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Introduction : statistical framework

Statistical framework

@ Aim: study the link between two random variables.

e Y € R avariable of interest.
e X € H an explanative (functional) variable,
with (H, (., .),[|.||) a separable Hilbert space.

Typically H = L*([a, b]), H = a Sobolev space...

@ Observations: (X;, Yi)c1 ... ,} a sample following the same distribution as
(X, 7).
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Introduction : statistical framework

Models and problems considered

o Functional linear model: Y = (5, X) + ¢,
with 5 € H and ¢ a noise term, centred, independent of X, with finite variance.

@ Model without structural constraint

o Nonparametric regression : Y = m(X) + ¢,
with m : H — R a function and ¢ a noise term.
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Introduction : statistical framework

Models and problems considered

o Functional linear model: Y = (5, X) + ¢,
with 8 € H and ¢ a noise term, centred, independent of X, with finite variance.

Estimation of the slope function f.
Goal: prediction of a new value of Y given a new curve X.
@ Model without structural constraint

Estimation of the conditional cumulative distribution function
F:HxR — R
(x,y) = F(y)=P{Y<yX=1x).

o Nonparametric regression : Y = m(X) + ¢,
with m : H — R a function and ¢ a noise term.
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Introduction : statistical framework

Models and problems considered

o Functional linear model: Y = (5, X) + ¢,
with 8 € H and ¢ a noise term, centred, independent of X, with finite variance.

Estimation of the slope function f3.
Goal: prediction of a new value of Y given a new curve X.

@ Model without structural constraint

Estimation of the conditional cumulative distribution function
F:HxR — R
(xy) = FO)=PY<yX=1x).

o Nonparametric regression : Y = m(X) + ¢,
with m : H — R a function and ¢ a noise term.

Minimisation of the conditional expectation :
x* = argmin, . {m(x)}.
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Introduction : s

Outline

@ Prediction in the functional linear model
@ Estimation procedure
@ Theoretical results
@ Simulation results

© Adaptive estimation of the conditional c.d.f
@ Bias-variance decomposition of the risk
@ Bandwidth selection device
@ Optimal estimation in the minimax sense
@ Simulation study

e Response surface methodology for functional data
@ Response surface methodology
o Extension to the functional setting
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Prediction in the functional linear model

Outline

@ Prediction in the functional linear model
@ Estimation procedure
@ Theoretical results
@ Simulation results
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Prediction in the functional linear model

Functional linear model

We suppose that
Y = (8,X) +¢,
with
@ X a centred random variable with values in a separable Hilbert space
(H, {-,-), || - ||) with infinite dimension;

@ (3, the slope function: an unknown element of H;

@ ¢ anoise term, centred, independent of X and with unknown variance o2

Aim: estimate the slope function 3 using the information of the sample
{(X;,Y:),i=1,...,n} following (1).
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Prediction in the functional linear model

Covariance operator
Multiplying the model equation ¥ = (3, X) + ¢ by X(s) and taking expectation we
obtain
E[Yx] = E[(8,X)X]
I I
gel = TIp
where
I:feHw— E[X,)X]

is the covariance operator associated to X.
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Prediction in the functional linear model

Covariance operator

Multiplying the model equation ¥ = (3, X) + ¢ by X(s) and taking expectation we
obtain
E[Yx] = E[(8,X)X]
I I

geH = TIp

where
I:feHw— E[(X,/X]

is the covariance operator associated to X.
o [ positive compact self-adjoint
= basis (1););> of eigenfunctions
(N\j)j>1 associated eigenvalues, non-increasing sequence.
@ )\; \, 0 = ill-posed inverse problem.
o For identifiability, we suppose that

Ker(I') = {0} & \; > O forall .
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Prediction in the functional linear model

Risk considered

Definition

The prediction error of an estimator B is the quantity

N 2
E {(YH] *E[Yn+1|Xn+1]> |(X1, Y1),y (X, V)

with
o (X,11,Y,11) acopy of (X,Y) independent of the sample;

