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‡ Mathématiques pour l’Industrie et la Physique, UMR 5640,
Site Internet: http://www.math.uvsq.fr/~mischler/



1 Introduction

Let Ω be an open subset of IRN with smooth boundary ∂Ω, and define O = Ω × IRN , and
Σ = ∂Ω × IRN . We introduce the outgoing and incoming trace subset Σ± = {(x, v) ∈
Σ ; ±n(x) · v > 0 }, where n(x) denotes the unit outward normal vector on the boundary ∂Ω,
and we denote by γ±f the restriction of the trace of f on Σ±. The equation we are concerned
with in this paper is the following Vlasov equation:

ΛEf =
∂f

∂t
+ v · ∇xf + E · ∇vf = 0 , (x, v) ∈ O , t ∈ [0, T ] ,

f(x, v, 0) = ϕ(x, v) , (x, v) ∈ O ,
(1)

together with boundary conditions of the form:

γ−f(t) = Kγ+f(t) , ∀(x, v) ∈ Σ− ,∀t ∈ (0, T ) . (2)

This equation describes the evolution of the distribution function of a cloud of particles
confined in the domain Ω. v ∈ IRN is the velocity of the particles, E(x) is the electric field
which satisfies:

(H0) E(x) is given, time-independent and belongs to W 1,1
loc (Ω̄) ∩ L∞(Ω) .

The expression and properties of the operator K depend on the model we choose for the
reflexion, absorption and emission of particles. This note is concerned with the case of
diffusive reflexion by the boundary, which gives rise to the following expression:

K(ϕ)(x, v) =
∫

v∈IRN, n(x)·v′>0
k(x, v′, v)ϕ(x, v′)n(x) · v′ dv′ , ∀(x, v) ∈ Σ− .

From physical considerations, the kernel (or cross-section) k(x, v′, v) has to satisfy:

(H1) positivity : k(x, v′, v) ≥ 0 ,

(H2) mass conservation :
∫

n(x)·v<0
k(x, v′, v)|n(x) · v|dv = 1, for n(x) · v′ > 0 .

One usually also adds the following hypothesis, which ensures the existence of a thermody-
namical equilibrium:

(H3) There exists a Maxwellian distribution M(x, v) satisfying KM = M .

The Maxwellian distribution reads M(x, v) = 1
2πΘ2 exp(− |v|2

2Θ ), where Θ(x) is the temperature
of the boundary. This last hypothesis is actually a consequence of (H2) when the following
detailed balance principle (or reciprocity relation) holds:

k(x,−v,−v′)M(x, v) = k(x, v′, v)M(x, v′) . (3)

However, in this paper, we investigate the case of elastic reflexion. Therefore, from now
on, we shall assume that the cross-section reads:

(H3’) k(x, v′, v) = k0(x, v′, v)δ(|v|2 − |v′|2) .
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In this context, (H3) gives rise to the following normalization condition:∫
n(x)·v′>0

k(x, v′, v)|n(x) · v′|dv′ = 1, for n(x) · v < 0 .

In particular, KΦ = Φ holds for every function depending on the velocity through the energy
only.

Under these hypothesese, we investigate in this paper the properties of equations (1)-(2):
Firstly, we establish in Proposition 1 the existence and uniqueness of solutions for initial
data in L1(O) ∩ L2(O), that satisfies γf ∈ L1

loc([0, T ] × Σ, |n(x) · v|dv dσx dt). Then, in
Proposition 2, we deduce the existence of a semigroup S(t) on L1(O), such that S(t)ϕ ∈
L∞(0, T ;L1(O)) is a weak solution of (1), and satisfies (2) in a sense that has to be precised
(see Remark 2.1). However we do not know whether the so-constructed solution, the trace of
which belongs to L1

loc([0, T ]× Σ, |n(x) · v|2dv dσx dt) is unique in the class of weak solutions
in L1(O).

Many ideas used below have been first developed by S. Mischler in [4] and [5] in the case
of specular and maxwellian reflexion on the boundary. We refer to these papers for reference
about the Vlasov equation and boundary conditions. We also stress the fact that the proof
of Proposition 1 can be adapted in order to provide the uniqueness of the solution in [2].

