Some dynamical aspect of Minimum time affine control systems

Michael Orieux
Jean-Baptiste Caillau, Jacques Féjoz

RESEARCH UNIVERSITY PARIS
A closing conference for the Chair d'excellence of Eva Miranda

Joint work with Jean-Baptiste Caillau, Robert Roussarie

INTRODUCTION

Restricted circular 3 body problem

$$
\begin{equation*}
\ddot{q}+\nabla V_{\mu}(q)-2 i \dot{q}=u,\|u\| \leq 1 \tag{1}
\end{equation*}
$$

in the rotating frame (RC3BP), u being the control and
$V_{\mu}(q)=\frac{1}{2}|q|^{2}+\frac{1-\mu}{|q+\mu|}+\frac{\mu}{|q-1+\mu|}$.

Figure: Hill's region and Lagrange points for the RC3BP, figure from [1].

Control affine system

\rightarrow Optimization problem :

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \tag{2}\\
t_{f} \rightarrow \min
\end{array}\right.
$$

F_{i} are smooth, $i=0,1,2, x_{0}, x_{f} \in M$ a 4 dimensional manifold (can be generalized to 2 n with n controls).

Control affine system

\rightarrow Optimization problem :

$$
\left\{\begin{array}{l}
\dot{x}(t)=F_{0}(x(t))+u_{1}(t) F_{1}(x(t))+u_{2}(t) F_{2}(x(t)), u_{1}^{2}+u_{2}^{2} \leq 1 \tag{2}\\
x(0)=x_{0} \\
x\left(t_{f}\right)=x_{f} \\
t_{f} \rightarrow \min .
\end{array}\right.
$$

F_{i} are smooth, $i=0,1,2, x_{0}, x_{f} \in M$ a 4 dimensional manifold (can be generalized to $2 n$ with n controls).

Remark

(1) can be written that way with $x=(q, v)$.

Notation: $\mathrm{F}_{\mathfrak{i j}}=\left[\mathrm{F}_{\mathrm{i}}, \mathrm{F}_{\mathrm{j}}\right], \mathrm{H}_{\mathrm{ij}}=\left\{\mathrm{H}_{\mathrm{i}}, \mathrm{H}_{\mathrm{j}}\right\}, \mathrm{i}, \mathrm{j}=0,1,2$.

Assumption :

$$
(\mathcal{A}): \operatorname{rank}\left(F_{1}(x), F_{2}(x), F_{01}(x), F_{02}(x)\right)=4, \text { for all } x \in M .
$$

Check for the RC3BP.
\rightarrow Link with controllability when F_{0} is recurrent ($\mu=0$ or certain energy levels of the RC3BP.)

Assumption :

$$
(\mathcal{A}): \operatorname{rank}\left(F_{1}(x), F_{2}(x), F_{01}(x), F_{02}(x)\right)=4, \text { for all } x \in M
$$

Check for the RC3BP.
\rightarrow Link with controllability when F_{0} is recurrent ($\mu=0$ or certain energy levels of the RC3BP.)

Proposition

Any system of the form $\ddot{q}+g(q, \dot{q})=u$ verifies (\mathcal{A}).
We will use later the following hypothesis : $(\mathcal{B}):\left[F_{1}, F_{2}\right]=0$.

Consider an optimal control problem

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u) \\
x(0)=x_{0}, x\left(t_{f}\right)=x_{f} \\
\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t \rightarrow \min
\end{array}\right.
$$

$f: M \times U \rightarrow T M$ a family of smooth vector fields, $U \subset \mathbb{R}^{m}$.

Définition (Pseudo-Hamiltonian)

$$
\forall(x, p) \in T_{x}^{*} M, H(x, p, u)=\langle p, f(x, u)\rangle-\varphi(x, u) .
$$

Here $H(x, p, u)=H_{0}(x, p)+u_{1} H_{1}(x, p)+u_{2} H_{2}(x, p)$, with $H_{i}(x, p)=\left\langle p, F_{i}(x)\right\rangle$.

Théorème (P.M.P.)

(x, u) minimum time trajectory then there exists a Lipschitz curve $p(t) \in T_{x(t)} M^{*} \backslash\{0\}$ s.t.
$-(x, p)$ is solution of :

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u) \tag{3}\\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u) .
\end{array}\right.
$$

$-H(x(t), p(t), u(t))=\max _{\tilde{u} \in U} H(x(t), p(t), \tilde{u})$.
$-\mathrm{H}(\mathrm{x}(\mathrm{t}), \mathrm{p}(\mathrm{t}), \mathrm{u}(\mathrm{t})) \geq 0$.

