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Introduction



Restricted circular 3 body problem

q̈ + ∇Vµ(q) − 2iq̇ = u, ∥u∥ ≤ 1 (1)

in the rotating frame (RC3BP), u being the control and

Vµ(q) = 1

2
∣q∣2 + 1−µ

∣q+µ∣ +
µ

∣q−1+µ∣ .

Figure: Hill’s region and Lagrange points for the RC3BP, figure from [1].
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Control a�ine system

→ Optimization problem :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) = F
0
(x(t)) + u

1
(t)F

1
(x(t)) + u

2
(t)F

2
(x(t)), u2

1
+ u2

2
≤ 1

x(0) = x
0

x(tf) = xf
tf → min .

(2)

Fi are smooth, i = 0, 1, 2, x
0
, xf ∈ M a 4 dimensional manifold (can be generalized

to 2n with n controls).

Remark

(1) can be wri�en that way with x = (q, v).

Notation : Fij = [Fi, Fj], Hij = {Hi,Hj}, i, j = 0, 1, 2.
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Hypothesis

Assumption :

(A) ∶ rank(F
1
(x), F

2
(x), F

01
(x), F

02
(x)) = 4, for all x ∈M.

Check for the RC3BP.

→ Link with controllability when F
0

is recurrent (µ = 0 or certain energy levels of

the RC3BP.)

Proposition

Any system of the form q̈ + g(q, q̇) = u verifies (A).

We will use later the following hypothesis : (B) ∶ [F
1
, F

2
] = 0.
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Hamiltonian formulation

Consider an optimal control problem

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = f(x,u)
x(0) = x

0
, x(tf) = xf

∫tf
0
ϕ(x(t),u(t))dt → min

f ∶M ×U → TM a family of smooth vector fields, U ⊂ R
m

.

Définition (Pseudo-Hamiltonian)

∀(x,p) ∈ T∗xM, H(x,p,u) = ⟨p, f(x,u)⟩ −ϕ(x,u).

Here H(x,p,u) = H
0
(x,p) + u

1
H

1
(x,p) + u

2
H

2
(x,p), with Hi(x,p) = ⟨p, Fi(x)⟩.
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Necessary condition : the PMP

Théorème (P.M.P.)

(x,u) minimum time trajectory then there exists a Lipschitz curve p(t) ∈ Tx(t)M∗ \ {0}
s.t.
- (x,p) is solution of :

{
ẋ = ∂H

∂p
(x,p,u)

ṗ = −∂H
∂x

(x,p,u).
(3)

- H(x(t),p(t),u(t)) = maxũ∈UH(x(t),p(t), ũ).
- H(x(t),p(t),u(t)) ≥ 0.

Pros : Autonomous Hamiltonian system.

Cons : Dimension doubled, only necessary condition→ existence of optimal control,

singularities.
Solutions of (3) maximizing the Hamiltonian are called extremals. Their projection

on M are extremal trajectories.
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Singularities

Pseudo-Hamiltonian : H(x,p,u) = H
0
(x,p) + u

1
H

1
(x,p) + u

2
H

2
(x,p)

Maximized Hamiltonian : H
∗(x,p) = H

0
(x,p) +

√
H

1
(x,p)2 +H

2
(x,p)2

u =
1√

H2

1
+H2

2

(H
1
,H

2
) : discontinuities of the control u are called switchs.

Définition (Singular locus.)

A switch is a discontinuity of the reference control.

The singular locus, or switching surface is defined by

Σ = {z = (x,p) ∈ T∗M, H
1
(x,p) = H

2
(x,p) = 0}.

Définition

Σ = Σ
0
∪ Σ− ∪ Σ+ with :

Σ− = {H
12
(z)2 < H

02
(z)2 +H

01
(z)2}, Σ+ = {H

12
(z)2 > H

02
(z)2 +H

01
(z)2},

Σ
0
= {H

12
(z)2 = H

02
(z)2 +H

01
(z)2}.
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Structure of the extremal flow



Stratification

Théorème (J.-B. Caillau, M. O.)

There exists unique solution for system (1) in a neighborhood Oz̄ of z̄, and there is at
most one switch on Oz̄.

