B from A?

Answer: yes, always, we just follow the levels of ∆t = tB − tA.

Second question. Is there a pair of tangent vectors (δA, δB)
depending on (A,B) such that shifting (A,B) along the flow
generated by (δA, δB), while keeping the same energy E , does not
change the time ∆t required to reach B from A?

Answer: we have the symmetries of the system, but for some
systems we have something else. We have Lambert’s theorem for
the Kepler problem.

Third question. Is there a pair of tangent vectors (δA, δB)
depending on (A,B) such that shifting (A,B) along the flow
generated by (δA, δB), while keeping the same energy E , does not
change w =

∫ tB
tA
‖q̇‖2dt?
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Consistency of the third question
Third question. Is there a pair of tangent vectors (δA, δB)
depending on (A,B) such that shifting (A,B) along the flow
generated by (δA, δB), while keeping the same energy E , does not
change w =

∫ tB
tA
‖q̇‖2dt?

1) If we get (δA, δB) answering positively the third question, it
does not change ∆t either, due to a formula emphasized by
Hamilton in 1834:

∆t =

(
∂w

∂E

)
A,B fixed

where E is the energy. Indeed w remains the same function of E
when we follow the flow of (δA, δB), so ∆t also remains the same
function of E .
2) There is a nice and simple formula for δw also emphasized by
Hamilton in 1834:

δw = 〈δB, q̇B〉 − 〈δA, q̇A〉.

Examples
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