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Hydrodynamic Scaling Limits

▸ Dynamics with conserved quantities: energy, momentum,
density, ..., these move slowly.

▸ The other quantities move fast, fluctuating around average
values determined by the conserved quantities (by local
equilibriums).

▸ Conserved quantities determine families of stationary
probability measures, Gibbs states, typically parametrized by
temperature, pressure.

▸ Corresponding to different paramenters there are different
partial equilibriums:

▸ mechanical equilibrium: constant pressure or tension profiles,
▸ thermal equilibrium: constant temperature profiles.

▸ These partial equilibriums may be reached at different time
scales: typically mechanical equilibrium is reached faster than
thermal equilibrium.
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Mechanical and Thermal equilibrium

▸ Mechanical Equilibrium is reached in hyperbolic time scales
(same rescaling of space and time), and is driven by Euler
system of equations (for a compressible gas). It involves the
ballistic evolution of the long waves (mechanical modes).

▸ When thermal conductivity is finite, Thermal Equilibrium is
reached later, in the diffusive time scales (time2 = space), and
temperature (or thermal energy) profiles evolve following heat
equation.

▸ If thermal conductivity is infinite, Thermal Equilibrium is
reached in a super-diffusive time scales
(timeα = space, α < 2), and typically temperature (or thermal
energy) profiles evolve following a fractional heat equation.
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Boundary Conditions

Extermal forces or heat bath acting microscopically at the
boundary on the system determine boundary conditions of the
macroscopic equations.

Most of non-equilibrium situation are obtained by

▸ changing boundary conditions in time

▸ applying boundary conditions corresponding to different
equilibrium states, obtaining dynamics that have
non-equilibrium stationary states (NESS).
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Chain of oscillators

ṙx(t) = px(t) − px−1(t), x = 1, . . . ,N

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x = 1, . . . ,N − 1

ṗN(t) = τ(t/N) −V ′
(rN(t))

p0(t) = 0.

EEEx =
p2
x

2
+V (rx)

ĖEEx = pxV
′
(rx+1) − px−1V

′
(rx)

We are interested in the macroscopic evolution of
(rx(t),px(t),EEEx(t)).
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Gibbs measures and Thermodynamic Entropy

For τ(t) = τ constant in time, a class of stationary measures is
given by the Gibbs measures at temperature β−1, tension τ

dµβ,τ,p =
N

∏
x=1

e−β(EEEx−τ rx)−G(β,τ)dpxdrx

Thermodynamic entropy is

S(u, r) = inf
τ,β

{−βτ r + βu − G(β, τ)}

β(u, r) = ∂uS(u, r), τ(u, r) = −β−1∂rS(u, r).
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Ergodicity (of the infinite system)

Consider the corresponding infinite dynamics:

ṙx(t) = px(t) − px−1(t),

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x ∈ Z

Any probability ν that is translation invariant, stationary and finite
entropy density is a convex combination of Gibbs measures dµβ,τ,p.

By the equivalence of ensembles (microcanonic to grand-canonic):

the only local translation invariant conserved quantities of the
infinite systems are given by energy, momentum and density.

Completely integrable systems gives obvious conterexamples
(Harmonic Oscillators, Toda Lattice,...).
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Ergodicity (of the infinite system)

Consider the corresponding infinite dynamics:

ṙx(t) = px(t) − px−1(t),

ṗx(t) = V ′
(rx+1(t)) −V ′

(rx(t)) x ∈ Z

Theorem
(Fritz, Funaki, Lebowitz, PTRF 1994) Assume that a probability ν
is translation invariant, stationary, finite entropy density, and the
conditional measure ν(dp∣r) is exchangeable.
Then ν is a convex combination of Gibbs measures dµβ,τ,p.

▸ ν(dp∣r) maxwellian (Gallavotti-Verboven 1975)
▸ ν(dp∣r) convex combination of maxwellians (Olla, Varadhan,

Yau, 1993).