° 17”+1 the prediction of Y, | with the estimator B :

?n—&-l - </BaXn+1>'
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Prediction in the functional linear model

Risk considered

Definition

The prediction error of an estimator B is the quantity

E |:(/Y\n+1 -E [Yn+1|Xn+1]>2 |(X1, Y1),y (Xa,s Yn)}

=E (B 8.Xu)’l(X1, 1), ..., (X, V)|
= (T(B—B),8— )= 15— Bl

with
@ (X,11,Y,11) acopy of (X,Y) independent of the sample;

° 17”+1 the prediction of Y, | with the estimator B :

?n—&-l - </BaXn+1>'
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Prediction in the functional linear model

Short overview of existing work

o Estimation by projection or by roughness regularization.

On fixed basis : Fourier , B-splines, general o.n.b...
On data-driven basis : functional PCA.
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Prediction in the functional linear model

Short overview of existing work

o Estimation by projection or by roughness regularization.
On fixed basis : Fourier , B-splines, general o.n.b...
On data-driven basis : functional PCA.
o Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda
(1999), Cai and Hall (2006), Hall and Horowitz (2007),...
... but very few non-asymptotic results : Cardot and Johannes (2010, lower
bounds on general L?-risks), Comte and Johannes (2010, 2012; adaptive
estimators).
o Comte and Johannes (2010, 2012):
— projection estimators on fixed basis;
— oracle-type inequalities for general weighted > norms without including the

prediction error;
— minimax convergence rates.

Goal: define an adaptive estimator by projection on the PCA basis.
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Prediction in the functional linear model B ERFHETIN IV T

Outline

@ Prediction in the functional linear model
@ Estimation procedure
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on in the functional linear model ESNIERTIN IR

fPCA

functional Principal Components Regression

Aim:

Define an approximation space S, of dimension D,, minimising the mean distance
between X and its projection on S,,,.

Sm - VeCt{dJ]v cee 7¢Dm}

By induction:
Prg1 € argmin, wE [[[X — ILX — (X, )f|*],

under the constraint (¢, v;) = 0, forall j < ket ||| = 1 (IIi: projector
Vect{ty, ..., Ur}).
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Prediction in the functional linear model B ERFHETIN IV T

fPCA

functional Principal Components Regression

Aim:

Define an approximation space S, of dimension D,, minimising the mean distance
between X and its projection on S,,,.

Sm - VeCt{d)]v cee 7¢Dm}

By induction:
Prg1 € argmin, wE [[[X — ILX — (X, )f|*],

under the constraint (¢, v;) = 0, forall j < ket ||| = 1 (IIi: projector
Vect{ty, ..., Ur}).

The family (););>1 is a 0.n.b of H of eigenfunctions of the covariance operator
I:feHw— E[X,/)X].
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Prediction in the functional linear model

Least-squares estimators

Case 1: the basis (1););> is known

Bu®) = arg mingeg 7(f),

with S,, = span{¢y,...,¢p, },

where (1););>1 are the eigenfunctions of

the covariance operator

T:feHe— E[{f,X)X].

Estimation procedure

Case 2: the basis (1););> is unknown

-~

ﬁ’%ﬁl’(?’\’) = arg minfeS}, Tn (f)’

with S,, = span{¢1,...,¢p, }.

where (1););>1 are the eigenfunction of
the empirical covariance operator

[,:f € s 130 (£, X)X

@ Yy if IV (Yi—(f ,X;))” is the least-squares contrast.

@ (D,,)m>1 is a strictly increasing sequence such that D; > 1 (e.g. D, = m or

D,, =2m+1).
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Prediction in the functional linear model B ERFHETIN IV T

Least-squares estimators

Case 2: the basis (1););> is unknown

~

ﬁ’g‘/’("\’) = arg minfeS;,’y” (),

with S,, = span{lzm e ,@Dm}’

where (1););> are the eigenfunction of
the empirical covariance operator

[,:f € s 130 (£, X)X

@ Yuif iy (vi—{f, X;))? is the least-squares contrast.

