On Periodic Solutions of N-Vortex Problem

Qun WANG Jacques Féjoz, Eric Séré

Geometry and Dynamics in Interaction IMCCE / Observatoire de Paris 15 January 2017

1. Vortex Problem as a Hamiltonian System

Vortices as we might see in real life:

(a) A vortex in Atlantic Ocean

(b) The Jupitor Red Spot

(c) When One flushes the Toilet

Figure 1: Some Examples of Vortices

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

- Its Hamiltonian structure is first formulated by Kirchhoff in 1876

Figure 3: Gustav Robert Kirchhoff, 1824-1887

- Let $z_i = (x_i, y_i)$ denotes the position of i-th vortex in the plane, with a given vorticity Γ_i .

- Let $z_i = (x_i, y_i)$ denotes the position of i-th vortex in the plane, with a given vorticity Γ_i .

- Their movements are governed by the System

$$\begin{cases} \Gamma_{i} \dot{x}_{i}(t) = \frac{\partial H}{\partial y_{i}} \\ \Gamma_{i} \dot{y}_{i}(t) = -\frac{\partial H}{\partial x_{i}} \end{cases}$$
(1)

with

$$H = -\frac{1}{4\pi} \sum_{1 \le i < j \le N} \Gamma_i \Gamma_j \log |z_i - z_j|^2$$

- Let $z_i = (x_i, y_i)$ denotes the position of i-th vortex in the plane, with a given vorticity Γ_i .

- Their movements are governed by the System

$$\begin{cases} \Gamma_{i} \dot{x}_{i}(t) = \frac{\partial H}{\partial y_{i}} \\ \Gamma_{i} \dot{y}_{i}(t) = -\frac{\partial H}{\partial x_{i}} \end{cases}$$
(1)

with

$$H = -\frac{1}{4\pi} \sum_{1 \le i < j \le N} \Gamma_i \Gamma_j \log |z_i - z_j|^2$$

- The energy surface is neither compact, nor convex

$$\{f,g\} = \sum_{1 \le i \le N} \frac{1}{\Gamma_i} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} \right)$$

$$\{f,g\} = \sum_{1 \le i \le N} \frac{1}{\Gamma_i} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i}\right)$$

- The system is an autonomous Hamiltonian system $\Rightarrow H = -\frac{1}{4\pi} \sum_{1 \le i < j \le N} \Gamma_i \Gamma_j \log |z_i - z_j|^2 = CST$

$$\{f,g\} = \sum_{1 \le i \le N} \frac{1}{\Gamma_i} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i}\right)$$

- The system is an autonomous Hamiltonian system $\Rightarrow H = -\frac{1}{4\pi} \sum_{1 \le i < j \le N} \Gamma_i \Gamma_j \log |z_i - z_j|^2 = CST$ - The system is invariant under translation $\Rightarrow X = \sum_{1 \le i \le N} \Gamma_i x_i = CST, Y = \sum_{1 \le i \le N} \Gamma_i y_i = CST$

$$\{f,g\} = \sum_{1 \le i \le N} \frac{1}{\Gamma_i} \left(\frac{\partial f}{\partial x_i} \frac{\partial g}{\partial y_i} - \frac{\partial f}{\partial y_i} \frac{\partial g}{\partial x_i} \right)$$

- The system is an autonomous Hamiltonian system $\Rightarrow H = -\frac{1}{4\pi} \sum_{1 \le i < j \le N} \Gamma_i \Gamma_j \log |z_i - z_j|^2 = CST$ - The system is invariant under translation $\Rightarrow X = \sum_{1 \le i \le N} \Gamma_i x_i = CST, Y = \sum_{1 \le i \le N} \Gamma_i y_i = CST$ - The system is invariant under rotation $\Rightarrow I = \sum_{1 \le i \le N} \Gamma_i |z_i|^2 = CST$ - There are three independent first integrals in involution: H, I, P^2 + Q^2

$${H, P^2 + Q^2} = 0, {H, I} = 0, {I, P^2 + Q^2} = 0$$

- There are three independent first integrals in involution: H, I, $P^2 + Q^2$

$$\{H, P^2 + Q^2\} = 0, \quad \{H, I\} = 0, \quad \{I, P^2 + Q^2\} = 0$$

- The 3-vortex problem is integrable.

