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Vortices as we might see in real life:

(a) A vortex in Atlantic
Ocean

(b) The Jupitor Red Spot (c) When One flushes the
Toilet

Figure 1: Some Examples of Vortices
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Vortex System

- The study of vortices goes back to Helmholtz since 1858

Figure 2: Hermann Von Helmholtz, 1821-1894

- Its Hamiltonian structure is first formulated by Kirchho� in 1876

Figure 3: Gustav Robert Kirchho�, 1824-1887
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Hamiltonian Structure of Vortex Dynamics

- Let zi = (xi,yi) denotes the position of i-th vortex in the plane, with a given
vorticity �i.

- Their movements are governed by the System

w

�iẋi(t) = @H
@yi

�iẏi(t) = � @H
@xi

(1)

with

H = �
1
4⇡ 9

1&i<j&N
�i�j log ∂zi � zj∂

2

- The energy surface is neither compact, nor convex
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Integrability

Define the Poisson Bracket

{f,g} = 9
1&i&N

1
�i
(

@f

@xi

@g

@yi
�

@f

@yi

@g

@xi
)

- The system is an autonomous Hamiltonian system
� H = � 1

4⇡ 81&i<j&N �i�j log ∂zi � zj∂
2 = CST

- The system is invariant under translation
� X = 81&i&N �ixi = CST , Y = 81&i&N �iyi = CST
- The system is invariant under rotation
� I = 81&i&N �i∂zi∂

2 = CST
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Integrability

- There are three independent first integrals in involution: H, I,P2 +Q
2

{H,P2 +Q
2
} = 0, {H, I} = 0, {I,P2 +Q

2
} = 0

- The 3-vortex problem is integrable.
- The N-vortex problem is in general not integrable when N > 3
(S. Ziglin 1980; J. Koiller and S. P. Carvalho 1989).
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Motivation

- Analogy in Celestial Mechanics
(A. Chenciner and R. Montgomery, 2000)

Figure 4: The eight-figure curve

- Give an example that linking techniques apply to Superquatratic Hamiltonianwith
physical background
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Variational Formulation

- Let L2(S1,R2n
) denote the set of 2N-tuples of 2⇡ periodic functions which are

square integrable. The Fourrier expansion hence exists, i.e., for z " L
2
(S

1,R2N
),

z = 9
k"Z2n

ake
ikt

Define the norm

ΩzΩW2,p = (9
k"Z

(1 + ∂k∂
2p
)∂ak∂

2
)

1
2

It has been noticed that a proper functional space for Hamiltonian system is the

space H
1
2
T (S

1,R2n
), where

H
1
2
T (S

1,R2n
) = {z(t) " H

1
2
(S

1;R2n
)∂ z(0) = z(T )}
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Variational Formulation

- The space H
1
2
T (S

1,R2n
) admits the following decomposition H

1
2
T (S

1,R2n
) = E

+hE�h

E
0:

E
+ =span{(sin2⇡jt

T
)ek � (cos

2⇡j
T

t)ek+n, (cos
2⇡j
T

t)ek + (sin
2⇡j
T

t)ek+n}

E
� =span{(sin2⇡j

T
t)ek + (cos

2⇡j
T

t)ek+n, (cos
2⇡j
T

t)ek � (sin
2⇡j
T

t)ek+n}

E
0 =span{e1, e2, ..., e2n}

- Given the vortex Hamiltonian function, we define the following functionals for
variational argument,

ºz(t) " H
1
2
T (S

1,R2n
), A(z) = = T

0
y�dxdt

H(z) = = T

0
H(x,y)dt

IH(z) = A(z) �H(z) = = T

0
y�dx �H(x,y)dt
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Variational Formulation

- Given z = z+ + z� + z0, and �i > 0,º1 & i & n

A(z
+
) > 0,A(z

�
) < 0,A(z

0
) = 0

- One can define an equivalent norm Ω.ΩE ⌃ Ω.Ω
H

1
2
T (S1,R2n

)

, where

Ω.Ω2E ⇥= A(z+) �A(z�) + ∂ z0 ∂2

- The subspaces E+,E�,E0 are mutually orthogonal not only in H
1
2
T (S

1,R2n
) but also

in L
2
(S

1,R2n
)
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Variational Formulation

- We will always assume �i = 1,º1 & i & N

- Consider the following Hamiltonians:

H0 =
N

9
i,j=1,i<j

log ∂zi � z
j
∂

2

H1 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2

H2 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2 + f(I(z))

where f(�) = µ�
k, for an integer k > 0 fixed large enough whose value is to be

precised later on.while

µ = ↵

kT
, ↵ < 2⇡

- H0 � H1 replaces collision singularity by fixed point
- H1 � H2 ensures the compactness: the validity of Palais-Smale condition
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Strategy

H0 =
N

9
i,j=1,i<j

log ∂zi � z
j
∂

2,H1 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2,H2 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2 + f(I(z))

The main lines of the strategy are as the following:

- 1. We show that IH2 possesses a critical point zH2 in H
1
2
T (S

1,R2n
) by the construc-

tion of topological linking,Standard argument then shows that this critical point is
indeed a classical solution zH2 of the Hamltonian H2
- 2. By the fact that flows of Hamiltonians in involution commute, we show that,
zH2 will induce a relative T-periodic solution zH1 of the Hamiltonian H1 ;
- 3. We will exclure the possibility of collision in zH1 , thus H1 j 0;
- 4. Now by taking logarithm of H1 (which is a legal operation when H1 j 0), zH1

will become, a�er a reparametrization of time, a relative periodic solution zH0 for
H0
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Subquadratic Hamiltonian

Theorem (Rabinowitz-Benci,1979)

Suppose that the Hamiltonian H is of class C1 (S1,R2n
) and satisfies that

1. H(z) > 0
2. H(z) = o(ΩzΩ

2
) when ΩzΩ � 0

3. Ωr > 0 and µ > 2 s.t. 0 < µH(z) &  H(z), z > when ΩzΩ > r

Then for any T > 0 the Hamiltonian system has a non-constant T-periodic solution.