@ (D,,)m>1 is a strictly increasing sequence such that D; > 1 (e.g. D, = m or

D,, =2m+1).
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Prediction in the functional linear model

Dimension selection (I)

Problem:

How to choose the dimension D,, ?

Best dimension for prediction error:
D,,~ with

R 2
m* € argmin,,_; yE {Hﬂ'("FPCR) N ﬁHr}

— unknown in practice !!!

B,(nIiPCR) is the best estimator it is possible to select in the family

{Bm,m =1,... ,N,,}. We call it oracle.
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Prediction in the functional linear model B ERFHETIN IV T

Dimension selection (II)

Bias-variance decomposition of the risk
—~ 2 ~ 2 ~ ~ 2
= —of] - s -l 2 [fm -
r r r

where I, 3 is the orthogonal projection on span{{l;l, cee 120,,, }.
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Dimension selection (II)

Bias-variance decomposition of the risk

8 - of] =5 -

’ IE HB\(FPCR)_ﬁmBHZ
1_, m F )

where I, 3 is the orthogonal projection on span{{l;l, cee 120,,, }.

Approximation error «~ bias term:

@ decreases with the dimension D,,;
@ order unknown in practice (depends on the regularity of ).
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Prediction in the functional linear model B ERFHETIN IV T

Dimension selection (II)

Bias-variance decomposition of the risk

8 - of] =5 -

2 — ,\ 2
:|+E |:HB;$:FPCR) _HmBH :|7
r T

where I, 3 is the orthogonal projection on span{{l;l, cee 120,,, }.

Approximation error «~ bias term:

@ decreases with the dimension D,,;
@ order unknown in practice (depends on the regularity of ).

Estimation error «~ variance term: ~ 02% o2: noise variance
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Prediction in the functional linear model

Dimension selection (III)

Dimension selection criterion
We select

D,
m € arg min,,_; { /n(ﬂzngCR)) + H&,zn }
n
with

i Z ( (FPCR)’Xi>)2 _ %(Br(nFPCR))

an estimator of the noise variance o2.
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Prediction in the functional linear model BNV EITEIBETNS

Outline

@ Prediction in the functional linear model

@ Theoretical results
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Prediction in the functional linear model BNV EITEIBETNS

Assumptions

o Assumption on the noise: there exists p > 4, such that E[e”] < +o0.
o Assumption on the target function 3: there exists r, R > 0 such that

BeWS:=qfeH, Y j <f1><R

jz1

@ Assumptions on the process X:
o on the principal components scores:

o sups E {% < b4, forall £ > 1
- J
o Forallj # k, (X, ;) is independent of (X, 1/y).
o on the eigenvalues of '

o N > > ...
o ¢j ¢ < )\ < Cj~“witha > 1,¢,C > 0 (polynomial decrease) or

ce ™" <\ < Ce= /", a,c,C > 0 (exponential decrease).
o There exists a constant v > 0 such that (j\; max{In'T7(j), 1});>, is decreasing.
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Assumptions

o Assumption on the noise: there exists p > 4, such that E[e”] < +o0.
o Assumption on the target function 3: there exists r, R > 0 such that
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o on the principal components scores:

Xy)° £—1
o sup;>, E { >\,j } < Hp™ forall € > 1 — Verified for all Gaussian
o Forallj # k, (X, ;) is independent of (X, ;).  processes

o on the eigenvalues of '
oA\ > > ...
@ ¢j ¢ < )\ < Cj~“witha > 1,¢,C > 0 (polynomial decrease) or
ce' < A < Ce ™, a,c,C>0 (exponential decrease).
o There exists a constant v > 0 such that (j\; max{In'T7(j), 1});>, is decreasing.