▸ Chaoticity of the dynamics, due to the non-linearity of V ,
should give such ergodic property

▸ Adding conservative noise (stochastic collisions) to the
dynamics one obtain ergodicity.
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Hyperbolic Scaling, Euler equations

3 conserved quantities: we expect the weak convergence to the
hyperbolic system of PDE

1

N
∑
x

G(x/N)
⎛
⎜
⎝

rx(Nt)
px(Nt)
Ex(Nt)

⎞
⎟
⎠
Ð→
N→∞

∫

1

0
G(y)

⎛
⎜
⎝

r(y , t)
p(y , t)
e(y , t)

⎞
⎟
⎠
dy

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[u(t, y), r(t, y)]

∂te(t, y) = ∂y(τ[u(t, y), r(t, y)]p(t, y))

where u = e − p2/2 : internal energy.
and, for smooth solutions, the boundary conditions:

p(t,0) = 0, τ[u(t,1), r(t,1)] = τ(t)
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Euristics

take G ∶ [0,1] → R with compact support in (0,1),

d

dt

1

N
∑
x

G(x/N)
⎛
⎜
⎝

rx(Nt)
px(Nt)
Ex(Nt)

⎞
⎟
⎠
= ∑

x

G(x/N)
⎛
⎜
⎝

∇px−1(Nt)
∇V ′(rx(Nt))

∇ [px(Nt)V
′(rx(Nt)]

⎞
⎟
⎠

∼ −
1

N
∑
x

G ′
(x/N)

⎛
⎜
⎝

px(Nt)
V ′(rx(Nt))

px(Nt)V
′(rx(Nt)

⎞
⎟
⎠

assuming local equilibrium, we have

∼ −∫

1

0
G ′

(y)
⎛
⎜
⎝

p(t, y)
τ(u(t, y), r(t, y))

p(t, y)τ(u(t, y), r(t, y))

⎞
⎟
⎠
dy

Note that y ∈ [0,1] is the material (Lagrangian) coordinate.
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Results with conservative stochastic dynamics

▸ To prove some form of local equilibrium we need to add
stochastic terms to the dynamics (the deterministic non-linear
case is too difficult).

▸ Random exchanges of velocities between nearest neighbor
particles, conserve energy, momentum and volume, destroying
all other (possible) conservation laws. It provides the right
ergodicity property.

▸ With such noise in the dynamics, for smooth solutions the HL
is proven in:

▸ N. Even, S.O., ARMA (2014) (with boundary conditions),
▸ S.O., SRS Varadhan, HT Yau, CMP (1993) (periodic bc).
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Harmonic Oscillators Chain

This is an example of a non-ergodic dynamics:

V (r) = r2
/2

in fact it is a completely integrable dynamics:

q̇x = px , ṗx = ∆qx = qx+1 + qx−1 − qx ,

Take here x = 1, . . . ,N,

f̂ (k) = ∑
x

fxe
i2πkx k ∈ {0,1/N, . . . , (N − 1)/N}

ω(k) = 2∣ sin(πk)∣ dispersion relation:

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2
∣q̂(k)∣2 + ∣p̂(k)∣2]

ψ̂(t, k) ∶= ω(k)q̂ (t, k) + i p̂ (t, k) .

d

dt
ψ̂(t, k) = −iω(k)ψ̂(t, k) ψ̂(t, k) = e−iω(k)tψ̂(0, k)
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Harmonic Oscillators Chain: Quantum Dynamics

px = −i∂qx = −i (∂rx+1 − ∂rx )

EEEx =
1

2
(p2

x + r2
x )

ak =
1

ω(k)
ψ̂(k), a∗k =

1

ω(k)
ψ̂(k)∗

H =∑
x

EEEx =
1

2N
∑
k

[ω(k)2
∣q̂(k)∣2 + ∣p̂(k)∣2]

=
1

2N
∑
k

ω(k)a∗kak

Heisenberg evolution d
dtA(t) = i[H,A(t)]

ak(t) = e−iω(k)tak , a∗k(t) = e iω(k)ta∗k .
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Harmonic Chain: Thermal Equilibrium (Classic case)

Consider the chain in thermal equilibrium: initial distribution with
covariances

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ = 0,

for some inverse temperature β, while in mechanical local
equilibrium:

⟨⟨⟨ r[Ny](0) ⟩⟩⟩ Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩ Ð→ p(0, y).
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Harmonic Chain: Thermal Equilibrium (classic case)

thermal equilibrium is conserved by the dynamics: for any t ≥ 0

⟨⟨⟨ rx(t); rx ′(t) ⟩⟩⟩ = ⟨⟨⟨ px(t);px ′(t) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx(t);px ′(t) ⟩⟩⟩ = 0,

Proof.
Thermal equilibrium is Fourier space is:

⟨⟨⟨ ψ̂(k,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′), ⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.