Théorème (P.M.P.)

(x, u) minimum time trajectory then there exists a Lipschitz curve $p(t) \in T_{x(t)} M^{*} \backslash\{0\}$ s.t.
$-(x, p)$ is solution of :

$$
\left\{\begin{array}{l}
\dot{x}=\frac{\partial H}{\partial p}(x, p, u) \tag{3}\\
\dot{p}=-\frac{\partial H}{\partial x}(x, p, u) .
\end{array}\right.
$$

$-H(x(t), p(t), u(t))=\max _{\tilde{u} \in U} H(x(t), p(t), \tilde{u})$.
$-\mathrm{H}(\mathrm{x}(\mathrm{t}), \mathrm{p}(\mathrm{t}), \mathrm{u}(\mathrm{t})) \geq 0$.
Pros: Autonomous Hamiltonian system.
Cons : Dimension doubled, only necessary condition \rightarrow existence of optimal control, singularities.
Solutions of (3) maximizing the Hamiltonian are called extremals. Their projection on M are extremal trajectories.

Pseudo-Hamiltonian: $\mathrm{H}(\mathrm{x}, \mathrm{p}, \mathrm{u})=\mathrm{H}_{0}(x, p)+u_{1} \mathrm{H}_{1}(x, p)+u_{2} \mathrm{H}_{2}(x, p)$ Maximized Hamiltonian: $H^{*}(x, p)=H_{0}(x, p)+\sqrt{H_{1}(x, p)^{2}+H_{2}(x, p)^{2}}$ $u=\frac{1}{\sqrt{\mathrm{H}_{1}^{2}+\mathrm{H}_{2}^{2}}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right):$ discontinuities of the control u are called switchs.

Pseudo-Hamiltonian: $\mathrm{H}(x, p, u)=\mathrm{H}_{0}(x, p)+u_{1} \mathrm{H}_{1}(x, p)+u_{2} \mathrm{H}_{2}(x, p)$
Maximized Hamiltonian : $H^{*}(x, p)=H_{0}(x, p)+\sqrt{H_{1}(x, p)^{2}+H_{2}(x, p)^{2}}$
$u=\frac{1}{\sqrt{\mathrm{H}_{1}^{2}+\mathrm{H}_{2}^{2}}}\left(\mathrm{H}_{1}, \mathrm{H}_{2}\right):$ discontinuities of the control u are called switchs.

Définition (Singular locus.)

A switch is a discontinuity of the reference control.
The singular locus, or switching surface is defined by
$\Sigma=\left\{z=(x, p) \in T^{*} M, H_{1}(x, p)=H_{2}(x, p)=0\right\}$.

Définition

$\Sigma=\Sigma_{0} \cup \Sigma_{-} \cup \Sigma_{+}$with:
$\Sigma_{-}=\left\{\mathrm{H}_{12}(z)^{2}<\mathrm{H}_{02}(z)^{2}+\mathrm{H}_{01}(z)^{2}\right\}, \Sigma_{+}=\left\{\mathrm{H}_{12}(z)^{2}>\mathrm{H}_{02}(z)^{2}+\mathrm{H}_{01}(z)^{2}\right\}$,
$\Sigma_{0}=\left\{\mathrm{H}_{12}(z)^{2}=\mathrm{H}_{02}(z)^{2}+\mathrm{H}_{01}(z)^{2}\right\}$.

Structure of the extremal flow

Théorème (J.-B. Caillau, M. O.)

There exists unique solution for system (1) in a neighborhood $\mathrm{O}_{\bar{z}}$ of \bar{z}, and there is at most one switch on $\mathrm{O}_{\bar{z}}$.

- If $\bar{z} \in \Sigma_{-}$: The local extremal flow $z:\left(\mathrm{t}, z_{0}\right) \in\left[0, \mathrm{t}_{\mathrm{f}}\right] \times \mathrm{O}_{\bar{z}} \mapsto z\left(\mathrm{t}, z_{0}\right) \in M$ is piecewise smooth, and smooth on each strata :

$$
\mathrm{O}_{\bar{z}}=\mathrm{S}_{0} \sqcup \mathrm{~S}_{1} \sqcup \Sigma
$$

- where S_{1} is the codimension one submanifold of initial conditions leading to the switching surface,
$-\mathrm{S}_{0}=\mathrm{O}_{\bar{z}} \backslash\left(\mathrm{~S}_{1} \cup \Sigma\right)$.
- If $\bar{z} \in \Sigma_{+}$, no extremal intersects the singular locus, and therefore, the flow is smooth on $\mathrm{O}_{\bar{z}}$.