The main tool that will be used throughout this note is the so-called Darrozès-Guirraud
inequality [3], which reads, under the general framework of (H1)-(H3):
For all convex non negative functions β ∈ C0(IR), we have∫

n(x)·v<0
β

(
K(ϕ)
M

)
M(v)|n(x) · v|dv ≤

∫
n(x)·v>0

β

(
ϕ

M

)
M(v)|n(x) · v|dv , (4)

with equality for β(y) = y (this is the expression of the flux conservation).
As a consequence, any function f satisfying the boundary conditions (2), satisfies (at least

formally): ∫
Σ
β

(
γf

M

)
M(v)(n(x) · v) dv dσx ≥ 0 .

In the next section, we state our main results, the proofs of which are detailed in Section 3
and 4.

2 Main results

From now on, we assume that (H0), (H1), (H2), (H3) and (H3’) hold. We also assume that
n(x) can be extended to IRn in a regular way (such that n(x) ∈ W 1,∞

loc (IRN )). For technical
purpose, it is convenient to decompose the velocity set IRN as IR+×SN−1 by writing v = |v|ω,
where ω is the angular velocity. With these notations, the operator K reads:

K(ϕ)(x, v) =
∫

n(x)·ω′>0
k0(x, |v|, ω′, ω)ϕ(x, |v|ω′) |v|n(x) · ω′ dω′ , ∀(x, v) ∈ Σ− , (5)

and the normalization condition yields:∫
n(x)·ω′>0

k0(x, u, ω′, ω)|n(x) · v′|dω′ = 1 .
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Let us also rewrite the Darrozès-Guiraud inequality (4) in this case:
For all convex non negative functions β ∈ C0(IR), we have∫

n(x)·ω<0
β (Kϕ(|v|ω)) |n(x) · ω|dω ≤

∫
n(x)·ω>0

β (ϕ(|v|ω)) |n(x) · ω|dω . (6)

In particular, with β(y) = yp, we deduce that

‖K(ϕ)‖Lp(Σ−) ≤ ‖ϕ‖Lp(Σ+) , ∀p < +∞ .

Remark 2.1 From Theorem 1 in [4], for any function f ∈ L∞(0, T ;Lp
loc(O)) solution of (1),

we can define its trace γf , which belongs to L1
loc([0, T ] × Σ, (n(x) · v)2dv dσx dt). However,

we need more integrability in order to give sense to (2).
In view of (6), K(x, |v|) is a bounded operator on L1(SN−1

+ ), for any x, |v| ∈ ∂Ω × IR+.
Therefore Kγ+f is well-defined (and (2) has a meaning) as soon as γf ∈ L1

loc([0, T ]× ∂Ω×
IR+;L1(SN−1); |n(x) · v|dv dσx dt).

The first result we are aiming at is the following proposition:

Proposition 1 For all initial data ϕ ∈ L1(O)∩L2(O), there exists a unique solution f(x, v, t)
of (1)-(2) in L∞(0, T ;L1(O) ∩ L2(O)) satisfying γf ∈ L1(0, T ;L1

loc(Σ, |n(x) · v|dvdσx)).
Moreover, we have

‖f(t)‖L1(O) ≤ ‖ϕ‖L1(O) (7)

(with equality if ϕ ≥ 0), and for all U compact subset of O,∫ T

0

∫
U∩Σ

|γf ||n(x) · v|dv dσx dt ≤ CU

(
1 + ‖E‖L∞(Ux) + ‖∇xn‖L∞(Ux)

)
‖ϕ‖L2(O) .

This first result obviously defines a semigroup S(t) on L1(O) ∩ L2(O), which satisfies
‖S(t)‖L(L1(O)) ≤ 1. L1(O) ∩ L2(O) being a dense subset of L1(O), there exists a unique
extension S(t) : L1(O) → L1(O). However, in Proposition 1, we controle the L1

loc-norm of
the trace by the L2-norm of the initial data, and we shall therefore need further estimate in
order to take the limit in (2). To that purpose, we introduce the following hypothesis:

(H4)
For all compact set U ⊂ ∂Ω× IR+, there exists a constant βU > 0, such that:∫
n(x)·ω<0

k0(x, u, ω′, ω)(n(x) · ω)2 dω ≥ βU ∀(x, u) ∈ U , ω′ · n(x) > 0 .

