On Periodic Solutions of N-Vortex Problem

DAUPHINE UNIVERSITÉ PARIS

RESEARCH UNIVERSITY PARIS

Qun WANG Jacques Féjoz, Eric Séré

Geometry and Dynamics in Interaction
IMCCE / Observatoire de Paris
15 January 2017

1. Vortex Problem as a Hamiltonian System

Vortices as we might see in real life:

(a) A vortex in Atlantic Ocean

(b) The Jupitor Red Spot

(c) When One flushes the Toilet

Figure 1: Some Examples of Vortices

Vortex System

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

Vortex System

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

- Its Hamiltonian structure is first formulated by Kirchhoff in 1876

Figure 3: Gustav Robert Kirchhoff, 1824-1887

Hamiltonian Structure of Vortex Dynamics

- Let $z_{i}=\left(x_{i}, y_{i}\right)$ denotes the position of i -th vortex in the plane, with a given vorticity Γ_{i}.
- Let $z_{i}=\left(x_{i}, y_{i}\right)$ denotes the position of i -th vortex in the plane, with a given vorticity Γ_{i}.
- Their movements are governed by the System

$$
\left\{\begin{array}{l}
\Gamma_{i} \dot{x}_{i}(t)=\frac{\partial H}{\partial y_{i}} \tag{1}\\
\Gamma_{i} \dot{y}_{i}(t)=-\frac{\partial H}{\partial x_{i}}
\end{array}\right.
$$

with

$$
H=-\frac{1}{4 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|^{2}
$$

- Let $z_{i}=\left(x_{i}, y_{i}\right)$ denotes the position of i -th vortex in the plane, with a given vorticity Γ_{i}.
- Their movements are governed by the System

$$
\left\{\begin{array}{l}
\Gamma_{i} \dot{x}_{i}(t)=\frac{\partial H}{\partial y_{i}} \tag{1}\\
\Gamma_{i} \dot{y}_{i}(t)=-\frac{\partial H}{\partial x_{i}}
\end{array}\right.
$$

with

$$
H=-\frac{1}{4 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|^{2}
$$

- The energy surface is neither compact, nor convex

Integrability

Define the Poisson Bracket

$$
\{f, g\}=\sum_{1 \leq i \leq N} \frac{1}{\Gamma_{i}}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

Integrability

Define the Poisson Bracket

$$
\{f, g\}=\sum_{1 \leq i \leq N} \frac{1}{\Gamma_{i}}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

- The system is an autonomous Hamiltonian system
$\Rightarrow H=-\frac{1}{4 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|^{2}=C S T$

Integrability

Define the Poisson Bracket

$$
\{f, g\}=\sum_{1 \leq i \leq N} \frac{1}{\Gamma_{i}}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

- The system is an autonomous Hamiltonian system
$\Rightarrow H=-\frac{1}{4 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|^{2}=C S T$
- The system is invariant under translation
$\Rightarrow X=\sum_{1 \leq i \leq N} \Gamma_{i} x_{i}=C S T, Y=\sum_{1 \leq i \leq N} \Gamma_{i} y_{i}=C S T$

Integrability

Define the Poisson Bracket

$$
\{f, g\}=\sum_{1 \leq i \leq N} \frac{1}{\Gamma_{i}}\left(\frac{\partial f}{\partial x_{i}} \frac{\partial g}{\partial y_{i}}-\frac{\partial f}{\partial y_{i}} \frac{\partial g}{\partial x_{i}}\right)
$$

- The system is an autonomous Hamiltonian system
$\Rightarrow H=-\frac{1}{4 \pi} \sum_{1 \leq i<j \leq N} \Gamma_{i} \Gamma_{j} \log \left|z_{i}-z_{j}\right|^{2}=C S T$
- The system is invariant under translation
$\Rightarrow X=\sum_{1 \leq i \leq N} \Gamma_{i} x_{i}=C S T, Y=\sum_{1 \leq i \leq N} \Gamma_{i} y_{i}=C S T$
- The system is invariant under rotation
$\Rightarrow \mathrm{I}=\sum_{1 \leq i \leq N} \Gamma_{\mathrm{i}}\left|z_{\mathrm{i}}\right|^{2}=\mathrm{CST}$