Consequently

⟨⟨⟨ ψ̂(k , t)∗; ψ̂(k ′, t) ⟩⟩⟩ = e i(ω(k)−ω(k
′))t

⟨⟨⟨ ψ̂(k ,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′),

⟨⟨⟨ ψ̂(k , t); ψ̂(k ′, t) ⟩⟩⟩ = e−i(ω(k)+ω(k
′))t

⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.
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⟨⟨⟨ rx(t); rx ′(t) ⟩⟩⟩ = ⟨⟨⟨ px(t);px ′(t) ⟩⟩⟩ = β−1δx ,x ′ , ⟨⟨⟨ qx(t);px ′(t) ⟩⟩⟩ = 0,

Proof.
Thermal equilibrium is Fourier space is:

⟨⟨⟨ ψ̂(k,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′), ⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.

Consequently

⟨⟨⟨ ψ̂(k , t)∗; ψ̂(k ′, t) ⟩⟩⟩ = e i(ω(k)−ω(k
′))t

⟨⟨⟨ ψ̂(k ,0)∗; ψ̂(k ′,0) ⟩⟩⟩ = 2β−1δ(k − k ′),

⟨⟨⟨ ψ̂(k , t); ψ̂(k ′, t) ⟩⟩⟩ = e−i(ω(k)+ω(k
′))t

⟨⟨⟨ ψ̂(k ,0); ψ̂(k ′,0) ⟩⟩⟩ = 0.
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Harmonic Chain: Thermal Equilibrium implies Euler
Equation limit

r[Ny](Nt) and p[Ny](Nt) converge weakly to the solution of the
linear wave equation

∂tr (y , t) = ∂yp (y , t), ∂tp (y , t) = ∂y r (y , t).

This is the Euler equation for this system since here τ(u, r) = r .

For the energy, because of the thermal equilibrium, for any t ≥ 0 :

⟨⟨⟨ EEEx(t) ⟩⟩⟩ = β−1
+

1

2
(⟨⟨⟨ px(t) ⟩⟩⟩

2
+ ⟨⟨⟨ rx(t) ⟩⟩⟩

2)

⟨⟨⟨ EEE[Ny](Nt) ⟩⟩⟩ Ð→ e (y , t) = β−1
+

1

2
(p2

(y , t) + r2
(y , t)) ,

∂te (y , t) = ∂y (p (y , t) r (y , t)) .
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Quantum Harmonic Chain: Thermal Equilibrium

Initial density matrix ρβ, define

⟨⟨⟨ A ⟩⟩⟩ = tr (Aρβ)), ⟨⟨⟨ A;B ⟩⟩⟩ = ⟨⟨⟨ AB ⟩⟩⟩ − ⟨⟨⟨ A ⟩⟩⟩⟨⟨⟨ B ⟩⟩⟩

such that

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = Cβ(x−x
′
), ⟨⟨⟨ qx ;px ′ ⟩⟩⟩ =

i

2
δ(x−x ′)

Cβ(x) =
1

N
[β−1

+ ∑
k≠0

e2πikx
(

ωk

eβωk − 1
+
ωk

2
)] (1)

⟨⟨⟨ r[Ny](0) ⟩⟩⟩ Ð→ r(0, y), ⟨⟨⟨ p[Ny](0) ⟩⟩⟩ Ð→ p(0, y).

⟨⟨⟨ EEE[Ny] ⟩⟩⟩ Ð→ e (y) = C̄(β) +
1

2
(p2

(y) + r2
(y)) ,

C̄(β) = ∫
1

0
ω(k) (

1

eβω(k) − 1
+

1

2
)dk ∼

β→0
β−1
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Quantum Harmonic Chain: Thermal Equilibrium implies
Euler Equation limit

r[Ny](Nt) and p[Ny](Nt) converge weakly to the solution of the
linear wave equation

∂tr (y , t) = ∂yp (y , t), ∂tp (y , t) = ∂y r (y , t).