— Brownian motion: \; = 7 ~2(j — 0.5) "2, Brownian bridge: \; = m =22
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Prediction in the functional linear model

Oracle inequality and rates

Theorem

Under the previous assumptions and if @ + r/2 > 2 (for the polynomial decrease),

—~ 2
IE“ ’(ﬁFPCR>,5H } <C rlnln { {Hﬂmﬁ ,BH :|+H 2Dm}+9
I m=1,

n
where C, C; > 0 are independent of n and /3 and 11, is the orthogonal projector onto K

)

Rates of convergence

Exponential decrease
ce ' < A < Ce ™"

B(FPCR) ﬂH J ‘ < Cp—(@tn)/(atrD) ‘ Scnfl(ln(n))l/a

Polynomial decrease
g < N<GT”

SUP gk E {
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Prediction in the functional linear model BNV EITEIBETNS

Oracle inequality and rates

Theorem
Under the previous assumptions and if @ + r/2 > 2 (for the polynomial decrease),
~ 2 N 2
E {H (FPCR) 75H } <C min {IE {HH,,,/BfﬂH ]+mzﬁ}+9,
T m=1,...,N, r n n

where C, C; > 0 are independent of n and /3 and 11, is the orthogonal projector onto S

Rates of convergence

Exponential decrease
ce ™ < A < Ce™"
E(FPCR

) 2 —(a+r a+r+1 —1 1/a
b fBHFJ ‘ < Cp~ e/ (atr+h) ‘ < Cn~'(In(n))"

Polynomial decrease
g ‘<N GT

SUPgeyyr E U‘

— coincides with the lower-bounds established by Cardot and Johannes (2010).

— The estimator is optimal in the minimax sense
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Prediction in the functional linear model ST ETHOB SV

Outline

@ Prediction in the functional linear model

@ Simulation results
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Prediction in the functional linear model ST ETHOB SV

Simulation of X

100

X =3 VA&,
j=1

with &, ..., €100 independent realizations of A'(0, 1) and v;(x) = v/2sin(7(j — 0.5)x).

o
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o ER
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! T T T T T T T T T T T T T T T T T T
0.0 02 04 06 0.8 10 0.0 02 0.4 0.6 08 1.0 0.0 0.2 04 06 08 10
t t t

Figure: Sample of 5 random curves
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Prediction in the functional linear model ST ETHOB SV

Bi(t) = exp (—(r — 0.3)2/0.05) cos(4nt), n = 1000
2 .

Bx)
-15 -10 -05 00 05 10
L L ! L L L

Br(t) = In(15¢% + 10) + cos(4t), n = 1000
2

Bx)
10 15 20 25 30 35 40
L L L ! L ! L

)\j: -3

2
I
~

-15 -10 -05 00 05 10

)\] =] )\j:j_3

-15 -10 -05 00 05 10
L L ! L L L

10 15 20 25 30 35 40
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Prediction in the functional linear model ST ETHOB SV

Comparison with cross-validation

We compare our selection criterion with other methods:
@ Cross validation:

n

~ . 1 AN 2
PCv .= argmin,,_; Z (Yi _ Yi(m, :)) ,
i=1

(m’fi)

where Y is the prediction of ¥ made from the sample {(X;, Y;),j # i}.

@ Generalized cross-validation:

;ﬁGCV ‘= arg Ininm:1 A ’yn(ﬁm) 29
e (1 _ t1'(Hm))

where Y = ﬁm, X;) (prediction of Y) and H,, is the Hat matrix defined by
Ym = HmY,
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Prediction in the functional linear model ST ETHOB SV

Comparison with cross-validation

Estimation of 3,

Blx)
15 20 25 30 35 40

5 0 5 1015

15

Figure: Left: comparison of estimators B, when m is selected by minimization of the penalized
criterion or the CV criterion. Right: comparison with the GCV criterion. n = 2000, \; = j .