- This critical point is characterized by minmaxmethod through topological linking.
- Apply this to H2, we can find a non-constant periodic solution zH2.
- It can be proved that the corresponding critical value c satisfies that

c & (1 + ✏k)
2
⇡

for a small ✏k depending on k
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From H2 to H1

H1 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2

H2 =
N

5
i,j=1,i<j

∂z
i � z

j
∂

2 + f(I(z))

- Note that in our se�ing

XH+f(I) = J (H + f(I)) = XH + Xf(I)

- {f(I),H} = 0, as a result [XH,Xf(I)] = 0
- zH2 induces a relative T-periodic solution zH1 for H1
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From H1 to H0

- If zH1 does not have any collision, then it is, up to a reparametrization of time, a
relative T0-periodic solution zH0 of the Hamltonian H0.

- Adding a rotationing frame work does not change the mutual distances.
- If zH2 does not have any collision, then it is, up to a reparametrization of time, a
relative T0-periodic solution zH0 of the Hamltonian H0.
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What if a Collision Happened

- Suppose that there is a collision. It implies that  H1 = 0, and zH2 becomes a
centered uniform rotation.

- The critical value satisfies that

c = IH2(zH2) = = T

0
ydx �H2(zH2)dt

= T!
2 I(zH2) � Tf(I(zH2))

= T!
2 I(zH2) � T

1
k
f
¨
(I(zH2))I(zH2)

= T!
2 I(zH2) �

1
k

T!
2 I(zH2)

= T!
2 I(zH2)(1 �

1
k
)

= m⇡I(zH2)(1 �
1
k
)

here m is number of rotation in time T
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What if a Collision Happened

- The collision cannot happen when I(zH2) too small. If I(zH2) & 1, then :

∂!∂ = 2
df

dI
(I(zH2)) = µkI

k�1

& ↵

T
< 2⇡

T

- We conclude that I(zH2) > 1

.

c = m⇡I(zH2)(1 �
1
k
) > m⇡(1 �

1
k
)

- Recall that

c & (1 + ✏k)
2
⇡

Lemma
Suppose that the solution zH2 that we have found does have a collision, then this
solution must verify that T is its minimal period.
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Symmetry and Palai’s Principle

Theorem (Palais, 1979)

(Palai’s Principle of symmetric criticality)Let G be a group of isometries of a
Riemannian manifold M and let f ⇥ M � R be a C

1 function invariant under G. Then
the set � of stationary points of M under the action of G is a totally geodesic smooth
submanifold of M, and if p " � is a critical point of f∂� then p is in fact a critical
point of f

- Let G be a finite subgroup of O(2) ✓ ⌃N ✓ O(2). Let ⇤ be T-periodic loops in the
configuration space of our vortex system (Note that for the vortex problem, the
configuration space coincides with the phase space). Let g = (⌧,�, ⇢) " G acts on
z(t) = (z1(t), z2(t), ..., zn(t)) " ⇤ be such that:

gzi(t) = ⇢y��1
(j)(⌧

�1
(t))

In the special case, let ⇢ = I, ��1
(j) = j � 1, with the convention that zn = z0�1

⌧
�1
(t) = t� T

n
, then the group thus generated is called the group of choregraphy
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Choregraphy

Consider the simple choregraphy of N vortices

zi(t +
T

N
) = zi�1(t), i = 1, 2, ...,N

This gives us a solution zH2 that is a simple choregraphy

- Suppose to the contrary
that zH2 has a collision. Then it becomes a uniform rotation with T

ò = T . Moreover,
Without loss of generality we could assume the collision involes z1H2

, i.e.,

z
i
H2

(t) = z
1
H2

(t),º1 & i & N

Now by the definition of choregraphy again, we see that ºt " [0, T ]

z
2i�1
H2

(t +
T (i � 1)

N
) = z

i
H2

(t) = z
1
H2

(t) = z
i
H2

(t +
T (i � 1)

N
)

It turns out that

z
2i�1
H2

(t) = z
i
H2

(t) = z
1
H2

(t)
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Choregraphy

- It is clear how we can define an equivalent class for vortices collided in this way.
The index of vortices in one equivalent class will be a subgroup of the cyclic group
S
N, thus each equivalent will at least have two elements. Dividing S1 parameterized

by [0, T ] into two equal parts [0, T2 ] and [

T
2 , T ). Now by Pigeonhole principle there

must be at least two elements falling into the same part, i.e., the time gap is less or
equal to T

2 . In other words, any collision will imply that

T
ò & T

2

In other words, the collision will lead to m ' 2
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Choregraphy

- We have thus proved the following theorem:

Theorem
ºN " N

ò, the identical N-vortex system has a relative periodic choregraphy.

- Is the solution the Thomson’s N-polygon?...
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Thank you!
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