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The problem with thermodynamics

Every mathematician knows that it is impossible to
understand any elementary course in thermodynamics.

V.I. Arnold, Contact Geometry: the Geometrical Method of
Gibbs’s Thermodynamics. (1989)



Thermodynamics concerns Macroscopic Objets at
Macroscopic Time Scale

Vapor machine of Joseph Cugnot (1770)



A simple thermodynamic system
A one dimensional system (rubber under tension):

Mechanical Equilibrium:

L = L(τ), τ = tension

Thermodynamic Equilibrium

L = L(τ, θ)

θ is the temperature
Empirical definition of temperature.
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▸ There exists a family of thermodynamic equilibrium states,
parametrized by certain extensive or intensive variables. –
lenght (volume) L and energy U (extensive)

▸ In a thermodynamics transformation,

∆U =W +Q

W : mechanical work done by the force τ̄ ,
Q : energy exchanged with the heat bath (Heat).



Quasi-Static Transformations

Existence of thermodynamic processes where the system is always
at some equilibrium. These processes are described by continuous
curves on the space of parameters. This way we can define
isothermal lines and adiabatic lines etc.

We can consider this as a hidden principle of thermodynamics.
But, quoting Zemanski,

Every infinitesimal in thermodynamics must satisfy the
requirement that it represents a change in a quantity
which is small with respect to the quantity itself and
large in comparison with the effect produced by the
behavior of few molecules.
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Thermodynamic transformations and Cycles

▸ reversible or quasi-static tranformations:

W = ∮ τdL = −Q



Special quasi-static transformations

▸ Isothermal: System in contact with a thermostat while the
external force τ is doing work:

d/W = τdL = τ (
∂L

∂τ
)
θ
dτ = −d/Q + dU



Special quasi–static Transformations

▸ Adiabatic: d/Q = 0.

d/W = τdL = dU

dτ

dL
= −

∂LU

∂τU
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Carnot Cycles

A

B

C

D

Q

Q

A→ B , C → D isothermal
B → C , D → A adiabatic

W = ∮ τdL = Qh −Qc = −∮ d/Q



2nd Principle and Entropy

A

B

C

D

Q

Q

0 =
Qh

Th
−
Qc

Tc

∮
d/Q

T
= 0, dS =

d/Q

T
.



Quasi-Static Isothermal Hydrodynamic Limit

Slowly changing tension:

HN(t) =
N

∑
i=1

(
p2
i

2
+V (ri)) + τ̄(t)qN

plus random collisions with particles of the heat bath: at
independent random times

pi(t) Ð→ p̃j ∼ N (0,T )



Isothermal Dynamics

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dri(t) = n2+α(pi(t) − pi−1(t))dt

dpi(t) = n2+α(V ′(ri+1(t)) −V
′(ri(t))) dt

−n2+αγpi(t)dt + n
1+α/2

√
2γβ−1dwi(t), i = 1, ..,N − 1

dpn(t) = n2+α(τ̄(t) −V ′(rn(t))) dt

−n2+αγpn(t) dt + n1+α/2
√

2γβ−1dwn(t).

{wi(t)}i : n-independent Wiener processes,
α > 0 for quasistatic driving from τ̄(t).



Isothermal Dynamics

The generator of the process is given by

L
τ̄(t)
n ∶= n2+α

(A
τ̄(t)
n + γSn) , (1)

where Aτ̄n is the Liouville generator

Aτ̄n =
n

∑
i=1

(pi−pi−1)∂ri+
n−1

∑
i=1

(V ′
(ri+1)−V

′
(ri))∂pi+(τ̄−V

′
(rn))∂pn (2)

while Sn is the operator

Sn =
n

∑
i=1

(β−1∂2
pi
− pi∂pi ) (3)



Canonical Gibbs measures

G(τ, β) = log [
√

2πβ−1
∫ e−β(V (r)−τ r)dr] .

The stationary measure is given by

dµτ,β =
n

∏
j=1

e−β(Ej−τ rj)−G(τ,β)drjdpj = g
(n)
τ,β

n

∏
j=1

drjdpj

r(τ, β) = β−1∂τG(τ, β) = ∫ rj dµτ,β

U(τ, β) = −∂βG(τ, β) = ∫ V (rj)dµτ,β +
1

2β
= ∫ Ej dµτ,β

S(U, r) = inf
τ,β>0

{−βτ r + βU + G(τ, β)} Entropy

F (r , β) = sup
τ

{τ r − β−1
G(τ, β)} Free Energy

τ(r , β) = ∂rF (r , β).
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Irreversible Isothermal Transformations

α = 0: diffusive space-time scale,

1

N
∑
i

G(i/N)ri(t) Ð→
N→∞ ∫

1

0
G(y)r(y , t)dy

∂tr(t, y) = ∂yyτ(r(t, y), β),

∂y r(t, y)∣y=0 = 0, τ(r(1, t), β) = τ̄(t).