– If z̄ ∈ Σ− : The local extremal flow z ∶ (t, z
0
) ∈ [0, tf] ×Oz̄ ↦ z(t, z0

) ∈M is
piecewise smooth, and smooth on each strata :

Oz̄ = S0
⊔ S

1
⊔ Σ

- where S
1

is the codimension one submanifold of initial conditions leading to the
switching surface,
- S

0
= Oz̄ \ (S

1
∪ Σ).

– If z̄ ∈ Σ+, no extremal intersects the singular locus, and therefore, the flow is
smooth on Oz̄.
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S
1

Σ−

Σ+

Σ
0

z
0

Figure 1 - Stratification of the flow into regular submanifolds.
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Regular-singular transition

Théorème (J.-B. Caillau, M. O., R. Roussarie)

The singular-regular transition is continuous, with singularities in "z ln z".

(x,p) ↦ (x,H
1
,H

2
,H

01
,H

02
) then, in polar coordinates : (H

1
,H

2
) = (ρ cos s, ρ sin s),

with a time rescaled :

Y ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= ρ cos s

s
′
= g(ρ, s, ξ) − sin s = G(ρ, s, ξ)

ξ
′
= ρh(ρ, s, ξ).

(4)

(i) g, h are smooth functions on an open subset of R × R ×D, D ⊂ R
k

compact, h

has values in R
k

; Semi-hyperbolic equilibria when ρ = 0, G = 0.

(ii) g is smooth in (ρ cosψ, ρ sinψ) and ∣g∣ < 1 on O.
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Normal form theorem

Proposition (C
∞

-normal form, Caillau, O., Roussarie)

Let u = ρs, then there exist A, B, C smooth functions on a neighborhood of D × 0u

such that Y is C∞ equivalent to

Y
∞
∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= −ρ(1 + uA(u, ξ))

s
′
= s(1 + uB(u, ξ))

ξ
′
= uC(u, ξ)

(5)

The global stable manifold has become S− = {s = 0}.
For ρ

0
, sf ≥ 0 consider the two sections Σ

0
⊂ {ρ = ρ

0
}, parameterized by (s, ξ) and

Σf ⊂ {s = sf} parameterized by (ρ, ξ).
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Regular-singular transition

s

ρ

(s, ξ)

T (s, ξ)

S− = {s = 0}

Σ0

Σf

ξ

T

Figure 2 - Poincaré map between the two sections.
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Regular-singular transition

Théorème (J.-B. Caillau, M. O., R. Roussarie)

Let T ∶ Σ
0
→ Σf be the Poincaré mapping between the two sections,

T (s
0
, ξ

0
) = (ρ(s

0
, ξ

0
), ξ(s

0
, ξ

0
)). Then, T is a smooth function in (s

0
ln s

0
, s

0
, ξ

0
) as there

exist smooth functions R and X defined on a neighborhood of {0} × {0} ×D such that

T (s
0
, ξ

0
) = (R(s

0
ln s

0
, s

0
, ξ

0
),X(s

0
ln s

0
, s

0
, ξ

0
)).

Proof of the Lemma. Step 1: Make the Jacobian diagonal. Y is equivalent to :

X ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= −ρ(1 +O(ρ))

s
′
= s +O((ρ + ∣s∣)2)

ξ
′
= ρO(ρ + s)

(6)
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Proof of the Lemma.

Step 2 : Generalization of the Poincaré-Dulac theorem.

X a vector field, we say g is resonant with X if [X,g] = 0

Lemme

Let X(x, ξ) be a smooth vector field in R
n ×R

k, X(0, ξ) = 0. Note X
1

its linear part.
Then, if X

1
does not depend on ξ, it can be formally develop along its resonant

monomials up to a flat term.

The proof of the initial theorem can be adapted since the bracket [X
1
, .] doest not

see ξ : we reason by induction on the space of homogeneous monomials.

Here

X
1
= −ρ

∂

∂ρ
+ s

∂

∂s
.

Resonant monomials are

a(ξ)ρuk ∂
∂ρ

, b(ξ)suk ∂
∂s

, c(ξ)uk ∂
∂ξ

, k ∈ N.
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Proof of the Lemma

So X is formally conjugate to

W ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ρ
′
= −ρ(1 +∑k≥1

ak(ξ)uk)
s
′
= s(1 +∑k≥1

bk(ξ)uk)
ξ
′
= ρ∑k≥1

ck(ξ)uk

Step 3: Generalization of Borel theorem, proven by Malgrange to realize the con-

jugation and W by smooth functions (field) : X = X
∞ + R∞ where R∞ has a zero

infinite jet.