Figure 1 - Stratification of the flow into regular submanifolds.

Regular-singular transition

Théorème (J.-B. Caillau, M. O., R. Roussarie)

The singular-regular transition is continuous, with singularities in " $z \ln z$ ".
$(x, p) \mapsto\left(x, H_{1}, H_{2}, H_{01}, H_{02}\right)$ then, in polar coordinates: $\left(H_{1}, H_{2}\right)=(\rho \cos s, \rho \sin s)$, with a time rescaled :

$$
Y:\left\{\begin{array}{l}
\rho^{\prime}=\rho \cos s \tag{4}\\
s^{\prime}=g(\rho, s, \xi)-\sin s=G(\rho, s, \xi) \\
\xi^{\prime}=\rho h(\rho, s, \xi) .
\end{array}\right.
$$

(i) g, h are smooth functions on an open subset of $\mathbb{R} \times \mathbb{R} \times D, D \subset \mathbb{R}^{k}$ compact, h has values in \mathbb{R}^{k}; Semi-hyperbolic equilibria when $\rho=0, \mathrm{G}=0$.
(ii) g is smooth in $(\rho \cos \psi, \rho \sin \psi)$ and $|g|<1$ on O.

Proposition (C^{∞}-normal form, Caillau, O., Roussarie)

Let $u=\rho s$, then there exist A, B, C smooth functions on a neighborhood of $D \times 0_{u}$ such that Y is C^{∞} equivalent to

$$
Y^{\infty}:\left\{\begin{array}{l}
\rho^{\prime}=-\rho(1+u A(u, \xi)) \tag{5}\\
s^{\prime}=s(1+u B(u, \xi)) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

The global stable manifold has become $S_{-}=\{s=0\}$.
For $\rho_{0}, \mathrm{~s}_{\mathrm{f}} \geq 0$ consider the two sections $\Sigma_{0} \subset\left\{\rho=\rho_{0}\right\}$, parameterized by (s, ξ) and $\Sigma_{f} \subset\left\{s=s_{f}\right\}$ parameterized by (ρ, ξ).

Regular-singular transition

Figure 2 - Poincaré map between the two sections.

Regular-singular transition

Théorème (J.-B. Caillau, M. O., R. Roussarie)

Let T : $\Sigma_{0} \rightarrow \Sigma_{f}$ be the Poincaré mapping between the two sections, $\mathrm{T}\left(\mathrm{s}_{0}, \xi_{0}\right)=\left(\rho\left(s_{0}, \xi_{0}\right), \xi\left(s_{0}, \xi_{0}\right)\right)$. Then, T is a smooth function in $\left(s_{0} \ln \mathrm{~s}_{0}, s_{0}, \xi_{0}\right)$ as there exist smooth functions R and X defined on a neighborhood of $\{0\} \times\{0\} \times D$ such that

$$
\mathrm{T}\left(s_{0}, \xi_{0}\right)=\left(R\left(s_{0} \ln s_{0}, s_{0}, \xi_{0}\right), X\left(s_{0} \ln s_{0}, s_{0}, \xi_{0}\right)\right) .
$$

Proof of the Lemma. Step 1: Make the Jacobian diagonal. Y is equivalent to :

$$
X:\left\{\begin{array}{l}
\rho^{\prime}=-\rho(1+O(\rho)) \tag{6}\\
s^{\prime}=s+O\left((\rho+|s|)^{2}\right) \\
\xi^{\prime}=\rho O(\rho+s)
\end{array}\right.
$$

Proof of the Lemma.

Step 2 : Generalization of the Poincaré-Dulac theorem.
X a vector field, we say g is resonant with X if $[X, g]=0$

Lemme

Let $X(x, \xi)$ be a smooth vector field in $\mathbb{R}^{n} \times \mathbb{R}^{k}, X(0, \xi)=0$. Note X_{1} its linear part. Then, if X_{1} does not depend on ξ, it can be formally develop along its resonant monomials up to a flat term.

The proof of the initial theorem can be adapted since the bracket $\left[X_{1},.\right]$ doest not see ξ : we reason by induction on the space of homogeneous monomials.