Integrability

- There are three independent first integrals in involution: $\mathrm{H}, \mathrm{I}, \mathrm{P}^{2}+\mathrm{Q}^{2}$

$$
\left\{H, P^{2}+Q^{2}\right\}=0, \quad\{H, I\}=0, \quad\left\{I, P^{2}+Q^{2}\right\}=0
$$

- There are three independent first integrals in involution: $H, I, P^{2}+Q^{2}$

$$
\left\{H, P^{2}+Q^{2}\right\}=0, \quad\{H, I\}=0, \quad\left\{I, P^{2}+Q^{2}\right\}=0
$$

- The 3 -vortex problem is integrable.

Integrability

- There are three independent first integrals in involution: $\mathrm{H}, \mathrm{I}, \mathrm{P}^{2}+\mathrm{Q}^{2}$

$$
\left\{H, P^{2}+Q^{2}\right\}=0, \quad\{H, I\}=0, \quad\left\{I, P^{2}+Q^{2}\right\}=0
$$

- The 3-vortex problem is integrable.
- The N -vortex problem is in general not integrable when $\mathrm{N}>3$
(S. Ziglin 1980; J. Koiller and S. P. Carvalho 1989).

Variational Approach for Hamiltonian System

Motivation

- Analogy in Celestial Mechanics
(A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve

- Analogy in Celestial Mechanics
(A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve

- Give an example that linking techniques apply to Superquatratic Hamiltonian with physical background

Variational Formulation

- Let $L^{2}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ denote the set of $2 N$-tuples of 2π periodic functions which are square integrable. The Fourrier expansion hence exists, i.e., for $z \in L^{2}\left(\mathbb{S}^{1}, \mathbb{R}^{2 N}\right)$,

$$
\mathbf{z}=\sum_{k \in \mathbb{Z}^{2 n}} a_{k} e^{i k t}
$$

Define the norm

$$
\|z\|_{W^{2, p}}=\left(\sum_{k \in \mathbb{Z}}\left(1+|k|^{2 p}\right)\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}
$$

It has been noticed that a proper functional space for Hamiltonian system is the space $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$, where

$$
H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)=\left\{\left.\mathbf{z}(\mathrm{t}) \in \mathrm{H}^{\frac{1}{2}}\left(\mathbb{S}^{1} ; \mathbb{R}^{2 n}\right) \right\rvert\, \mathbf{z}(0)=\mathbf{z}(\mathrm{T})\right\}
$$

- The space $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ admits the following decomposition $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)=E^{+} \oplus \mathrm{E}^{-} \oplus$ E^{0} :

$$
\begin{aligned}
& E^{+}=\operatorname{span}\left\{\left(\sin \frac{2 \pi j \mathrm{t}}{\mathrm{~T}}\right) e_{k}-\left(\cos \frac{2 \pi j}{T} t\right) e_{k+n},\left(\cos \frac{2 \pi j}{T} t\right) e_{k}+\left(\sin \frac{2 \pi j}{T} t\right) e_{k+n}\right\} \\
& E^{-}=\operatorname{span}\left\{\left(\sin \frac{2 \pi j}{T} t\right) e_{k}+\left(\cos \frac{2 \pi j}{T} t\right) e_{k+n},\left(\cos \frac{2 \pi j}{T} t\right) e_{k}-\left(\sin \frac{2 \pi j}{T} t\right) e_{k+n}\right\} \\
& E^{0}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}
\end{aligned}
$$