Step 4: Kill the flat perturbation. Path method : equivalent to solve

[Xt,Zt] = R∞. (7)

with Xt a path of field joining X and X
∞

, with unknown Zt.

Using normal hyperbolicity, (7) has a solution (Roussarie, 1975).
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Sketch of the proof

A consequence of the normal form theorem.

(Y∞) equivalent to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
= s

ρ
′
= −ρ(1 + uA(u, ξ))

ξ
′
= uC(u, ξ)

(8)

Transition time : t(s
0
) = ln(sf/s0

),
(u = ρs)

Z ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
0
= 0,

u
′
= −u2

A(u, ξ),
ξ
′
= uC(u, ξ),

(9)

to integrate in time t(s
0
) from Σ

0
to Σf.

Denoting ϕ its flow, T (s
0
, ξ

0
) = ϕ(ln(sf/s0

), s
0
, ρ

0
s

0
, ξ

0
)

16 / 25



Sketch of the proof

A consequence of the normal form theorem.

(Y∞) equivalent to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
= s

ρ
′
= −ρ(1 + uA(u, ξ))

ξ
′
= uC(u, ξ)

(8)

Transition time : t(s
0
) = ln(sf/s0

),
(u = ρs)

Z ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
0
= 0,

u
′
= −u2

A(u, ξ),
ξ
′
= uC(u, ξ),

(9)

to integrate in time t(s
0
) from Σ

0
to Σf.

Denoting ϕ its flow, T (s
0
, ξ

0
) = ϕ(ln(sf/s0

), s
0
, ρ

0
s

0
, ξ

0
)

16 / 25



Sketch of the proof

A consequence of the normal form theorem.

(Y∞) equivalent to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
= s

ρ
′
= −ρ(1 + uA(u, ξ))

ξ
′
= uC(u, ξ)

(8)

Transition time : t(s
0
) = ln(sf/s0

),
(u = ρs)

Z ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
0
= 0,

u
′
= −u2

A(u, ξ),
ξ
′
= uC(u, ξ),

(9)

to integrate in time t(s
0
) from Σ

0
to Σf.

Denoting ϕ its flow, T (s
0
, ξ

0
) = ϕ(ln(sf/s0

), s
0
, ρ

0
s

0
, ξ

0
)

16 / 25



Sketch of the proof

→ Rescale the time : Z̃ =
1

s0

Z ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
0
= 0,

u
′
= −(u2/s

0
)A(u, ξ),

ξ
′
= (u/s

0
)C(u, ξ).

(10)

Its flow ϕ̃ is well defined and the Poincaré mapping is obtained by evaluating it in

time s
0

ln(sf/s0
) :

T (s
0
, ξ

0
) = ϕ̃(s

0
ln(sf/s0

), s
0
, ρ

0
s

0
, ξ

0
).

Issue : Z̃ is not smooth.

Blow up on {u = s = 0} : f(u, s, ξ) = (η, s, ξ) with η = u/s
f
−1

sends a rectangle −η
0
≤ η ≤ η

0
, −s

0
≤ s ≤ s

0
on a cone −η

0
s ≤ u ≤ η

0
s. Lemma

⇒ the flow of Z̃ is contained in that cone.
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Sketch of the proof

The blown up vector field writes:

Ẑ ∶

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

s
′
0
= 0,

η
′
= −η2

A(ηs
0
, ξ),

ξ
′
= ηC(ηs

0
, ξ).

(11)

and is smooth.

Denote ϕ̂ = (η̂, ξ̂) its flow, we only need to evaluate it on a small band s
0
∈ [−s

1
, s

1
],

η
0
∈ [−M,M], on which it is smooth.

T (s
0
, ξ

0
) = (η̂(s

0
ln(sf/s0

), s
0
, ρ

0
, ξ

0
), ξ̂(s

0
ln(sf/s0

), s
0
, ρ

0
, ξ

0
),

which has the desired regularity.
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Sufficient conditions for optimality



Smooth case

Let

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ẋ = f(x,u)
x(0) = x

0
, x(tf) = xf

∫tf
0
ϕ(x(t),u(t))dt → min

be an optimal control problem. Recall, that its pseudo-Hamiltonian is

H(x,p,u) = ⟨p, f(x)⟩−ϕ(x,u), assume that its maximized HamiltonianH
∗

is smooth.