In the diffusive time scale, there is a need of infinite time to
converge to the new thermodynamic equilibrium, and this is an
irreversible non-quasistatic trasformation.



Quasi-Static Isothermal Hydrodynamic Limit

(Letizia-Olla, AOP 2018, De Masi-Olla JSP 2015)

For α > 0, for all t > 0

1

n

n

∑
i=1

G(i/n)ri(t) Ð→
n→∞

r̄(t)∫
1

0
G(x) dx

where we denote r̄(t) = r(β, τ̄(t)) = β−1(∂τG)(β, τ̄(t)) is the
equilibrium volume at temperature β−1 and tension τ̄(t).

Similar result with macroscopic profile of temperatures β(y)

1

n

n

∑
i=1

G(i/n)ri(t) Ð→
n→∞∫

1

0
G(x)r̄(t, y) dx

with r̄(t, y) = r(β(y), τ̄(t)): quasistatic non-equilibrium
transformations.
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Proof of isothermal QS limit

f nt (r1,p1, . . . , rn,pn) the density of the distribution at time t with
respect to µτ̄(t),β:

∂t (f
n
t g

n
τ̄(t),β) = (L

τ̄(t)∗
n f nt )gn

τ̄(t),β

Hn(t) = ∫ f nt log f nt dµτ̄(t),β, Hn(0) = 0

d

dt
Hn(t) = −n

2+αγβ−1
∫

n

∑
i=1

(∂pi f
n
t )2

f nt
dµc,n

τ̄(t),β

−βτ̄ ′(t)∫
n

∑
i=1

(ri − r̄(t)) f
n
t dµc,n

τ̄(t),β.
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proof of isothermal QS limit

By entropy inequality, for any λ > 0 small enough

βτ̄ ′(t)∫
n

∑
i=1

(ri − r̄(t)) f
n
t dµc,n

τ̄(t),β

≤ λ−1 log∫ eλβτ̄
′(t)∑n

i=1(ri−r̄(t)) dµc,n
τ̄(t),β + λ

−1Hn(t)

≤ λCn + λ−1Hn(t),

d

dt
Hn(t) ≤ λ

−1Hn(t) + λCn,

and since Hn(0) = 0, it follows that Hn(t) ≤ et/λλCt n. This is not
yet what we want to prove but it implies that

∫

T

0
∫

n

∑
i=1

(∂pi f
n
t )2

f nt
dµc,n

τ̄(t),β dt ≤
C

n1+α .
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proof of isothermal QS limit

∫

T

0
∫

n

∑
i=1

(∂pi f
n
t )2

f nt
dµc,n

τ̄(t),β dt ≤
C

n1+α .

This gives only information on the distribution of the velocities.
Uning entropic hypocoercive bounds we have the same for

∫

T

0
∫

n

∑
i=1

(∂qi f
n
t )2

f nt
dµc,n

τ̄(t),β dt ≤
C

n1+α .

where ∂qi = ∂ri − ∂ri+1 . and this is enough to prove that

∫
1

n

n

∑
i=1

(ri − r̄(t)) f
n
t dµc,n

τ̄(t),β Ð→ 0,

i.e.
Hn(t)

n
Ð→ 0.



Isothermal limit: Work, Heat and Free Energy

Energy:

Un ∶=
1

n

n

∑
i=1

(
p2
i

2
+V (ri))

Un(t) −Un(0) =Wn(t) +Qn(t) (4)

Wn(t) = n1+α
∫

t

0
τ̄(s)pn(s)ds = ∫

t

0
τ̄(s)

dqn(s)

n

Ð→ ∫

t

0
τ̄(s)dr̄(s) ∶=W(t)

Qn(t) =γ n1+α
n

∑
j=1
∫

t

0
ds (p2

j (s) − β
−1)

+ nα/2
n

∑
j=1

√
2γβ−1

∫

t

0
pj(s)dwi(s).

it may look horribly divergent but...
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Isothermal limit: Work, Heat and Free Energy

lim
n→∞

(Un(t) −Un(0)) = u(τ̄(t), β) − u(τ̄(0), β) (5)

where u(τ, β) = −∂βG(τ, β) is the average energy for µβ,τ .

Qn(t) Ð→
n→∞

Q(t) = u(τ̄(t), β) − u(τ̄(0), β) −W(t). (6)

which is the first principle of thermodynamics for quasistatic
isothermal transformations.