Variational Formulation

- The space $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ admits the following decomposition $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)=E^{+} \oplus E^{-} \oplus$ E^{0} :

$$
\begin{aligned}
& E^{+}=\operatorname{span}\left\{\left(\sin \frac{2 \pi j \mathrm{j}}{\mathrm{~T}}\right) e_{k}-\left(\cos \frac{2 \pi j}{T} t\right) e_{k+n},\left(\cos \frac{2 \pi j}{T} t\right) e_{k}+\left(\sin \frac{2 \pi j}{T} t\right) e_{k+n}\right\} \\
& E^{-}=\operatorname{span}\left\{\left(\sin \frac{2 \pi j}{T} t\right) e_{k}+\left(\cos \frac{2 \pi j}{T} t\right) e_{k+n},\left(\cos \frac{2 \pi j}{T} t\right) e_{k}-\left(\sin \frac{2 \pi j}{T} t\right) e_{k+n}\right\} \\
& E^{0}=\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{2 n}\right\}
\end{aligned}
$$

- Given the vortex Hamiltonian function, we define the following functionals for variational argument,

$$
\begin{aligned}
\forall z(\mathrm{t}) \in \mathrm{H}_{\mathrm{T}}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 \mathrm{n}}\right), & \mathcal{A}(z)=\int_{0}^{\mathrm{T}} y \Gamma \mathrm{~d} x \mathrm{dt} \\
& \mathcal{H}(\mathbf{z})=\int_{0}^{\mathrm{T}} \mathrm{H}(x, y) \mathrm{dt} \\
& \mathcal{J}_{\mathrm{H}}(\mathrm{z})=\mathcal{A}(z)-\mathcal{H}(z)=\int_{0}^{\mathrm{T}} y \Gamma \mathrm{~d} x-\mathrm{H}(x, y) \mathrm{dt}
\end{aligned}
$$

Variational Formulation

- Given $\mathbf{z}=\mathbf{z}^{+}+\mathbf{z}^{-}+\mathbf{z}^{0}$, and $\Gamma_{i}>0, \forall 1 \leq i \leq n$

$$
\mathcal{A}\left(z^{+}\right)>0, \mathcal{A}\left(z^{-}\right)<0, \mathcal{A}\left(z^{0}\right)=0
$$

Variational Formulation

- Given $\mathbf{z}=\mathbf{z}^{+}+\mathbf{z}^{-}+\mathbf{z}^{0}$, and $\Gamma_{i}>0, \forall 1 \leq \mathfrak{i} \leq n$

$$
\mathcal{A}\left(z^{+}\right)>0, \mathcal{A}\left(z^{-}\right)<0, \mathcal{A}\left(z^{0}\right)=0
$$

- One can define an equivalent norm $\|\cdot\|_{E} \simeq\|\cdot\|_{H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)}$, where

$$
\|\cdot\|_{\mathrm{E}}^{2}:=\mathcal{A}\left(\mathbf{z}^{+}\right)-\mathcal{A}\left(\mathbf{z}^{-}\right)+\left|\mathbf{z}^{0}\right|^{2}
$$

Variational Formulation

- Given $\mathbf{z}=\mathbf{z}^{+}+\mathbf{z}^{-}+\mathbf{z}^{0}$, and $\Gamma_{\mathrm{i}}>0, \forall 1 \leq \mathrm{i} \leq \mathrm{n}$

$$
\mathcal{A}\left(z^{+}\right)>0, \mathcal{A}\left(z^{-}\right)<0, \mathcal{A}\left(z^{0}\right)=0
$$

- One can define an equivalent norm $\|\cdot\|_{E} \simeq\|\cdot\|_{H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)}$, where

$$
\|\cdot\|_{\mathrm{E}}^{2}:=\mathcal{A}\left(\mathbf{z}^{+}\right)-\mathcal{A}\left(\mathbf{z}^{-}\right)+\left|\mathbf{z}^{0}\right|^{2}
$$

- The subspaces E^{+}, E^{-}, E^{0} are mutually orthogonal not only in $H_{T}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ but also in $L^{2}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$