Proof of the Lemma.

Step 2 : Generalization of the Poincaré-Dulac theorem.
X a vector field, we say g is resonant with X if $[X, g]=0$

Lemme

Let $X(x, \xi)$ be a smooth vector field in $\mathbb{R}^{n} \times \mathbb{R}^{k}, X(0, \xi)=0$. Note X_{1} its linear part. Then, if X_{1} does not depend on ξ, it can be formally develop along its resonant monomials up to a flat term.

The proof of the initial theorem can be adapted since the bracket [X_{1},.] doest not see ξ : we reason by induction on the space of homogeneous monomials.
Here

$$
X_{1}=-\rho \frac{\partial}{\partial \rho}+s \frac{\partial}{\partial s} .
$$

Resonant monomials are

$$
a(\xi) \rho u^{k} \frac{\partial}{\partial \rho}, b(\xi) s u^{k} \frac{\partial}{\partial s}, c(\xi) u^{k} \frac{\partial}{\partial \xi}, k \in \mathbb{N} .
$$

Proof of the Lemma

So X is formally conjugate to

$$
W:\left\{\begin{array}{l}
\rho^{\prime}=-\rho\left(1+\sum_{k \geq 1} a_{k}(\xi) u^{k}\right) \\
s^{\prime}=s\left(1+\sum_{k \geq 1} b_{k}(\xi) u^{k}\right) \\
\xi^{\prime}=\rho \sum_{k \geq 1} c_{k}(\xi) u^{k}
\end{array}\right.
$$

Proof of the Lemma

So X is formally conjugate to

$$
W:\left\{\begin{array}{l}
\rho^{\prime}=-\rho\left(1+\sum_{k \geq 1} a_{k}(\xi) u^{k}\right) \\
s^{\prime}=s\left(1+\sum_{k \geq 1} b_{k}(\xi) u^{k}\right) \\
\xi^{\prime}=\rho \sum_{k \geq 1} c_{k}(\xi) u^{k}
\end{array}\right.
$$

Step 3: Generalization of Borel theorem, proven by Malgrange to realize the conjugation and W by smooth functions (field) : $X=X^{\infty}+R_{\infty}$ where R_{∞} has a zero infinite jet.

Proof of the Lemma

So X is formally conjugate to

$$
W:\left\{\begin{array}{l}
\rho^{\prime}=-\rho\left(1+\sum_{k \geq 1} a_{k}(\xi) u^{k}\right) \\
s^{\prime}=s\left(1+\sum_{k \geq 1} b_{k}(\xi) u^{k}\right) \\
\xi^{\prime}=\rho \sum_{k \geq 1} c_{k}(\xi) u^{k}
\end{array}\right.
$$

Step 3: Generalization of Borel theorem, proven by Malgrange to realize the conjugation and W by smooth functions (field) : $X=X^{\infty}+R_{\infty}$ where R_{∞} has a zero infinite jet.
Step 4: Kill the flat perturbation. Path method : equivalent to solve

$$
\begin{equation*}
\left[X_{t}, Z_{t}\right]=R_{\infty} \tag{7}
\end{equation*}
$$

with X_{t} a path of field joining X and X^{∞}, with unknown Z_{t}. Using normal hyperbolicity, (7) has a solution (Roussarie, 1975).

Sketch of the proof

A consequence of the normal form theorem.

$$
\left(Y^{\infty}\right) \text { equivalent to }\left\{\begin{array}{l}
s^{\prime}=s \tag{8}\\
\rho^{\prime}=-\rho(1+u A(u, \xi)) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

Transition time : $t\left(s_{0}\right)=\ln \left(s_{f} / s_{0}\right)$, ($u=\rho s$)

$$
Z:\left\{\begin{array}{l}
s_{0}^{\prime}=0 \tag{9}\\
u^{\prime}=-u^{2} A(u, \xi) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

to integrate in time $t\left(s_{0}\right)$ from Σ_{0} to Σ_{f}.