- There are three independent first integrals in involution: H, I, $P^2 + Q^2$

$$\{H,P^2+Q^2\}=0, \quad \{H,I\}=0, \quad \{I,P^2+Q^2\}=0$$

- The 3-vortex problem is integrable.

- The N-vortex problem is in general not integrable when N > 3 (S. Ziglin 1980; J. Koiller and S. P. Carvalho 1989).

Variational Approach for Hamiltonian System

- Analogy in Celestial Mechanics (A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve

- Analogy in Celestial Mechanics (A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve

- Give an example that linking techniques apply to Superquatratic Hamiltonian with physical background

- Let $L^2(\mathbb{S}^1, \mathbb{R}^{2n})$ denote the set of 2N-tuples of 2π periodic functions which are square integrable. The Fourrier expansion hence exists, i.e., for $z \in L^2(\mathbb{S}^1, \mathbb{R}^{2N})$,

$$\mathbf{z} = \sum_{\mathbf{k} \in \mathbb{Z}^{2n}} a_{\mathbf{k}} e^{\mathbf{i}\mathbf{k}\mathbf{t}}$$

Define the norm

$$\|\mathbf{z}\|_{W^{2,p}} = (\sum_{k \in \mathbb{Z}} (1 + |k|^{2p}) |a_k|^2)^{\frac{1}{2}}$$

It has been noticed that a proper functional space for Hamiltonian system is the space $H^{\frac{1}{2}}_{\tau}(\mathbb{S}^1, \mathbb{R}^{2n})$, where

$$H_{\mathsf{T}}^{\frac{1}{2}}(\mathbb{S}^{1},\mathbb{R}^{2n}) = \{ \mathbf{z}(t) \in H^{\frac{1}{2}}(\mathbb{S}^{1};\mathbb{R}^{2n}) | \mathbf{z}(0) = \mathbf{z}(\mathsf{T}) \}$$

- The space $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ admits the following decomposition $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n}) = E^+ \oplus E^- \oplus E^0$:

$$E^{+} = span\{(\sin\frac{2\pi jt}{T})e_{k} - (\cos\frac{2\pi j}{T}t)e_{k+n}, (\cos\frac{2\pi j}{T}t)e_{k} + (\sin\frac{2\pi j}{T}t)e_{k+n}\}$$

$$E^{-} = span\{(\sin\frac{2\pi j}{T}t)e_{k} + (\cos\frac{2\pi j}{T}t)e_{k+n}, (\cos\frac{2\pi j}{T}t)e_{k} - (\sin\frac{2\pi j}{T}t)e_{k+n}\}$$

$$E^{0} = span\{e_{1}, e_{2}, ..., e_{2n}\}$$

- The space $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ admits the following decomposition $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n}) = E^+ \oplus E^- \oplus E^0$:

$$E^{+} = span\{(\sin\frac{2\pi jt}{T})e_{k} - (\cos\frac{2\pi j}{T}t)e_{k+n}, (\cos\frac{2\pi j}{T}t)e_{k} + (\sin\frac{2\pi j}{T}t)e_{k+n}\}$$

$$E^{-} = span\{(\sin\frac{2\pi j}{T}t)e_{k} + (\cos\frac{2\pi j}{T}t)e_{k+n}, (\cos\frac{2\pi j}{T}t)e_{k} - (\sin\frac{2\pi j}{T}t)e_{k+n}\}$$

$$E^{0} = span\{e_{1}, e_{2}, ..., e_{2n}\}$$

- Given the vortex Hamiltonian function, we define the following functionals for variational argument,