For the Free Energy:

F(r̄(t), β) −F(r̄(0), β) = ∫
t

0
τ̄(s)dr̄(s) =W(t)

i.e. Clausius equality.
Equivalently, by F = u − β−1S ,

β−1
(S(r̄(t),u(t)) − S(r̄(0),u(0))) = Q(t) (7)
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Adiabatic Quasi-Static Limit

dri = n1+α
(pi − pi−1) dt

dpi = n1+α
(V ′

(ri+1) −V
′
(ri)) dt, i = 1, . . . ,n − 1,

dpn = n1+α
(τ̄(t) −V ′

(rn)) dt

(8)



Adiabatic thermodynamic transformation
We start at t = 0 with the equilibrium µc,n

τ̄(0),β(0). Correspondingly

there is an average energy e(0) give by

ū(0) = u(β(0), τ(0)) = −∂βG(β(0), τ(0))

The macroscopic work

W (t) = ∫
t

0
τ̄(s)dr̄(s),

r̄(t) = r(β(t), τ̄(t)) = β(t)−1
(∂τG)(β(t), τ̄(t))

Then the energy at time t, by the first law, is given by

ū(t) = ū(0) +W (t)

that gives the temperature at time t as

β(t) = (∂eS)(ū(t), r̄(t)).

Adiabatic = isoentropic:

S(ū(t), r̄(t))−S(ū(0), r̄(0)) = ∫
t

0
(β(s)ū′(s) − β(s)τ̄(s)ū′(s))ds = 0.



For α >? (2 or 4/3...), for all t > 0

1

n

n

∑
x=1

G(x/n)rx(t) Ð→
n→∞

r̄(t)∫
1

0
G(y) dy

1

n

n

∑
x=1

G(x/n)Ex(t) Ð→
n→∞

ū(t)∫
1

0
G(y) dy

No results yet for deterministic dynamics.
Some preliminary results with some stochastic perturbations that
conserve energy and volume.



Where is the difficulty?

d

dt
Hn(t) = −∫ f nt ∂tg

n
β(t),τ̄(t)

n

∏
j=1

drjdpj

= ∫

n

∑
j=1

[−β′(t) (Ej − e(t)) + (β(t)τ̄(t))′ (rj − r(t))] f
n
t dµβ(t),τ̄(t).

Then all one has to prove is

lim
n→∞∫

T

0
dt

⎡
⎢
⎢
⎢
⎢
⎣

∫
1

n

n

∑
j=1

Ej f
n
t dµ

c,n
τ̄(t),β(t) − e(t)

⎤
⎥
⎥
⎥
⎥
⎦

= 0

lim
n→∞∫

T

0
dt [

1

n ∫
qnf

n
t dµ

c,n
τ̄(t),β(t) − r(t)] = 0

(9)



Remarke on the thermodynamic entropy

This would be equivalent as proving that (in probability wrt the
initial configuration distributed by µβ(0),τ(0))

S
⎛

⎝

1

n

n

∑
j=1

Ej(t),
qn(t)

n

⎞

⎠
− S

⎛

⎝

1

n

n

∑
j=1

Ej(0),
qn(0)

n

⎞

⎠
Ð→
n→∞

0

Adiabatic QS transformation are isoentropic!

No need to prove increase of thermodynamic entropy, this will
come naturally from the isothermal QS transformations.
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Large Deviations from the QS limit

De Masi-Olla 2018
Symmetric Simple Exclusion in {−N, . . . ,N} with boundary
reservoirs at density ρ−(t) and ρ+(t):
η(x) ∈ {0,1} , α > 0

LN,t = N2+α
[Lexc + Lb,t], t ≥ 0, α > 0

Lexcf (η) = γ
N−1

∑
x=−N

(f (η(x ,x+1)
) − f (η)) (10)

Lb,t f (η) =∑
=±
ρ(t)

1−η(N)
(1 − ρ(t))

η(N)
[f (ηN

) − f (η)]



QS limit for SSE

lim
N→∞

πN(t, y) ∶=∑
x

1[Ny ,Ny+1](x)ηt(x) Ð→ ρ̄(y , t)

ρ̄(y , t) =
1

2
[ρ+(t) − ρ−(t)]r +

1

2
[ρ+(t) + ρ−(t)] , y ∈ [−1,1]

h(t, x) ={number of jumps x → x + 1 up to time t}

− {number of jumps x + 1→ x up to time t},

Define

hN(t, y) =
1

N1+α h(t, [Ny]).

lim
N→∞

Eη0(hN(t, y)) = J̄(t) ∶= −
γ

2 ∫
t

0
[ρ+(s) − ρ−(s)]ds.
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Large Deviations

For J(t) and ρ(t, y) such that ρ(t,±1) = ρ±(t),

Pη0 (hn ∼ J, πN ∼ ρ) ∼ e−N
1+αI(J,ρ)

I (J, ρ) =
1

4 ∫
T

0
∫

1

−1

(J ′(t) + ∂yρ(t, y))
2

ρ(t, y)(1 − ρ(t, y))
dy dt.

Gallavotti-Cohen Fluctuation Relation

I (−J, ρ) = I (J, ρ) − ∫
T

0
J ′(t) log

ρ+(t)(1 − ρ−(t))

ρ−(t)(1 − ρ+(t))
dt, (11)
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