Sketch of the proof

A consequence of the normal form theorem.

$$
\left(Y^{\infty}\right) \text { equivalent to }\left\{\begin{array}{l}
s^{\prime}=s \tag{8}\\
\rho^{\prime}=-\rho(1+u A(u, \xi)) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

Transition time : $t\left(s_{0}\right)=\ln \left(s_{f} / s_{0}\right)$, ($u=\rho s$)

$$
Z:\left\{\begin{array}{l}
s_{0}^{\prime}=0 \tag{9}\\
u^{\prime}=-u^{2} A(u, \xi) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

to integrate in time $t\left(s_{0}\right)$ from Σ_{0} to Σ_{f}.
Denoting φ its flow, $T\left(s_{0}, \xi_{0}\right)=\varphi\left(\ln \left(s_{f} / s_{0}\right), s_{0}, \rho_{0} s_{0}, \xi_{0}\right)$

Sketch of the proof

A consequence of the normal form theorem.

$$
\left(Y^{\infty}\right) \text { equivalent to }\left\{\begin{array}{l}
s^{\prime}=s \tag{8}\\
\rho^{\prime}=-\rho(1+u A(u, \xi)) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

Transition time : $t\left(s_{0}\right)=\ln \left(s_{f} / s_{0}\right)$, ($u=\rho s$)

$$
Z:\left\{\begin{array}{l}
s_{0}^{\prime}=0 \tag{9}\\
u^{\prime}=-u^{2} A(u, \xi) \\
\xi^{\prime}=u C(u, \xi)
\end{array}\right.
$$

to integrate in time $t\left(s_{0}\right)$ from Σ_{0} to Σ_{f}.
Denoting φ its flow, $T\left(s_{0}, \xi_{0}\right)=\varphi\left(\ln \left(s_{f} / s_{0}\right), s_{0}, \rho_{0} s_{0}, \xi_{0}\right)$

Sketch of the proof

\rightarrow Rescale the time: $\tilde{Z}=\frac{1}{s_{0}} Z$:

$$
\left\{\begin{array}{l}
s_{0}^{\prime}=0, \tag{10}\\
u^{\prime}=-\left(u^{2} / s_{0}\right) A(u, \xi), \\
\xi^{\prime}=\left(u / s_{0}\right) C(u, \xi) .
\end{array}\right.
$$

Its flow $\tilde{\varphi}$ is well defined and the Poincaré mapping is obtained by evaluating it in time $s_{0} \ln \left(s_{f} / s_{0}\right)$:

$$
\mathrm{T}\left(s_{0}, \xi_{0}\right)=\tilde{\varphi}\left(s_{0} \ln \left(s_{f} / s_{0}\right), s_{0}, \rho_{0} s_{0}, \xi_{0}\right)
$$

Issue: \tilde{Z} is not smooth.
Blow up on $\{u=s=0\}: f(u, s, \xi)=(\eta, s, \xi)$ with $\eta=u / s$
f^{-1} sends a rectangle $-\eta_{0} \leq \eta \leq \eta_{0},-s_{0} \leq s \leq s_{0}$ on a cone $-\eta_{0} s \leq u \leq \eta_{0} s$. Lemma \Rightarrow the flow of \tilde{Z} is contained in that cone.

Sketch of the proof

The blown up vector field writes:

$$
\hat{Z}:\left\{\begin{array}{l}
s_{0}^{\prime}=0, \tag{11}\\
\eta^{\prime}=-\eta^{2} A\left(\eta s_{0}, \xi\right), \\
\xi^{\prime}=\eta C\left(\eta s_{0}, \xi\right) .
\end{array}\right.
$$

and is smooth.
Denote $\hat{\varphi}=(\hat{\eta}, \hat{\varepsilon})$ its flow, we only need to evaluate it on a small band $s_{0} \in\left[-s_{1}, s_{1}\right]$, $\eta_{0} \in[-M, M]$, on which it is smooth.

$$
\mathrm{T}\left(s_{0}, \xi_{0}\right)=\left(\hat{\eta}\left(s_{0} \ln \left(s_{f} / s_{0}\right), s_{0}, \rho_{0}, \xi_{0}\right), \hat{\xi}\left(s_{0} \ln \left(s_{f} / s_{0}\right), s_{0}, \rho_{0}, \xi_{0}\right),\right.
$$

which has the desired regularity.

SUFFICIENT CONDITIONS FOR OPTIMALITY

Let

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u) \\
x(0)=x_{0}, x\left(t_{f}\right)=x_{f} \\
\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t \rightarrow \min
\end{array}\right.
$$

be an optimal control problem. Recall, that its pseudo-Hamiltonian is $H(x, p, u)=\langle p, f(x)\rangle-\varphi(x, u)$, assume that its maximized Hamiltonian H^{*} is smooth.