Variational Formulation

- We will always assume $\Gamma_{i}=1, \forall 1 \leq i \leq N$

Variational Formulation

- We will always assume $\Gamma_{i}=1, \forall 1 \leq i \leq N$ - Consider the following Hamiltonians:

$$
\begin{aligned}
& \mathrm{H}_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
\end{aligned}
$$

where $f(\lambda)=\mu \lambda^{k}$, for an integer $k>0$ fixed large enough whose value is to be precised later on.while

$$
\mu=\frac{\alpha}{\mathrm{kT}}, \quad \alpha<2 \pi
$$

Variational Formulation

- We will always assume $\Gamma_{i}=1, \forall 1 \leq i \leq N$ - Consider the following Hamiltonians:

$$
\begin{aligned}
& \mathrm{H}_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
\end{aligned}
$$

where $f(\lambda)=\mu \lambda^{k}$, for an integer $k>0$ fixed large enough whose value is to be precised later on.while

$$
\mu=\frac{\alpha}{\mathrm{kT}}, \quad \alpha<2 \pi
$$

- $H_{0} \rightarrow H_{1}$ replaces collision singularity by fixed point
- $\mathrm{H}_{1} \rightarrow \mathrm{H}_{2}$ ensures the compactness: the validity of Palais-Smale condition

Strategy

$$
H_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2}, H_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}, H_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
$$

The main lines of the strategy are as the following:

$$
H_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2}, H_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}, H_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
$$

The main lines of the strategy are as the following:

- 1. We show that $\mathcal{J}_{\mathrm{H}_{2}}$ possesses a critical point $\mathbf{z}_{\mathrm{H}_{2}}$ in $\mathrm{H}_{\mathrm{T}}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 \mathrm{n}}\right)$ by the construction of topological linking,Standard argument then shows that this critical point is indeed a classical solution $\mathbf{z}_{\mathrm{H}_{2}}$ of the Hamltonian H_{2}

$$
H_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2}, H_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}, H_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
$$

The main lines of the strategy are as the following:

- 1. We show that $\mathcal{J}_{\mathrm{H}_{2}}$ possesses a critical point $\mathbf{z}_{\mathrm{H}_{2}}$ in $\mathrm{H}_{\mathrm{T}}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ by the construction of topological linking,Standard argument then shows that this critical point is indeed a classical solution $\mathbf{z}_{\mathrm{H}_{2}}$ of the Hamltonian H_{2}
- 2. By the fact that flows of Hamiltonians in involution commute, we show that, $\mathbf{z}_{\mathrm{H}_{2}}$ will induce a relative T-periodic solution $\mathbf{z}_{\mathrm{H}_{1}}$ of the Hamiltonian H_{1};

$$
H_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2}, H_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}, H_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
$$

The main lines of the strategy are as the following:

- 1. We show that $\mathcal{J}_{\mathrm{H}_{2}}$ possesses a critical point $\mathbf{z}_{\mathrm{H}_{2}}$ in $\mathrm{H}_{\mathrm{T}}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ by the construction of topological linking,Standard argument then shows that this critical point is indeed a classical solution $\mathbf{z}_{\mathrm{H}_{2}}$ of the Hamltonian H_{2}
- 2. By the fact that flows of Hamiltonians in involution commute, we show that, $\mathbf{z}_{\mathrm{H}_{2}}$ will induce a relative T-periodic solution $\mathbf{z}_{\mathrm{H}_{1}}$ of the Hamiltonian H_{1};
-3. We will exclure the possibility of collision in $\mathbf{z}_{\mathrm{H}_{1}}$, thus $\mathrm{H}_{1} \neq 0$;

$$
H_{0}=\sum_{i, j=1, i<j}^{N} \log \left|z^{i}-z^{j}\right|^{2}, H_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}, H_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
$$

The main lines of the strategy are as the following:

- 1. We show that $\mathcal{J}_{\mathrm{H}_{2}}$ possesses a critical point $\mathbf{z}_{\mathrm{H}_{2}}$ in $\mathrm{H}_{\mathrm{T}}^{\frac{1}{2}}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ by the construction of topological linking,Standard argument then shows that this critical point is indeed a classical solution $\mathbf{z}_{\mathrm{H}_{2}}$ of the Hamltonian H_{2}
- 2. By the fact that flows of Hamiltonians in involution commute, we show that, $\mathbf{z}_{\mathrm{H}_{2}}$ will induce a relative T-periodic solution $\mathbf{z}_{\mathrm{H}_{1}}$ of the Hamiltonian H_{1};
-3. We will exclure the possibility of collision in $\mathbf{z}_{\mathrm{H}_{1}}$, thus $\mathrm{H}_{1} \neq 0$;
- 4. Now by taking logarithm of H_{1} (which is a legal operation when $\mathrm{H}_{1} \neq 0$), $\mathbf{z}_{\mathrm{H}_{1}}$ will become, after a reparametrization of time, a relative periodic solution $\mathbf{z}_{\mathrm{H}_{0}}$ for H_{0}

Existence of Critical Point for $\mathcal{J}_{\mathrm{H}_{2}}$

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class $\mathcal{C}^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ and satisfies that

1. $\mathrm{H}(z)>0$
2. $\mathrm{H}(z)=\mathrm{o}\left(\|z\|^{2}\right)$ when $\|z\| \rightarrow 0$
3. $\exists r>0$ and $\mu>2$ s.t. $0<\mu \mathrm{H}(z) \leq \nabla \mathrm{H}(z), z>$ when $\|z\|>\mathrm{r}$

Then for any $\mathrm{T}>0$ the Hamiltonian system has a non-constant T-periodic solution.

Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class $\mathcal{C}^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ and satisfies that

1. $\mathrm{H}(z)>0$
2. $\mathrm{H}(z)=\mathrm{o}\left(\|z\|^{2}\right)$ when $\|z\| \rightarrow 0$
3. $\exists r>0$ and $\mu>2$ s.t. $0<\mu \mathrm{H}(z) \leq \nabla \mathrm{H}(z), z>$ when $\|z\|>\mathrm{r}$

Then for any $\mathrm{T}>0$ the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.

Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class $\mathcal{C}^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ and satisfies that

1. $\mathrm{H}(z)>0$
2. $\mathrm{H}(z)=\mathrm{o}\left(\|z\|^{2}\right)$ when $\|z\| \rightarrow 0$
3. $\exists \mathrm{r}>0$ and $\mu>2$ s.t. $0<\mu \mathrm{H}(z) \leq \nabla \mathrm{H}(z), z>$ when $\|z\|>\mathrm{r}$

Then for any $\mathrm{T}>0$ the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.
- Apply this to H_{2}, we can find a non-constant periodic solution $\mathbf{z}_{\mathrm{H}_{2}}$.

Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci, 1979)

Suppose that the Hamiltonian H is of class $\mathcal{C}^{1}\left(\mathbb{S}^{1}, \mathbb{R}^{2 n}\right)$ and satisfies that

1. $\mathrm{H}(z)>0$
2. $\mathrm{H}(z)=\mathrm{o}\left(\|z\|^{2}\right)$ when $\|z\| \rightarrow 0$
3. $\exists \mathrm{r}>0$ and $\mu>2$ s.t. $0<\mu \mathrm{H}(z) \leq \nabla \mathrm{H}(z), z>$ when $\|z\|>\mathrm{r}$

Then for any $\mathrm{T}>0$ the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmax method through topological linking.
- Apply this to H_{2}, we can find a non-constant periodic solution $\mathbf{z}_{\mathrm{H}_{2}}$.
- It can be proved that the corresponding critical value c satisfies that

$$
c \leq\left(1+\epsilon_{k}\right)^{2} \pi
$$

for a small ϵ_{k} depending on k

$$
\begin{aligned}
& \mathrm{H}_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
\end{aligned}
$$

- Note that in our setting

$$
X_{H+f(I)}=\sqrt[J]{ }(H+f(I))=X_{H}+X_{f(I)}
$$

$$
\begin{aligned}
& \mathrm{H}_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
\end{aligned}
$$

- Note that in our setting

$$
X_{H+f(I)}=\mathbb{J}(H+f(I))=X_{H}+X_{f(I)}
$$

$-\{f(\mathrm{I}), \mathrm{H}\}=0$, as a result $\left[\mathrm{X}_{\mathrm{H}}, \mathrm{X}_{\mathrm{f}(\mathrm{I})}\right]=0$

$$
\begin{aligned}
& \mathrm{H}_{1}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2} \\
& \mathrm{H}_{2}=\prod_{i, j=1, i<j}^{N}\left|z^{i}-z^{j}\right|^{2}+f(I(z))
\end{aligned}
$$