This so-called ’spreading condition’, which can also be written K∗|n(x) · ω| ≥ βV , is often
used to get controle on the trace. It is satisfied in particular when k0 is bounded by below
by a Maxwellian distribution.

Under (H0)-(H4), we now have:

Proposition 2 For any initial data ϕ ∈ L1(O), there exists a function f(t) = S(t)ϕ ∈
L∞(0, T ;L1(O)), solution of (1) which satisfies

‖S(t)ϕ‖L1(O) ≤ ‖ϕ‖L1(O) .

Moreover, its trace is such that γ+S(t)ϕ ∈ L1([0, T ] × V × SN−1; |n(x) · v| dv dσx dt) for all
compact subset V of ∂Ω× IR+

∗ , and satisfies (2).
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3 Proof of Propositions 1.

The proof of Proposition 1 will be divided as follows: First, we prove the uniqueness part of
the result, by establishing the estimate (7) (under the general setting of solutions in L1(O)
with trace in L1(0, T ;L1

loc(|n(x) · v|dvdσx))). Then we shall prove the existence part, through
an iterative process.

Uniqueness: Let f be a solution satisfying f |t=0 ∈ L1(O), and γf ∈ L1(0, T ;L1
loc(|n(x) · v|dvdσx)).

First of all, it has been proved in [4] (Theorem 1) that such a solution actually belongs to
C0(0, T ;L1

loc(O)). From [4], we also know that f(t) is a renormalized solution of the Vlasov
equation (1): For all β ∈W 1,∞

loc (IR), we have:

ΛEβ(f) = 0 , and γβ(f) = β(γf) .

We define a sequence of smooth convex and non negative functions βε as follows: βε(y) =
|y| − ε for |y| ≥ 2ε and βε(y) = y2/(4ε) for |y| ≤ 2ε. As in [4], we also introduce χR(x, |v|) =
χ(x/R, |v|/R), with χ a smooth function satisfying 0 ≤ χ ≤ 1, χ = 1 on B1 × [0, 1], and
suppχR ⊂ B2 × [0, 2] (where Br denotes the ball of radius r, center at the origin in IRN ).
Then the Green formula leads to:[∫

O
βε(f)χR dv dx

]t

0
=

∫ t

0

∫
O
βε(f)ΛEχR dv dx ds

+
∫ t

0

∫
Σ−

βε(γ−f)χR(|v|)|n(x) · v| dv dσx ds

−
∫ t

0

∫
Σ+

βε(γ+f)χR(|v|)|n(x) · v| dv dσx ds .

Since χR does not depend on the angular velocity ω, Fubini’s theorem and (6) yields:[∫
O
βε(f)χR dv dx

]t

0
≤

∫ t

0

∫
O
βε(f)ΛEχR dv dx ds ,

with equality if f ≥ 0. We deduce (7) by taking successively the limits ε → 0 and R → ∞
(see [4] for details). The uniqueness follows by standard argument.

Existence: Let now ϕ be in L1(O) ∩ L2(O). In order to prove the existence of a solution, we
first assume that ϕ is positive (for general function, we decompose into positive and negative
part), and we define a sequence (fn)n∈IN of solutions of the Vlasov equation (1) in L2(O),
with initial data ϕ, and the following boundary conditions:

γ−f0 = 0 ,
γ−fn = Kγ+fn−1 , ∀n ≥ 1 .

Such a sequence is well-defined since γ+fn−1, and therefore Kγ+fn−1 lies in L2(Σ−) for all
n ≥ 1 (see S. Ukai [7]).