$$\begin{aligned} \forall z(t) \in \mathsf{H}_{\mathsf{T}}^{\frac{1}{2}}(\mathbb{S}^{1}, \mathbb{R}^{2n}), \quad \mathcal{A}(z) &= \int_{0}^{\mathsf{T}} y \Gamma dx dt \\ \mathcal{H}(\mathbf{z}) &= \int_{0}^{\mathsf{T}} \mathsf{H}(x, y) dt \\ \mathcal{I}_{\mathsf{H}}(\mathbf{z}) &= \mathcal{A}(z) - \mathcal{H}(z) = \int_{0}^{\mathsf{T}} y \Gamma dx - \mathsf{H}(x, y) dt \end{aligned}$$

- Given
$$\mathbf{z} = \mathbf{z}^+ + \mathbf{z}^- + \mathbf{z}^0$$
, and $\Gamma_i > 0, \forall 1 \le i \le n$
 $\mathcal{A}(z^+) > 0, \mathcal{A}(z^-) < 0, \mathcal{A}(z^0) = 0$

- Given
$$\mathbf{z} = \mathbf{z}^+ + \mathbf{z}^- + \mathbf{z}^0$$
, and $\Gamma_i > 0$, $\forall 1 \le i \le n$
 $\mathcal{A}(z^+) > 0$, $\mathcal{A}(z^-) < 0$, $\mathcal{A}(z^0) = 0$
- One can define an equivalent norm $\|.\|_{\mathsf{E}} \simeq \|.\|_{\mathsf{H}^{\frac{1}{2}}_{\mathsf{T}}(\mathbb{S}^1, \mathbb{R}^{2n})}$, where

 $||.||_{\rm F}^2 := \mathcal{A}(\mathbf{z}^+) - \mathcal{A}(\mathbf{z}^-) + |\mathbf{z}^0|^2$

9/21

- Given
$$\mathbf{z} = \mathbf{z}^+ + \mathbf{z}^- + \mathbf{z}^0$$
, and $\Gamma_i > 0, \forall 1 \le i \le n$
$$\mathcal{A}(z^+) > 0, \mathcal{A}(z^-) < 0, \mathcal{A}(z^0) = 0$$

- One can define an equivalent norm $\|.\|_{E} \simeq \|.\|_{H^{\frac{1}{2}}_{T}(S^{1},\mathbb{R}^{2n})}$, where

$$||.||_{E}^{2} := \mathcal{A}(\mathbf{z}^{+}) - \mathcal{A}(\mathbf{z}^{-}) + |\mathbf{z}^{0}|^{2}$$

- The subspaces E^+ , E^- , E^0 are mutually orthogonal not only in $H_T^{\frac{1}{2}}(S^1, \mathbb{R}^{2n})$ but also in $L^2(S^1, \mathbb{R}^{2n})$

- We will always assume $\Gamma_i = 1, \forall 1 \le i \le N$

- We will always assume $\Gamma_i = 1, \forall 1 \le i \le N$ - Consider the following Hamiltonians:

$$H_{0} = \sum_{i,j=1,i
$$H_{1} = \prod_{i,j=1,i
$$H_{2} = \prod_{i,j=1,i$$$$$$

where $f(\lambda) = \mu \lambda^k$, for an integer k > 0 fixed large enough whose value is to be precised later on while

$$\mu = \frac{\alpha}{kT}, \quad \alpha < 2\pi$$

- We will always assume $\Gamma_i = 1, \forall 1 \le i \le N$ - Consider the following Hamiltonians:

$$H_{0} = \sum_{i,j=1,i
$$H_{1} = \prod_{i,j=1,i
$$H_{2} = \prod_{i,j=1,i$$$$$$

where $f(\lambda) = \mu \lambda^k$, for an integer k > 0 fixed large enough whose value is to be precised later on while

$$\mu = \frac{\alpha}{kT}, \quad \alpha < 2\pi$$

- $H_0 \rightarrow H_1$ replaces collision singularity by fixed point - $H_1 \rightarrow H_2$ ensures the compactness: the validity of Palais-Smale condition