Let

$$
\left\{\begin{array}{l}
\dot{x}=f(x, u) \\
\chi(0)=x_{0}, x\left(t_{f}\right)=x_{f} \\
\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t \rightarrow \min
\end{array}\right.
$$

be an optimal control problem. Recall, that its pseudo-Hamiltonian is $H(x, p, u)=\langle p, f(x)\rangle-\varphi(x, u)$, assume that its maximized Hamiltonian H^{*} is smooth.
Let $z=(x, p)$ be an extremal and assume :
($\left(\mathcal{B}_{0}\right)$: The reference extremal is normal (meaning $\left.p^{0} \neq 0\right)$.)
$\left(\mathcal{B}_{1}\right): \frac{\partial x}{\partial p_{0}}\left(t, x_{0}, p_{0}\right)$ is invertible for $\left.t \in\right] 0, t_{f}[$.

Théorème

Under those hypothesis, the reference trajectory $x=\Pi(z)$ is a local minimizer along all trajectories with same endpoints.

Compare using the Poincaré-Cartan invariant along an extremal $z(t)$:

$$
\int_{z} p d x-H^{*} d t=\int_{0}^{t_{f}}\langle p(\mathrm{t}), f(x(\mathrm{t}), \mathrm{u}(\mathrm{t}))\rangle-\mathrm{H}^{*}(z(\mathrm{t})) \mathrm{dt}=\int_{0}^{\mathrm{t}_{\mathrm{f}}} \varphi(x(\mathrm{t}), \mathrm{u}(\mathrm{t})) \mathrm{dt} .
$$

Compare using the Poincaré-Cartan invariant along an extremal $z(t)$:

$$
\int_{z} p \mathrm{~d} x-\mathrm{H}^{*} \mathrm{dt}=\int_{0}^{\mathrm{t}_{\mathrm{f}}}\langle\mathrm{p}(\mathrm{t}), \mathrm{f}(x(\mathrm{t}), \mathrm{u}(\mathrm{t}))\rangle-\mathrm{H}^{*}(z(\mathrm{t})) \mathrm{dt}=\int_{0}^{\mathrm{t}_{\mathrm{f}}} \varphi(x(\mathrm{t}), \mathrm{u}(\mathrm{t})) \mathrm{dt}
$$

To compare with every C^{0} curves on M, one has to lift them to $T^{*} M$.
\rightarrow Make the canonical projection $\Pi: T^{*} M \rightarrow M$ invertible: build a Lagrangian submanifold \mathcal{L}_{0} transverse to $\mathrm{T}_{\chi_{0}}^{*} M$ on which Π is invertible (tangent space transversal to ker $\mathrm{d} \Pi$) and propagate it by the extremal flow.

$$
\mathcal{L}=\left\{(\mathrm{t}, z), \exists z_{0} \in \mathcal{L}_{0}, z=\exp (\mathrm{t} \overrightarrow{\mathrm{H}})\left(z_{0}\right)\right\}
$$

Π is still invertible on \mathcal{L}.
\mathcal{L}_{0} can be chosen so that $\alpha=p d x-H^{*} d_{\mid \mathcal{L}}$ is exact on \mathcal{L}.
Let (\tilde{x}, \tilde{u}) be any admissible trajectory with same endpoints, denote $\tilde{z}=(\tilde{x}, \tilde{p})$ its lift it to $T^{*} M$ (through Π).

$$
\begin{equation*}
\int_{0}^{t_{f}} \varphi(\tilde{x}(t), \tilde{u}(t)) d t=\int_{0}^{t_{f}} \tilde{p}(t) \cdot \dot{\tilde{x}}(\mathrm{t})-H(\tilde{z}(t), \tilde{u}(t)) d t \geq \int_{0}^{t_{f}} \tilde{p}(t) \cdot \dot{\tilde{x}}(t)-H^{*}(\tilde{z}(t)) d t \tag{12}
\end{equation*}
$$

but

$$
\int_{0}^{t_{f}} \tilde{p}(t) \cdot \dot{\tilde{x}}(t)-H^{*}(\tilde{z}(t)) d t=\int_{\tilde{z}} \alpha=\int_{z} \alpha=\int_{0}^{t_{f}} p(t) \cdot \dot{x}(t)-H^{*}(z(t)) d t=\int_{0}^{t_{f}} \varphi(x(t), u(t)) d t .
$$