Thanks to the monotonicity of the operator K and the maximum principle for the trans-
port equation, it is easy to check that the sequence (fn)n∈IN is non-decreasing. We deduce
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that for all convex functions β such that β is non-decreasing on IR+, we have:∫
Σ−

β(γ−fn)|n(x) · v| dv dσx =
∫
Σ−

β(Kγ+fn−1)|n(x) · v| dv dσx

≤
∫
Σ+

β(γ+fn−1)|n(x) · v| dv dσx

≤
∫
Σ+

β(γ+fn)|n(x) · v| dv dσx .

The first inequality is a consequence of the Darrozès-Guirraud inequality (6), and the second
one a consequence of the monotonicity of the sequence. It follows:∫

Σ
β(γfn)(n(x) · v) dv dσx ≥ 0 . (8)

Now, multiplying (1) by fn and integrating, the Green formula yields:[∫
O
|fn|2 dv dx

]t

0
= −

∫ t

0

∫
Σ
(γfn)2(n(x) · v) dv dσx ds ,

and (8) with β(y) = y2 implies:

‖fn(t)‖L2(O) ≤ ‖ϕ‖L2(O) . (9)

The similar L1 estimate is obtained by proceeding as in the proof of the uniqueness, using
inequality (8).

It remains to show that we can controle the trace, at least locally. Let U be a compact
subset of O, and let ψ(x, |v|) be a compactly supported function on O such that ψ = 1 on U .
In the spirit of [4], we multiply (1) by (n(x) · v)fnψ(x, |v|); using (9), it yields:∫ T

0

∫
Σ∩U

(γfn)2|n(x) · v|2ψ(x, |v|) dv dσx dt ≤ CU

(
1 + ‖E‖L∞(Ux) + ‖∇xn‖L∞(Ux)

)
‖ϕ‖2

L2(O) ,

and the Cauchy-Schwartz inequality implies:∫ T

0

∫
U∩Σ

|γfn||n(x) · v| dv dσx dt ≤ CU

(
1 + ‖E‖L∞(Ux) + ‖∇xn‖L∞(Ux)

)
‖ϕ‖2

L2(O) .

These estimates allow us to pass to the limit n goes to infinity, and conclude the proof of
Proposition 1.

Remark 3.1 The existence part of the proof holds for more general boundary operators.
Actually, we only used that K satisfies the Darrozès-Guirraud inequality, and is non-negative
(f ≤ g implies Kf ≤ Kg).
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4 Proof of Proposition 2

The main issue in the proof of Proposition 2 is concerned with the boundary condition (2):
Let ϕ be in L1(O), and ϕn ∈ L1(O) ∩ L2(O) be a sequence of function such that ϕn → ϕ in
L1(O). Assume moreover, as in the previous section, that ϕ and ϕn are non negative. Thanks
to Proposition 1, the sequence fn = S(t)ϕn strongly converges in L1(O) toward f(t) = S(t)ϕ.
Moreover, γfn ∈ L1(0, T ;L1

loc(|n(x) · v| dv dσx)) satisfies:

γ−fn = Kγ+fn . (10)

It remains to prove that we can take the limit in (10).
First of all, multiplying (1) by (n(x) · v)ψ(x, |v|) for some compactly supported function

ψ, we prove (as in the proof of Proposition 1) that, for all U compact subset of O, we have∫ T

0

∫
U∩Σ

|γfn|(n(x) · v)2 dv dσx dt ≤ CU

(
1 + ‖E‖L∞(Ux) + ‖∇xn‖L∞(Ux)

)
‖ϕn‖L1(O) ,

and therefore γf ∈ L1
loc([0, T ] × Σ, |n(x) · v|2 dv dσx dt). As discussed previously, this is not

enough to take the limit in (10); however, thanks to (H4), we are going to derive another
a-priori estimate. Let now V be a compact subset of ∂Ω × IR+

∗ , from (10) and the previous
estimate, we get∫ T

0

∫
(V×SN−1)∩Σ−

|Kγ+fn|(n(x) · v)2dv dσx dt ≤ CV ‖ϕn‖L1(O) ,

for some constant CV . Hence, γfn being non negative, we have:∫ T

0

∫
V ∩Σ−

(n(x) · v)2
∫

n(x)·ω′>0
k0(ω′, ω)γ+fn(ω′) |n(x) · v′| dω′ dv dσx dt ≤ CV ‖ϕn‖L1(O) ,

and Fubini’s Theorem yields:∫ T

0

∫
V ∩Σ+

γ+fn(v′) |n(x) · v′| |v|2
∫

n(x)·ω<0
k0(ω′, ω)(n(x) · ω)2 dω dv′ dσx dt ≤ CV ‖ϕn‖L1(O) .