23/54



Prediction in the functional linear model ST ETHOB SV

Comparison with cross-validation

Comparison of risks

O erit 0 cv B Gcv

oo

0.003
|
|
|

Prediction error
0.002
|
)
+mom cwoo o oo
)

-+ . - Bl

o .
5 s ]
2 ; : i 8 ;
g ‘ g | [
— NI -
I = = R
< : i i E— 11—
g | - = = ==
< T T T
n= 200 n= 500 n= 1000

Figure: Boxplot of prediction errors calculated from 500 independent samples. Estimation of
B =)
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Prediction in the functional linear model ST ETHOB SV

Comparison with cross-validation

Ratio to the oracle

15 20 25
! ! ]

Ratio to the oracle

10
!

8

. L

- g
i | ==

O crit

< T
n= 200

Estimation of £;, \; = j .
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Prediction in the functional linear model ST ETHOB SV

Comparison with cross-validation

Ratio to the oracle

Z ° O ecrit O cv B Gcv
g
= .
@ °© o
g © e
S S ° '
2 ° |
2 o o :
2 o o 8 :
€ <« ° g . ° | g |
= i . g ; . o :
g . : 1 8 : —
I f ;
~ ' | i i — i i
n= éOO n= ‘500 n= iOOO
Figure: Ratio |35 — BI/[1B- — B where |8y — 81 = miny,...x, {118 - B }.
3

Estimation of 51, \j =/~
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Adaptive estimation of the conditional c.d.f

Outline

© Adaptive estimation of the conditional c.d.f
@ Bias-variance decomposition of the risk
@ Bandwidth selection device
@ Optimal estimation in the minimax sense
@ Simulation study
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Adaptive estimation of the conditional c.d.f

Goal

Aim: estimate the conditional distribution function
F'(y) =P(Y <ylX =x)

using the information of the sample {(X;, Y;),i = 1,...,n} following the same
distribution as (X, Y).
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Adaptive estimation of the conditional c.d.f

Estimation method

@ Kernel estimation
- i K (d(Xi,x)) Ly<y

Fra) = =S5 e 0 )

where
e K :R — R is akernel function. It verifies fR K(t)dt = 1.
e h > 01is a bandwidth.
o d:H? — R, is a general pseudometric.
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Adaptive estimation of the conditional c.d.f

Estimation method

@ Kernel estimation

> oy K (d(Xi, %)) 1y<yy
ZI_]Kh( ( iy ))

() =

where
e K :R — R is akernel function. It verifies fR K(t)dt = 1.
e h > 01is a bandwidth.
o d:H? — R, is a general pseudometric.
o Reference: Ferraty er al. (2006, 2010) :
e Almost complete and uniform almost complete convergence (with bias-variance
decomposition).
e Rates of convergence on some examples of processes.
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Adaptive estimation of the conditional c.d.f

Estimation method

@ Kernel estimation

> oy K (d(Xi, %)) 1y<yy
Zi:l K, (d(th))

Fiab) =

where
o K :R — Ry is a kernel function. It verifies [, K(r)dr = 1.
e h > 0is a bandwidth.
o d:H? — R, is a general pseudometric.
o Reference: Ferraty er al. (2006, 2010) :
e Almost complete and uniform almost complete convergence (with bias-variance
decomposition).
e Rates of convergence on some examples of processes.
@ Purposes
o provide a data-driven choice for the bandwidth / with nonasymptotic
theoretical results;
o discuss the choice of the semi-metric d in the kernel;
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VARSI ERVIVRTICO GO EIRGR S Bias-variance decomposition of the risk

Outline

© Adaptive estimation of the conditional c.d.f
@ Bias-variance decomposition of the risk
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VARSI ERVIVRTICO GO EIRGR S Bias-variance decomposition of the risk

Considered risk

@ For the main part of the talk: d(x,x") = |lx — x'||, (x,x") € H.