Let z = (x,p) be an extremal and assume :

((B
0
): The reference extremal is normal (meaning p

0

≠ 0).)

(B
1
): ∂x
∂p0

(t, x
0
,p

0
) is invertible for t ∈]0, tf[.

Théorème

Under those hypothesis, the reference trajectory x = Π(z) is a local minimizer along
all trajectories with same endpoints.
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Idea

Compare using the Poincaré-Cartan invariant along an extremal z(t):

∫
z
pdx −H

∗
dt = ∫

tf

0

⟨p(t), f(x(t),u(t))⟩ −H∗(z(t))dt = ∫
tf

0

ϕ(x(t),u(t))dt.

To compare with every C
0

curves on M, one has to li� them to T
∗
M.

→Make the canonical projection Π ∶ T∗M →M invertible: build a Lagrangian sub-

manifold L
0

transverse to T
∗
x0

M on which Π is invertible (tangent space transversal

to kerdΠ) and propagate it by the extremal flow.

L = {(t, z),∃z
0
∈ L

0
, z = exp(tH⃗)(z

0
)}

Π is still invertible on L.
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Idea

L
0

can be chosen so that α = pdx −H∗
dt∣L is exact on L.

Let (x̃, ũ) be any admissible trajectory with same endpoints, denote z̃ = (x̃, p̃) its li�

it to T
∗
M (through Π).

∫
tf

0

ϕ(x̃(t), ũ(t))dt = ∫
tf

0

p̃(t). ˙̃x(t) − H(z̃(t), ũ(t))dt ≥ ∫
tf

0

p̃(t). ˙̃x(t) − H∗(z̃(t))dt
(12)

but

∫
tf

0

p̃(t). ˙̃x(t)−H∗(z̃(t))dt = ∫
z̃
α = ∫

z
α = ∫

tf

0

p(t).ẋ(t)−H∗(z(t))dt = ∫
tf

0

ϕ(x(t),u(t))dt.
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Application to Kepler and the RC3BP

In this case : (B) ∶ [F
1
, F

2
] = 0 ⇒ H

12
= 0.

Previous results apply directly to the controlled RC3BP, and

Σ = Σ− = {z,H
1
(z) = H

2
(z) = 0,H

02
(z)2 +H

01
(z)2 > 0}

Proposition

In the controlled Kepler problem and RC3BP switching are instantaneous rotations of
angle π of the control u: if t is a switching time, u(t−) = −u(t+).

We call such switchings π-singularities.
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π-singularities

We can globally bound the number of π-singularities on a time interval [0, tf].
Définition (Distance to collisions)

We define δ = inf[0,tf] ∣q(t)∣,
δ

1
= inf[0,tf] ∣q(t) + µ∣,

δ
2
= inf[0,tf] ∣q(t) − (1 − µ)∣.

Finally note δ
12
(µ) = δ1δ2

((1−µ)δ3

2
+µδ3

1
)1/3

.

Proposition

- Keplerian case : Time interval of length πδ3/2 between two π-singularities. On a time
interval [0, tf] the number of such singularities is at most N

0
= [ tf

πδ3/2
].

- Controlled RC3BP : Time interval of length πδ
12
(µ)3/2 between two π-singularities.

On a time interval [0, tf] there is at most Nµ = [ tf

πδ12(µ)3/2
] π-singularities.

→ Sturm type estimations.
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Conclusion and open problems

– Well known structure of the extremal flow → Good criteria for optimality in

our case (lack of regularity).

– More general way to treat su�icient conditions for optimal control problems

using degenerate symplectic geometry?

– Global answer to the su�icient condition questions by Fillipov’s theorem:

construct a compact containing the extremals.
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Thank you for

your a�ention !



Références

[1] J.-B. Caillau, T. Combot, J. Féjoz, M. Orieux, Non-integrability of the minimum-

time Kepler problem, submi�ed, preprint : arxiv.org/abs/1801.04198.

[2] On the extremal flow of some a�ine control systems, J.-B. Caillau, M. Orieux (in

preparation)

[3] J.-B. Caillau, Daoud, B. Minimum time control of the restricted three-body prob-

lem SIAM J. Control Optim. 50 (2012), no. 6, 3178-3202.

25 / 25


	Introduction
	Structure of the extremal flow
	Sufficient conditions for optimality