10/21

$$H_0 = \sum_{i,j=1,i$$

$$H_0 = \sum_{i,j=1,i< j}^{N} \log |z^i - z^j|^2, H_1 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2, H_2 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2 + f(I(z))$$

- 1. We show that \mathcal{I}_{H_2} possesses a critical point \mathbf{z}_{H_2} in $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ by the construction of topological linking, Standard argument then shows that this critical point is indeed a classical solution \mathbf{z}_{H_2} of the Hamltonian H_2

$$H_0 = \sum_{i,j=1,i< j}^{N} \log |z^i - z^j|^2, H_1 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2, H_2 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2 + f(I(z))$$

- 1. We show that \mathfrak{I}_{H_2} possesses a critical point \mathbf{z}_{H_2} in $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ by the construction of topological linking, Standard argument then shows that this critical point is indeed a classical solution \mathbf{z}_{H_2} of the Hamltonian H_2

- 2. By the fact that flows of Hamiltonians in involution commute, we show that, \mathbf{z}_{H_2} will induce a relative T-periodic solution \mathbf{z}_{H_1} of the Hamiltonian H_1 ;

$$H_0 = \sum_{i,j=1,i< j}^{N} \log |z^i - z^j|^2, H_1 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2, H_2 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2 + f(I(z))$$

- 1. We show that \mathfrak{I}_{H_2} possesses a critical point \mathbf{z}_{H_2} in $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ by the construction of topological linking, Standard argument then shows that this critical point is indeed a classical solution \mathbf{z}_{H_2} of the Hamltonian H_2

- 2. By the fact that flows of Hamiltonians in involution commute, we show that, z_{H_2} will induce a relative T-periodic solution z_{H_1} of the Hamiltonian H_1 ; - 3. We will exclure the possibility of collision in z_{H_1} , thus $H_1 \neq 0$;

$$H_0 = \sum_{i,j=1,i< j}^{N} \log |z^i - z^j|^2, H_1 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2, H_2 = \prod_{i,j=1,i< j}^{N} |z^i - z^j|^2 + f(I(z))$$

- 1. We show that \mathfrak{I}_{H_2} possesses a critical point \mathbf{z}_{H_2} in $H_T^{\frac{1}{2}}(\mathbb{S}^1, \mathbb{R}^{2n})$ by the construction of topological linking, Standard argument then shows that this critical point is indeed a classical solution \mathbf{z}_{H_2} of the Hamltonian H_2

- 2. By the fact that flows of Hamiltonians in involution commute, we show that, \mathbf{z}_{H_2} will induce a relative T-periodic solution \mathbf{z}_{H_1} of the Hamiltonian H_1 ;

- 3. We will exclure the possibility of collision in \mathbf{z}_{H_1} , thus $H_1 \neq 0$;

- 4. Now by taking logarithm of H₁ (which is a legal operation when H₁ \neq 0), z_{H_1} will become, after a reparametrization of time, a relative periodic solution z_{H_0} for H₀

Existence of Critical Point for \mathcal{I}_{H_2}

Suppose that the Hamiltonian H is of class $C^1(S^1, \mathbb{R}^{2n})$ and satisfies that

- 1. H(z) > 0
- 2. $H(z) = o(||z||^2)$ when $||z|| \to 0$
- 3. $\exists r > 0 \text{ and } \mu > 2 \text{ s.t. } 0 < \mu H(z) \le \nabla H(z), z > when ||z|| > r$

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

Suppose that the Hamiltonian H is of class $C^1(S^1, \mathbb{R}^{2n})$ and satisfies that

- 1. H(z) > 0
- 2. $H(z) = o(||z||^2)$ when $||z|| \to 0$
- 3. $\exists r > 0 \text{ and } \mu > 2 \text{ s.t. } 0 < \mu H(z) \le \nabla H(z), z > when ||z|| > r$

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.