- = > izt Kn(l1Xi = x[D1gy,<0y
Fi(y) := Fra(y) = =55 =
W0 = Fiab) = = e — =)

@ Integrated risk

R(Fo, F [/B </ Fily F“(y))zdy> dIP’x(x)] —E[IF - F*

with

o X' is acopy of X, independent of the data-sample.
e D is a compact subset of R;
e Bis abounded subset of H.

30/54
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VARSI ERVIVRTICO GO EIRGR S Bias-variance decomposition of the risk

Assumptions to control the risk
o Assumptions on the kernel

e supp(K) C [0;1]
0 0 < ck <K(r) < Ck < +oo,1 € [0;1]

o Assumption on the target function 7

38 € (0;1), ICH >0, Vx, X € H, ||F*—F"|p < Cpllx—|°

— F belongs to a Holder space with smoothness index /3.
@ Assumption on the process X:
e through the small ball probabilities
p(h) = P(X]| < h) and o™ (k) := B(|X — xo|| < h), x € H.
e Jc,, C, > 0, such that
Vh > 0, Vxo € B, coo(h) < ¢ (h) < Cop(h).
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Adaptive estimation of the conditional c.d.f

Upper-bound for the risk

Proposition
Under the previous assumptions, there exists C > 0, such that, for any 2 > 0,
1

R(Fp,F) < C (hzﬁ + W) :
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VARSI ERVIVRTICO GO EIRGR S Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any /2 > 0,

RELF) <0 (774 o )

Unknown oracle choice

h* = arg minheH"R(l?h, F)
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Adaptive estimation of the conditional c.d.f

Upper-bound for the risk

Bias-variance decomposition of the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any 2 > 0,

R(Fp,F) < C <h25 + mpl(h)> ,

Unknown oracle choice

h* = argmin, ;- R(Fp, F)
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VARSI ERVIVRTICO GO EIRGR S Bias-variance decomposition of the risk

Upper-bound for the risk

Proposition

Under the previous assumptions, there exists C > 0, such that, for any z > 0,

R(Fp,F) < C <h2/3 + mpl(h)> ,

Unknown oracle choice

h* = argmin, R(Fy, F)
———

=¢ (W : nsol(h))

Question: How to choose / without the knowledge of 5 and ¢ (h)?
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FGERRTENN BRIV RGO E Rl Bandwidth selection device

Outline

© Adaptive estimation of the conditional c.d.f

@ Bandwidth selection device
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Adaptive estimation of the conditional c.d.f

Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R (FiF) =E [IF* —E |FY X | [51(0)] +E ||E [FY1X'] - FY I51a00)]
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FGERRTENN BRIV RGO E Rl Bandwidth selection device

Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R (FiF) =E[IF" —E [ 1X] I5100)] + £ [IE [FY 1] - B Ih1.00)]

@ Variance term of order - ( j — can be estimated:

~ Inn 1 <&
V(h) = h o(h) = - 1 .
(h) R B where $(h) n; (Ixll<h}
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Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R (FiF) =E [IF¥ —E[FY X I51s00)] +E [IB [ 1X ] - B I51s00)] -

@ Variance term of order - ( j — can be estimated:

~ Inn 1 <&
V(h) = h o(h) = - 1 .
(h) R B where $(h) n; (Ixll<h}

@ How to approximate the bias term ?
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Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R (FiF) =E [IF¥ —E[FY X I51s00)] +E [IB [ 1X ] - B I51s00)] -

@ Variance term of order - ( j — can be estimated:

~ Inn 1 <&
V(h) = h o(h) = - 1 .
(h) R B where $(h) n; (Ixll<h}

@ How to approximate the bias term ?