Noticing that |v|2 is bounded by below on V , it follows from (H4) that:∫ T

0

∫
(V×SN−1)∩Σ+

γ+fn(v′) |n(x) · v′| dv′ dσx dt ≤
CV

βV
‖ϕn‖L1(O) .

We deduce that γ+fn strongly converges to γ+f in L1([0, T ]× V × SN−1, |n(x) · v| dv dσx dt)
for all compact subset V of ∂Ω × IR+

∗ (and so does γ−fn thanks to (10)), and, in view of
Remark 2.1, this is enough to give sense to Kγ+f , and pass to the limit in (10).

5 Remark and extension

i) Duality method:
The uniqueness result state in Proposition 1 could also be proved by duality: For all Φ ∈
D(O × (0, T )), we solve the backward problem:

ΛEg = Φ , (x, v, t) ∈ O × (0, T ) ,
g(x, v, t = T ) = 0 , (x, v) ∈ O ,
γ+g(t) = K∗γ−g , (x, v) ∈ Σ+ , t ∈ (0, T ) .

(11)
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The solvability of (11) is obtained as in Proposition 2, and since |K∗ϕ| ≤ |ϕ|L∞ , we have
g ∈ L∞(O × (0, T )). Assume now that f ∈ L∞((0, T ), L1(O)) solves (1)-(2) with γf ∈
L1(0, T ;L1

loc(|n(x) · v|dvdσx)) and fin = 0. Let χR be as in the proof of Proposition 1, then
we get:

0 =
∫ T

0

∫
O

ΛE(f)g χR dv dx dt = −
∫ T

0

∫
O
fΛE(gχR) dv dx dt

+
∫ T

0

∫
Σ−

(γf)(γg)χR(|v|)|n(x) · v| dv dσx ds

+
∫
O

((fg)t=T − (fg)t=0)χR(|v|) dv dx .

And the boundary conditions yield:∫ T

0

∫
O
f(ΛEg)χR dv dx dt+

∫ T

0

∫
O
fg(ΛEχR) dv dx ds = 0 .

When R goes to infinity, we get ∫ T

0

∫
O
fΦ dv dx dt = 0 ,

which implies f = 0.

ii)Specular reflexion:
As in [4], we can also consider mixed boundary conditions of the form:

γ−f = R(γ+f) = (1− α)J γ+f + αKγ+f , (12)

with J (ϕ)(x, v) = ϕ(x,Rxv) where Rx is the symmetry defined by Rxξ = ξ−2(ξ ·n(x))n(x).
α satisfies 0 ≤ α ≤ 1 and may depends on x and |v|. It is easy to check that the Dar-
rozès-Guirraud inequality (6) holds for the operator R, and that Proposition 1 is still valid.
Proposition 2 needs the further assumption that 0 < α0 ≤ α(x, |v|) for some positive constant
α0.
iii) Non-elastic reflexion:
Throughout this note, we considered elastic colisions, which gives rise to the very simplified
expression of the Darrozès-Guirraud inequality. There is another particular case in which
similar results can be obtained: We assume that the velocity set (IRn in this note) is now a
bounded domain V (e.g. the first Brillouin zone in semiconductor device), see [2]. Moreover,
we assume that the electric field derives from a potential E(x) = ∇xΦ(x), and that the
cross section satisfies (3). Therefore, (H2) is satisfied with the following modified maxwellian
distribution:

M(v) = Ce−
|v|2
2

+Φ(x) .

Furthermore, we notice that M satisfies ΛEM = 0. In this case, we obtain similar result to
Proposition 1 and 2, replacing L2 by:

E = {f(x, v) s.t.
∫
O

|f(x, v)|2

M(x, v)
dx dv <∞} .
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