Suppose that the Hamiltonian H is of class $C^1(S^1, \mathbb{R}^{2n})$ and satisfies that

- 1. H(z) > 0
- 2. $H(z) = o(||z||^2)$ when $||z|| \to 0$
- 3. $\exists r > 0 \text{ and } \mu > 2 \text{ s.t. } 0 < \mu H(z) \le \nabla H(z), z > when ||z|| > r$

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.
- Apply this to H_2 , we can find a non-constant periodic solution \mathbf{z}_{H_2} .

Suppose that the Hamiltonian H is of class $C^1(S^1, \mathbb{R}^{2n})$ and satisfies that

- 1. H(z) > 0
- 2. $H(z) = o(||z||^2)$ when $||z|| \to 0$
- 3. $\exists r > 0 \text{ and } \mu > 2 \text{ s.t. } 0 < \mu H(z) \le \nabla H(z), z > when ||z|| > r$

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.
- Apply this to H_2 , we can find a non-constant periodic solution \mathbf{z}_{H_2} .
- It can be proved that the corresponding critical value c satisfies that

$$c \le (1 + \epsilon_k)^2 \pi$$

for a small ε_k depending on k

$$H_{1} = \prod_{i,j=1,i < j}^{N} |z^{i} - z^{j}|^{2}$$
$$H_{2} = \prod_{i,j=1,i < j}^{N} |z^{i} - z^{j}|^{2} + f(I(z))$$

- Note that in our setting

$$X_{\mathsf{H}+\mathsf{f}(\mathsf{I})} = \mathbb{J}\nabla(\mathsf{H} + \mathsf{f}(\mathsf{I})) = X_{\mathsf{H}} + X_{\mathsf{f}(\mathsf{I})}$$

$$H_{1} = \prod_{i,j=1,i< j}^{N} |z^{i} - z^{j}|^{2}$$
$$H_{2} = \prod_{i,j=1,i< j}^{N} |z^{i} - z^{j}|^{2} + f(I(z))$$

- Note that in our setting

$$X_{H+f(I)} = \mathbb{J}\nabla(H + f(I)) = X_H + X_{f(I)}$$

- {f(I), H} = 0, as a result $[X_H, X_{f(I)}] = 0$

$$H_{1} = \prod_{i,j=1,i < j}^{N} |z^{i} - z^{j}|^{2}$$
$$H_{2} = \prod_{i,j=1,i < j}^{N} |z^{i} - z^{j}|^{2} + f(I(z))$$

- Note that in our setting

$$X_{\mathsf{H}+\mathsf{f}(\mathrm{I})} = \mathbb{J} \nabla (\mathsf{H} + \mathsf{f}(\mathrm{I})) = X_{\mathsf{H}} + X_{\mathsf{f}(\mathrm{I})}$$

- If \mathbf{z}_{H_1} does not have any collision, then it is, up to a reparametrization of time, a relative T₀-periodic solution \mathbf{z}_{H_0} of the Hamltonian H₀.

- If \mathbf{z}_{H_1} does not have any collision, then it is, up to a reparametrization of time, a relative T_0 -periodic solution \mathbf{z}_{H_0} of the Hamltonian H_0 . - Adding a rotationing frame work does not change the mutual distances. - If \mathbf{z}_{H_1} does not have any collision, then it is, up to a reparametrization of time, a relative T_0 -periodic solution \mathbf{z}_{H_0} of the Hamltonian H_0 .

- Adding a rotationing frame work does not change the mutual distances.

- If \mathbf{z}_{H_2} does not have any collision, then it is, up to a reparametrization of time, a relative T₀-periodic solution \mathbf{z}_{H_0} of the Hamltonian H₀.

Exclusion of Collision for \mathbf{z}_{H_2}

- Suppose that there is a collision. It implies that $\nabla H_1 = 0$, and \mathbf{z}_{H_2} becomes a centered uniform rotation.