Application to Kepler and the RC3BP

In this case : $(\mathcal{B}):\left[F_{1}, F_{2}\right]=0 \Rightarrow H_{12}=0$.
Previous results apply directly to the controlled RC3BP, and

$$
\Sigma=\Sigma_{-}=\left\{z, H_{1}(z)=H_{2}(z)=0, H_{02}(z)^{2}+H_{01}(z)^{2}>0\right\}
$$

Application to Kepler and the RC3BP

In this case : $(\mathcal{B}):\left[\mathrm{F}_{1}, \mathrm{~F}_{2}\right]=0 \Rightarrow \mathrm{H}_{12}=0$.
Previous results apply directly to the controlled RC3BP, and

$$
\Sigma=\Sigma_{-}=\left\{z, \mathrm{H}_{1}(z)=\mathrm{H}_{2}(z)=0, \mathrm{H}_{02}(z)^{2}+\mathrm{H}_{01}(z)^{2}>0\right\}
$$

Proposition

In the controlled Kepler problem and RC3BP switching are instantaneous rotations of angle π of the control u : if t is a switching time, $\mathrm{u}\left(\mathrm{t}_{-}\right)=-\mathrm{u}\left(\mathrm{t}_{+}\right)$.

We call such switchings π-singularities.

π-singularities

We can globally bound the number of π-singularities on a time interval $\left[0, \mathrm{t}_{\mathrm{f}}\right]$.
Définition (Distance to collisions)
We define $\delta=\inf _{\left[0, t_{f}\right]}|q(t)|$,
$\delta_{1}=\inf _{\left[0, \mathrm{t}_{\mathrm{f}}\right]}|\mathrm{q}(\mathrm{t})+\mu|$,
$\delta_{2}=\inf _{\left[0, t_{f}\right]}|q(t)-(1-\mu)|$.
Finally note $\delta_{12}(\mu)=\frac{\delta_{1} \delta_{2}}{\left((1-\mu) \delta_{2}^{3}+\mu \delta_{1}^{3}\right)^{1 / 3}}$.

π-singularities

We can globally bound the number of π-singularities on a time interval $\left[0, \mathrm{t}_{\mathrm{f}}\right]$.

Définition (Distance to collisions)

We define $\delta=\inf _{\left[0, \mathrm{t}_{\mathrm{f}}\right]}|q(\mathrm{t})|$,
$\delta_{1}=\inf _{\left[0, \mathrm{t}_{\mathrm{f}}\right]}|\mathrm{q}(\mathrm{t})+\mu|$,
$\delta_{2}=\inf _{\left[0, t_{f}\right]}|q(t)-(1-\mu)|$.
Finally note $\delta_{12}(\mu)=\frac{\delta_{1} \delta_{2}}{\left((1-\mu) \delta_{2}^{3}+\mu \delta_{1}^{3}\right)^{1 / 3}}$.

Proposition

- Keplerian case : Time interval of length $\pi \delta^{3 / 2}$ between two π-singularities. On a time interval $\left[0, \mathrm{t}_{\mathrm{f}}\right]$ the number of such singularities is at most $\mathrm{N}_{0}=\left[\frac{\mathrm{t}_{\mathrm{f}}}{\pi \delta^{8 / 2}}\right]$.
- Controlled RC3BP : Time interval of length $\pi \delta_{12}(\mu)^{3 / 2}$ between two π-singularities.

On a time interval $\left[0, \mathrm{t}_{\mathrm{f}}\right]$ there is at most $\mathrm{N}_{\mu}=\left[\frac{\mathrm{t}_{\mathrm{f}}}{\pi \delta_{12}(\mu)^{3 / 2}}\right] \pi$-singularities.
\rightarrow Sturm type estimations.

Conclusion and open problems

- Well known structure of the extremal flow \rightarrow Good criteria for optimality in our case (lack of regularity).
- More general way to treat sufficient conditions for optimal control problems using degenerate symplectic geometry?
- Global answer to the sufficient condition questions by Fillipov's theorem: construct a compact containing the extremals.

Thank you for your attention!

[1] J.-B. Caillau, T. Combot, J. Féjoz, M. Orieux, Non-integrability of the minimumtime Kepler problem, submitted, preprint : arxiv.org/abs/1801.04198.
[2] On the extremal flow of some affine control systems, J.-B. Caillau, M. Orieux (in preparation)
[3] J.-B. Caillau, Daoud, B. Minimum time control of the restricted three-body problem SIAM J. Control Optim. 50 (2012), no. 6, 3178-3202.