- Note that in our setting

$$
X_{H+f(I)}=\mathbb{J}(H+f(I))=X_{H}+X_{f(I)}
$$

$-\{f(\mathrm{I}), \mathrm{H}\}=0$, as a result $\left[\mathrm{X}_{\mathrm{H}}, \mathrm{X}_{\mathrm{f}(\mathrm{I})}\right]=0$

- $\mathbf{z}_{\mathrm{H}_{2}}$ induces a relative T-periodic solution $\mathbf{z}_{\mathrm{H}_{1}}$ for H_{1}

From H_{1} to H_{0}

- If $\mathbf{z}_{\mathrm{H}_{1}}$ does not have any collision, then it is, up to a reparametrization of time, a relative T_{0}-periodic solution $\mathbf{z}_{\mathrm{H}_{0}}$ of the Hamltonian H_{0}.

From H_{1} to H_{0}

- If $\mathbf{z}_{\mathrm{H}_{1}}$ does not have any collision, then it is, up to a reparametrization of time, a relative T_{0}-periodic solution $\mathbf{z}_{\mathrm{H}_{0}}$ of the Hamltonian H_{0}.
- Adding a rotationing frame work does not change the mutual distances.
- If $\mathbf{z}_{\mathrm{H}_{1}}$ does not have any collision, then it is, up to a reparametrization of time, a relative T_{0}-periodic solution $\mathbf{z}_{\mathrm{H}_{0}}$ of the Hamltonian H_{0}.
- Adding a rotationing frame work does not change the mutual distances.
- If $\mathbf{z}_{\mathrm{H}_{2}}$ does not have any collision, then it is, up to a reparametrization of time, a relative T_{0}-periodic solution $\mathbf{z}_{\mathrm{H}_{0}}$ of the Hamltonian H_{0}.

Exclusion of Collision for $\mathbf{Z}_{\mathrm{H}_{2}}$

What if a Collision Happened

- Suppose that there is a collision. It implies that $\nabla \mathrm{H}_{1}=0$, and $\mathbf{z}_{\mathrm{H}_{2}}$ becomes a centered uniform rotation.

What if a Collision Happened

- Suppose that there is a collision. It implies that $\nabla \mathrm{H}_{1}=0$, and $\mathbf{z}_{\mathrm{H}_{2}}$ becomes a centered uniform rotation.
- The critical value satisfies that

$$
\begin{aligned}
c=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) & =\int_{0}^{T} y d x-\mathrm{H}_{2}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) d t \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\operatorname{Tf}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\mathrm{T} \frac{1}{\mathrm{k}} \mathrm{f}^{\prime}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right) \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\frac{1}{\mathrm{k}} \frac{\mathrm{~T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\left(1-\frac{1}{\mathrm{k}}\right) \\
& =m \pi \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\left(1-\frac{1}{\mathrm{k}}\right)
\end{aligned}
$$

What if a Collision Happened

- Suppose that there is a collision. It implies that $\nabla \mathrm{H}_{1}=0$, and $\mathbf{z}_{\mathrm{H}_{2}}$ becomes a centered uniform rotation.
- The critical value satisfies that

$$
\begin{aligned}
c=\mathrm{I}_{\mathrm{H}_{2}}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) & =\int_{0}^{T} y d x-\mathrm{H}_{2}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) d t \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\operatorname{Tf}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\mathrm{T} \frac{1}{\mathrm{k}} \mathrm{f}^{\prime}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right) \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)-\frac{1}{\mathrm{k}} \frac{\mathrm{~T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \\
& =\frac{\mathrm{T} \omega}{2} \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\left(1-\frac{1}{\mathrm{k}}\right) \\
& =m \pi \mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\left(1-\frac{1}{\mathrm{k}}\right)
\end{aligned}
$$