⟨⟨⟨ EEE[Ny](Nt) ⟩⟩⟩ Ð→ e (y , t) = C̄(β) +
1

2
(p2

(y , t) + r2
(y , t)) ,

C̄(β) = ∫
1

0
ω(k) (

1

eβω(k) − 1
+

1

2
)dk ∼

β→0
β−1

∂te (y , t) = ∂y (p (y , t) r (y , t)) .
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Harmonic Chain: Local Thermal Equilibrium is not
conserved

The argument fails dramatically if the system is not in thermal
equilibrium, even local thermal Gibbs

⟨⟨⟨ rx(0); rx ′(0) ⟩⟩⟩ = ⟨⟨⟨ px(0);px ′(0) ⟩⟩⟩ = β−1
(
x

N
) δx ,x ′ , ⟨⟨⟨ qx(0);px ′(0) ⟩⟩⟩ = 0

(2)
is not conserved, and correlations between px(t) and rx(t) build
up in time.
No autonomous macroscopic equation for the energy!
There are infinite many conservation laws.
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Wigner distribution

ξ ∈ R, k ∈ [0,1],

ŴN(ξ, k, t) ∶=
2

N
⟨⟨⟨ ψ̂∗ (Nt, k −

ξ

2N
) ψ̂ (Nt, k +

ξ

2N
) ⟩⟩⟩

WN(y , k , t) = ∫ ŴN(t, η, k)e−i2πξy dη, y ∈ R,

In the limit it decompose in a thermal and a mechanical part:

lim
N→∞

ŴN(ξ, k, t) = Ŵth(ξ, k , t) + Ŵm(ξ, t) δ0(dk) (3)

The mechanical part Ŵm(ξ, t) is the Fourier transform of the
mechanical energy

Ŵm(ξ, t) = ∫
1

2
(p2

(y , t) + r2
(y , t)) e i2πξy dy ,
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Wigner distribution

For the thermal Wigner distribution it holds the transport equation:

∂tWth(y , k , t) +
ω′(k)

2π
∂yWth(y , k , t) = 0.

in fact for k ≠ 0

ŴN(ξ, k, t) ∶= e
i[ω(k− ξ

2N
)−ω(k+ ξ

2N
)]Nt

ŴN(ξ, k ,0)

∼
N→∞

e−iω
′(k)ξtŴth(ξ, k ,0)

W (t, y , k) =W (0, y −
ω′(k)

2π
t, k)

Phonon of wave number k moves freely with velocity ω′(k)
2π .
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Wigner distribution

Consequently the thermal energy ẽ(y , t) (i.e. temperature) evolves
non autonomously following the equation

∂t ẽ(y , t) + ∂yJ(y , t) = 0, J(y , t) = ∫ ω′(k)Wth(y , k , t) dk.

We say that the system is in local equilibrium if
Wth(y , k) = β

−1(y) constant in k .
Starting in thermal equilibrium means Wth(y , k,0) = β

−1 and
trivially Wth(y , k , t) = β

−1 for any t > 0.
But starting with local equilibrium, i.e. W (y , k,0) = β−1(y)
constant in k , we have a non autonomous evolution of ẽ(y , t).
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Harmonic Chain with Random Masses

The problem with the harmonic chain is that thermal waves of
wavenumber k move with speed ω′(k), if they are not uniformed
distributed (i.e. the system is not in thermal equilibrium), the
temperature profile will not remain constant, as it should be
following the Euler equations.

If the masses are random, the thermal modes remains localized
(frozen), by Anderson localization. This allows to close the energy
equation, without local equilibrium.
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Harmonic Chain with Random Masses

(F. Huveneers, C. Bernardin, S.Olla, Comm.Math.Phys. 2019)

{mx} i.i.d. with absolutely continuous distribution µ,

0 < m− ≤ mx ≤ m+, m = Eµ(mx).

mx q̇x(t) = px(t), ṗx(t) = ∆qx(t), x = 1, . . . ,N

with q0 = q1 and qN+1 = qN as boundary conditions.
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Gibbs States, Local Gibbs States

The Gibbs states are characterized by three parameters: β > 0 and
p, r ∈ R. Its probability density writes

N

∏
x=1

e
−
βmx

2
( px

mx
−

p
m
)

2

−
β
2
(rx−r)2

Z(β,p, r ,mx)
.