- Suppose that there is a collision. It implies that $\nabla H_1 = 0$, and \mathbf{z}_{H_2} becomes a centered uniform rotation.

- The critical value satisfies that

С

$$= I_{H_2}(\mathbf{z}_{H_2}) = \int_0^T y \, dx - H_2(\mathbf{z}_{H_2}) \, dt$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - Tf(I(\mathbf{z}_{H_2}))$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - T\frac{1}{k} f'(I(\mathbf{z}_{H_2})) I(\mathbf{z}_{H_2})$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - \frac{1}{k} \frac{T\omega}{2} I(\mathbf{z}_{H_2})$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2})(1 - \frac{1}{k})$$

$$= m\pi I(\mathbf{z}_{H_2})(1 - \frac{1}{k})$$

here m is number of rotation in time T

- Suppose that there is a collision. It implies that $\nabla H_1 = 0$, and \mathbf{z}_{H_2} becomes a centered uniform rotation.

- The critical value satisfies that

С

$$= I_{H_2}(\mathbf{z}_{H_2}) = \int_0^T y \, dx - H_2(\mathbf{z}_{H_2}) \, dt$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - Tf(I(\mathbf{z}_{H_2}))$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - T\frac{1}{k} f'(I(\mathbf{z}_{H_2})) I(\mathbf{z}_{H_2})$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2}) - \frac{1}{k} \frac{T\omega}{2} I(\mathbf{z}_{H_2})$$

$$= \frac{T\omega}{2} I(\mathbf{z}_{H_2})(1 - \frac{1}{k})$$

$$= m\pi I(\mathbf{z}_{H_2})(1 - \frac{1}{k})$$

here m is number of rotation in time T

What if a Collision Happened

- The collision cannot happen when $I(\mathbf{z}_{H_2})$ too small. If $I(\mathbf{z}_{H_2}) \le 1$, then :

٠

$$\begin{split} |\omega| &= 2 \frac{\mathrm{df}}{\mathrm{dI}} (\mathrm{I}(\mathbf{z}_{\mathsf{H}_2})) = \mu \mathrm{kI}^{\mathrm{k}-1} \\ &\leq \frac{\alpha}{\mathrm{T}} < \frac{2\pi}{\mathrm{T}} \end{split}$$

What if a Collision Happened

- The collision cannot happen when $I(\mathbf{z}_{H_2})$ too small. If $I(\mathbf{z}_{H_2}) \le 1$, then :

$$\begin{split} |\omega| &= 2 \frac{\mathrm{df}}{\mathrm{dI}} (\mathrm{I}(\mathbf{z}_{\mathsf{H}_2})) = \mu \mathrm{kI}^{\mathrm{k}-1} \\ &\leq \frac{\alpha}{\mathrm{T}} < \frac{2\pi}{\mathrm{T}} \end{split}$$

- We conclude that $I(\mathbf{z}_{H_2}) > 1$.

What if a Collision Happened

- The collision cannot happen when $I(\mathbf{z}_{H_2})$ too small. If $I(\mathbf{z}_{H_2}) \leq 1$, then :

$$|\omega| = 2 \frac{df}{dI}(I(\mathbf{z}_{H_2})) = \mu k I^{k-1}$$
$$\leq \frac{\alpha}{T} < \frac{2\pi}{T}$$

1

- We conclude that $I(\mathbf{z}_{H_2}) > 1$.

$$c = m\pi I(\mathbf{z}_{H_2})(1-\frac{1}{k}) > m\pi(1-\frac{1}{k})$$

- Recall that

$$c \le (1 + \epsilon_k)^2 \pi$$

Lemma

Suppose that the solution \mathbf{z}_{H_2} that we have found **does** have a collision, then this solution must verify that T is its minimal period.