What if a Collision Happened

- The collision cannot happen when $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)$ too small. If $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \leq 1$, then :

$$
\begin{aligned}
|\omega| & =2 \frac{\mathrm{df}}{\mathrm{dI}}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right)=\mu \mathrm{kI}{ }^{\mathrm{k}-1} \\
& \leq \frac{\alpha}{\mathrm{T}}<\frac{2 \pi}{\mathrm{~T}}
\end{aligned}
$$

What if a Collision Happened

- The collision cannot happen when $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)$ too small. If $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \leq 1$, then :

$$
\begin{aligned}
|\omega| & =2 \frac{\mathrm{df}}{\mathrm{dI}}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right)=\mu k I^{\mathrm{k}-1} \\
& \leq \frac{\alpha}{\mathrm{T}}<\frac{2 \pi}{\mathrm{~T}}
\end{aligned}
$$

- We conclude that $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)>1$.

What if a Collision Happened

- The collision cannot happen when $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)$ too small. If $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right) \leq 1$, then :

$$
\begin{aligned}
|\omega| & =2 \frac{\mathrm{df}}{\mathrm{dI}}\left(\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)\right)=\mu k \mathrm{I}^{\mathrm{k}-1} \\
& \leq \frac{\alpha}{\mathrm{T}}<\frac{2 \pi}{\mathrm{~T}}
\end{aligned}
$$

- We conclude that $\mathrm{I}\left(\mathbf{z}_{\mathrm{H}_{2}}\right)>1$.

$$
c=m \pi I\left(\mathbf{z}_{H_{2}}\right)\left(1-\frac{1}{k}\right)>m \pi\left(1-\frac{1}{k}\right)
$$

- Recall that

$$
c \leq\left(1+\epsilon_{\mathrm{k}}\right)^{2} \pi
$$

Lemma

Suppose that the solution $\mathbf{z}_{\mathrm{H}_{2}}$ that we have found does have a collision, then this solution must verify that T is its minimal period.

Symmetry and Palai's Principle

Theorem (Palais, 1979)

(Palai's Principle of symmetric criticality)Let \boldsymbol{G} be a group of isometries of a Riemannian manifold \boldsymbol{M} and let $\mathrm{f}: \boldsymbol{M} \rightarrow \boldsymbol{R}$ be a e^{1} function invariant under \boldsymbol{G}. Then the set Γ of stationary points of \boldsymbol{M} under the action of \boldsymbol{G} is a totally geodesic smooth submanifold of \boldsymbol{M}, and if $p \in \Gamma$ is a critical point of $f \mid \Gamma$ then p is in fact a critical point of f

Symmetry and Palai's Principle

Theorem (Palais, 1979)

(Palai's Principle of symmetric criticality)Let \boldsymbol{G} be a group of isometries of a Riemannian manifold \boldsymbol{M} and let $\mathrm{f}: \boldsymbol{M} \rightarrow \boldsymbol{R}$ be a e^{1} function invariant under \boldsymbol{G}. Then the set Γ of stationary points of \boldsymbol{M} under the action of \boldsymbol{G} is a totally geodesic smooth submanifold of \boldsymbol{M}, and if $p \in \Gamma$ is a critical point of $f \mid \Gamma$ then p is in fact a critical point of f

- Let G be a finite subgroup of $\mathrm{O}(2) \times \Sigma_{\mathrm{N}} \times \mathrm{O}(2)$. Let Λ be T-periodic loops in the configuration space of our vortex system (Note that for the vortex problem, the configuration space coincides with the phase space). Let $g=(\tau, \sigma, \rho) \in G$ acts on $z(t)=\left(z_{1}(t), z_{2}(t), \ldots, z_{n}(t)\right) \in \Lambda$ be such that:

$$
g z_{i}(t)=\rho y_{\sigma^{-1}(j)}\left(\tau^{-1}(t)\right)
$$

In the special case, let $\rho=I, \sigma^{-1}(j)=j-1$, with the convention that $z_{n}=z_{0-1}$ $\tau^{-1}(t)=t-\frac{T}{n}$, then the group thus generated is called the group of choregraphy