We start with a local Gibbs state:

N

∏
x=1

e
−
β(x/N)mx

2
( px

mx
−

p(x/N)
m

)
2

−
β(x/N)

2
(rx−r(x/N))2

Z(β(x/N),p(x/N), r(x/N),mx)
.

S. Olla - CEREMADE hyperbolic limits



Gibbs States, Local Gibbs States

The Gibbs states are characterized by three parameters: β > 0 and
p, r ∈ R. Its probability density writes

N

∏
x=1

e
−
βmx

2
( px

mx
−

p
m
)

2

−
β
2
(rx−r)2

Z(β,p, r ,mx)
.

We start with a local Gibbs state:

N

∏
x=1

e
−
β(x/N)mx

2
( px

mx
−

p(x/N)
m

)
2

−
β(x/N)

2
(rx−r(x/N))2

Z(β(x/N),p(x/N), r(x/N),mx)
.

S. Olla - CEREMADE hyperbolic limits



Harmonic Chain with Random Masses: hydrodynamic limit

(F. Huveneers, C. Bernardin, S.Olla, Comm.Math.Phys. 2019)
Almost surely with respect to {mx}:

< r[Ny](Nt) >,< p[Ny](Nt) >,< EEE[Ny](Nt) > ⇀ (r(y , t),p(y , t), e(y , t))

∂tr(t, y) =
1

m
∂yp(t, y)

∂tp(t, y) = ∂y r(t, y)

∂te(t, y) =
1

m
∂y (r(t, y)p(t, y))

with initial conditions:

r(y ,0) = r(y), p(y ,0) = p(y), e(y ,0) =
1

β(y)
+
p2(y)

2m
+
r2(y)

2
.
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Quantum Harmonic Chain with Random Masses:
hydrodynamic limit

(Amirali Hannani, 2020, arXiv:2011.07552 ) same Euler equations:

∂tr(t, y) =
1

m
∂yp(t, y)

∂tp(t, y) = ∂y r(t, y)

∂te(t, y) =
1

m
∂y (r(t, y)p(t, y))

but

e(t, y) = fµ(β(y)) +
p2(t, y)

2m
+
r2(t, y)

2
.

Here fµ(β(y)) is the quantum thermal energy, that depends on the

distribution µ of the random masses (not an explicit function, except for

deterministic equal masses).
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Random Masses: Localization of Thermal Modes

Equation of motion can be written as

r̈x = −(∇
∗M−1

∇r)x (1 ≤ x ≤ N−1), p̈x = (∆M−1p)
x

(1 ≤ x ≤ N),

where Mx ,x ′ = δx ,x ′mx .

M−1/2
(−∆)M1/2ϕk

= ω2
k ϕ

k , k = 0, . . . ,N − 1.

ψk
=M−1/2ϕk , M−1∆ψk

= ω2
kψk

r(t) =
N−1

∑
k=1

(
⟨∇ψk , r(0)⟩

ωk
cosωkt + ⟨ψk ,p(0)⟩ sinωkt)

∇ψk

ωk
,

p(t) =
N−1

∑
k=0

(⟨ψk ,p(0)⟩ cosωkt −
⟨∇ψk , r(0)⟩

ωk
sinωkt)Mψk .
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Localization of Thermal Modes

Localization length ξk diverges with N:

ξ−1
k ∼ ω2

k ∼ (
k

N
)

2

,

only the modes k >
√
N are localized.

More precisely: for 0 < α < 1
2

E
⎛

⎝

N−1

∑
k=N1−α

∣ψk
xψ

k
x ′ ∣

⎞

⎠
≤ Ce−cN

−2α∣x−x ′∣.

This estimate is enough to prove that thermal modes remains
localized and do not move macroscopically.
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Random masses: Larger time scales

Assume for simplicity that we are in a mechanical equilibrium:

⟨⟨⟨ rx(0) ⟩⟩⟩ = 0, ⟨⟨⟨ px(0) ⟩⟩⟩ = 0,

(only thermal energy present)
but not in thermal equilibrium, then, for any α ≥ 1

< EEE[Ny](N
αt) > Ð→

N to∞
e (0, y) = C̄(β(y))

NO evolution for the temperature profile at any scale!