Theorem (Palais, 1979)

(Palai's Principle of symmetric criticality)Let G be a group of isometries of a Riemannian manifold M and let $f : M \to R$ be a \mathbb{C}^1 function invariant under G. Then the set Γ of stationary points of M under the action of G is a totally geodesic smooth submanifold of M, and if $p \in \Gamma$ is a critical point of $f|\Gamma$ then p is in fact a critical point of f

Theorem (Palais, 1979)

(Palai's Principle of symmetric criticality)Let G be a group of isometries of a Riemannian manifold M and let $f : M \to R$ be a \mathbb{C}^1 function invariant under G. Then the set Γ of stationary points of M under the action of G is a totally geodesic smooth submanifold of M, and if $p \in \Gamma$ is a critical point of $f|\Gamma$ then p is in fact a critical point of f

- Let G be a finite subgroup of $O(2) \times \Sigma_N \times O(2)$. Let Λ be T-periodic loops in the configuration space of our vortex system (Note that for the vortex problem, the configuration space coincides with the phase space). Let $g = (\tau, \sigma, \rho) \in G$ acts on $z(t) = (z_1(t), z_2(t), ..., z_n(t)) \in \Lambda$ be such that:

$$gz_{i}(t) = \rho y_{\sigma^{-1}(j)}(\tau^{-1}(t))$$

In the special case, let $\rho = I$, $\sigma^{-1}(j) = j - 1$, with the convention that $z_n = z_{0-1}$ $\tau^{-1}(t) = t - \frac{T}{n}$, then the group thus generated is called the **group of choregraphy**

Choregraphy

Consider the simple choregraphy of N vortices

$$z_i(t + \frac{T}{N}) = z_{i-1}(t), \quad i = 1, 2, ..., N$$

This gives us a solution \mathbf{z}_{H_2} that is a simple choregraphy

Consider the simple choregraphy of N vortices

$$z_i(t + \frac{T}{N}) = z_{i-1}(t), \quad i = 1, 2, ..., N$$

This gives us a solution \mathbf{z}_{H_2} that is a simple choregraphy - Suppose to the contrary that \mathbf{z}_{H_2} has a collision. Then it becomes a uniform rotation with $T^* = T$. Moreover, Without loss of generality we could assume the collision involes $z_{H_2}^1$, i.e.,

$$z_{H_2}^i(t) = z_{H_2}^1(t), \forall 1 \le i \le N$$

Now by the definition of choregraphy again, we see that $\forall t \in [0, T]$

$$z_{H_2}^{2i-1}(t + \frac{T(i-1)}{N}) = z_{H_2}^i(t) = z_{H_2}^1(t) = z_{H_2}^i(t + \frac{T(i-1)}{N})$$

It turns out that

$$z_{H_2}^{2i-1}(t) = z_{H_2}^i(t) = z_{H_2}^1(t)$$

- It is clear how we can define an equivalent class for vortices collided in this way. The index of vortices in one equivalent class will be a subgroup of the cyclic group S^N , thus each equivalent will at least have two elements. Dividing S^1 parameterized by [0,T] into two equal parts $[0,\frac{T}{2}]$ and $[\frac{T}{2},T]$. Now by Pigeonhole principle there must be at least two elements falling into the same part, i.e., the time gap is less or equal to $\frac{T}{2}$. In other words, any collision will imply that

$$T^* \leq \frac{T}{2}$$

In other words, the collision will lead to $m \ge 2$

- We have thus proved the following theorem:

Theorem

 $\forall N \in \mathbb{N}^*$, the identical N-vortex system has a relative periodic choregraphy.

- We have thus proved the following theorem:

Theorem

 $\forall N \in \mathbb{N}^*$, the identical N-vortex system has a relative periodic choregraphy.

- Is the solution the Thomson's N-polygon?...

Thank you!

 V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite func- tionals, Inventiones Mathematicae, 52 (1979)
 P. K. Newton, The N-vortex problem: analytical techniques, vol. 145, Springer Science Business Media, 2013.

[3] Q. Wang, Relative Periodic Solution of Identical N-vortex Problem in the Plane via Minmax Methods, in preparation