Choregraphy

Consider the simple choregraphy of N vortices

$$
z_{\mathfrak{i}}\left(\mathrm{t}+\frac{\mathrm{T}}{\mathrm{~N}}\right)=z_{\mathrm{i}-1}(\mathrm{t}), \quad \mathrm{i}=1,2, \ldots, \mathrm{~N}
$$

This gives us a solution $\mathbf{z}_{\mathrm{H}_{2}}$ that is a simple choregraphy

Choregraphy

Consider the simple choregraphy of N vortices

$$
z_{\mathfrak{i}}\left(\mathrm{t}+\frac{\mathrm{T}}{\mathrm{~N}}\right)=z_{\mathrm{i}-1}(\mathrm{t}), \quad \mathrm{i}=1,2, \ldots, \mathrm{~N}
$$

This gives us a solution $\mathbf{z}_{\mathrm{H}_{2}}$ that is a simple choregraphy - Suppose to the contrary that $\mathbf{z}_{\mathrm{H}_{2}}$ has a collision. Then it becomes a uniform rotation with $\mathrm{T}^{*}=\mathrm{T}$. Moreover, Without loss of generality we could assume the collision involes $z_{\mathrm{H}_{2}}^{1}$, i.e.,

$$
z_{\mathrm{H}_{2}}^{\mathrm{i}}(\mathrm{t})=z_{\mathrm{H}_{2}}^{1}(\mathrm{t}), \forall 1 \leq \mathrm{i} \leq \mathrm{N}
$$

Now by the definition of choregraphy again, we see that $\forall \mathrm{t} \in[0, \mathrm{~T}]$

$$
z_{\mathrm{H}_{2}}^{2 i-1}\left(\mathrm{t}+\frac{\mathrm{T}(\mathrm{i}-1)}{\mathrm{N}}\right)=z_{\mathrm{H}_{2}}^{i}(\mathrm{t})=z_{\mathrm{H}_{2}}^{1}(\mathrm{t})=z_{\mathrm{H}_{2}}^{i}\left(\mathrm{t}+\frac{\mathrm{T}(\mathrm{i}-1)}{\mathrm{N}}\right)
$$

It turns out that

$$
z_{\mathrm{H}_{2}}^{2 i-1}(\mathrm{t})=z_{\mathrm{H}_{2}}^{i}(\mathrm{t})=z_{\mathrm{H}_{2}}^{1}(\mathrm{t})
$$

Choregraphy

- It is clear how we can define an equivalent class for vortices collided in this way. The index of vortices in one equivalent class will be a subgroup of the cyclic group S^{N}, thus each equivalent will at least have two elements. Dividing \mathcal{S}^{1} parameterized by $[0, T]$ into two equal parts $\left[0, \frac{T}{2}\right]$ and $\left[\frac{T}{2}, T\right)$. Now by Pigeonhole principle there must be at least two elements falling into the same part, i.e., the time gap is less or equal to $\frac{T}{2}$. In other words, any collision will imply that

$$
\mathrm{T}^{*} \leq \frac{\mathrm{T}}{2}
$$

In other words, the collision will lead to $m \geq 2$

Choregraphy

- We have thus proved the following theorem:

Theorem

$\forall N \in \mathbb{N}^{*}$, the identical N-vortex system has a relative periodic choregraphy.

Choregraphy

- We have thus proved the following theorem:

Theorem

$\forall N \in \mathbb{N}^{*}$, the identical N-vortex system has a relative periodic choregraphy.

- Is the solution the Thomson's N -polygon?...

Thank you!
[1] V. Benci and P. H. Rabinowitz, Critical point theorems for indefinite func- tionals, Inventiones Mathematicae, 52 (1979)
[2] P. K. Newton, The N-vortex problem: analytical techniques, vol. 145, Springer Science Business Media, 2013.
[3] Q. Wang, Relative Periodic Solution of Identical N-vortex Problem in the Plane via Minmax Methods, in preparation