In particular, for α = 2 (diffusive scaling), thermal diffusivity is null.
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Open questions for the quantum case

▸ In order to deal with the anharmonic interaction, in the
classical case, conservative noise is added to obtain ergodicity
of the infinite dynamics (unique characterization of the
translational invariant stationary states)
( cf B. Nachtergaele, and H-T Yau, CMP 2003).
How to add conservative noise in the quantum dynamics in
order to obtain similar result?

▸ Boundary tension? More generally boundary conditions,
thermostat etc.
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entropy evolution

∂tr = ∂xp ∂tp = ∂xτ ∂te = ∂x(τp)

p(t,0) = 0, τ(r(1, t),u(1, t)) = τ(t)

U = e − p2/2, β = ∂S
∂U , τ = − 1

β
∂S
∂r

For smooth solutions:

d

dt
S(u(y , t), r(y , t)) = β (∂te − p∂tp) − βτ∂tr

= β (∂x(τp) − p∂xτ − τ∂xp) = 0

The evolution is isoentropic in the smooth regime.
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Shocks, contact discontinuities, weak solutions, entropy
solutions

Even starting with initial smooth profiles, hyperbolic non-linear
systems develops discontinuities:

▸ shocks: discontinuities in the tension profile,

▸ contact discontinuities: discontinuities in the entropy profile.

When this happens we have to consider weak solution, that
typically are not unique.
In order to select the right physical solutions, various properties
(maybe equivalent) have been introduced:

▸ entropy solutions

▸ viscosity solutions
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Isothermal Dynamics

▸ J. Fritz, Microscopic theory of isothermal elasticity, ARMA 2011, infinite volume

▸ S. Marchesani, S. Olla, Hydrodynamic Limit for an anharmonic chain under boundary tension, Nonlinearity
(2018)

▸ S. Marchesani, S. Olla, Hydrodynamic Limits and Clausius inequality for Isothermal Non-linear
Elastodynamics with Boundary Tension, (2019), arXiv:1911.13167

The system is in contact with a heat bath that keeps it at a
constant temperature β−1. Energy is not conserved anymore.
Macroscopically we have a non-linear wave equation:

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτ[β, r(t, y)]
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Microscopic isothermal dynamics

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

dr1 = Np1dt + NσN (V
′
(r2) − V ′(r1)) dt −

√

2β−1NσNdw̃1

dri = N(pi − pi−1)dt + NσN (V
′
(ri+1) + V ′(ri−1) − 2V ′(ri )) dt +

√

2β−1NσN(dw̃i−1 − dw̃i )

drN = N(pN − pN−1)dt + NσN (V
′
(rN−1) − V ′(rN)) dt +

√

2β−1Nσdw̃N−1

dp1 = N(V ′(r2) − V ′(r1))dt + NσN (p2 − p1) dt −
√

2β−1NσNdw1

dpi = N(V ′(ri+1) − V ′(ri ))dt + NσN (pi+1 + pi−1 − 2pi ) dt +
√

2β−1NσN(dwi−1 − dwi )

dpN = N(τ̄(t) − V ′(rN))dt + NσN (pN−1 − pN) dt +
√

2β−1NσNdwN−1,

,

lim
N→+∞

σN
N

= lim
N→∞

N

σN2
= 0.
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Hydrodynamic Limit

1

N
∑
x

G(x/N)(
rx(t)
px(t)

) Ð→
N→∞

∫

1

0
G(y)(

r(y , t)
p(y , t)

) dy

L2-valued weak solution of

∂tr(t, y) = ∂yp(t, y)

∂tp(t, y) = ∂yτβ[r(t, y)]

p(t,0) = 0, τ(r(t,1)) = τ̄(t),

with boundary conditions that satisfy the Clausius inequality
between the work done by the boundary force and the change in
the free energy.
S. Marchesani, S. Olla, On the existence of L2-valued thermodynamic entropy solutions for a hyperbolic system

with boundary conditions, Comm. Partial Diff. Eq. (2020).
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Entropy production and Clausius inequality

Free energy at time t:

F(t) = ∫
1

0
[
p(t, y)2

2
+ Fβ(r(t, y))] dy ,

∂rFβ(r) = τβ(r),

F(t)−F(0) ≥W (t) = ∫
t

0
τ(s)p(s,1) ds

where W (t) is the work done by the boundary force τ(t).
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