Ay = max (IFY = ¥ allh — Vi) +

34/54



FGERRTENN BRIV RGO E Rl Bandwidth selection device

Bandwidth selection device
Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

R (FiF) =E [IF¥ —E[FY X I51s00)] +E [IB [ 1X ] - B I51s00)] -

@ Variance term of order - ( j — can be estimated:

~ Inn 1 <&
V(h) = h o(h) = - 1 .
(h) R B where $(h) n; (Ixll<h}

@ How to approximate the bias term ?
Ay = max (IFY = ¥ allh — Vi) +

o Finally / = argmin,,, {Z(h) + \7(h)} = I?;’f/.
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FGERRTENN BRIV RGO E Rl Bandwidth selection device

Main result: nonasymptotic adaptive risk bound

Theorem

Under the previous assumptions, and if the collection 7{,, is not too large, there exist 2
constants ¢, C > 0 such that

- . In(n) C
R(F;,F) < W4 — L4 =
(R < epip {27 0 L+
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VGRS E IRV RTIEVI O EIRGEE  Optimal estimation in the minimax sense

Outline

© Adaptive estimation of the conditional c.d.f

@ Optimal estimation in the minimax sense

36/54



VGRS E IRV RTIEVI O EIRGEE  Optimal estimation in the minimax sense

Additional assumption on the small ball probability

p(h) =B (|X]| < h), h> 0.
3 possible assumptions on the decay of the s.b.p.
@ Fast decay

@o(h) <h"exp(—ch™®), v €R,a>0.

Ex: if X is a brownian motion, assumption satisfied with o = 2.

@ Intermediate decay
@o(h) < h"exp (—cIn"*(1/h)), v €R,a> 1.

@ Low decay
w(h) <h", v>0.

Ex: if X € RY (random vector), assumption satisfied with = d.
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VGRS E IRV RTIEVI O EIRGEE  Optimal estimation in the minimax sense

Rates of convergence

Fast decay for p(h) | Intermediate decay for ¢ (h) | Low decay for ¢(h)
(slow rates) (intermediate) (fast rates)
@ R(FF)S - _ 28
(In(n)) 26/« exp (—%lnl/a(n)> ( n ) oy
(adaptive rate) “ In(n)

— similar rates to the ones obtained by Ferraty er al. (2006), but for an adaptive bandwidth.
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VGRS E IRV RTIEVI O EIRGEE  Optimal estimation in the minimax sense

Rates of convergence

Fast decay for ¢ (h)
(slow rates)

Intermediate decay ¢ (h)
(intermediate)

Low decay ¢(h)
(fast rates)

(a) R(F;, F) <+

(In(n)) =26/
(adaptive rate)

exp (— z/ﬁa lnl/o‘(n)>

1
c,

(®) Minimax rate
inf sup R(F,F) 2 --- (In(n)) =28/

F FX...
(lower bound)

exp (—% lnl/"‘(n)>

©

— similar rates to the ones obtained by Mas (2012) for regression estimation.
— the estimator is then optimal in the minimax sense, up to the extra In(n) factor.
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Adaptive estimation of the conditional c.d.f EESTHTIETIRNITN

Outline

© Adaptive estimation of the conditional c.d.f

@ Simulation study
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Adaptive estimation of the conditional c.d.f EESTHTIETIRNITN

Implementation

@ Choice of K: uniform kernel K = 1o ;.
@ Choice of H,: H, = {C/k, 1 <k < kmax }

@ Simulation of X:
o (W(t)): a brownian motion, o (&)j>0iid N(0,1).

Fast decay for o (h) Intermediate decay for (/) Low decay for ¢(h)

X0

X(1) = W(t) + & X(1) = & X(1) = & + V2& sin(71/2)

+V2 N G4z sin(m(j - 0.5)1)  +& sin(3m1/2)/v2

]
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Adaptive estimation of the conditional c.d.f EESTHTIETIRNITN

Estimators

Conditional c.d.f estimation in a regression model

Observations: (X:, Y:);c(
and &; ~ N(0,0.1).

500} such that ¥; = ( I8 ﬁ(r)Xi(t)dt)z + & with B(1) = sin(4)

Fast decay for (h) Intermediate decay for (k) Low decay for ¢(h)

true conditional c.d.f. | —  estimators (IA’;I)/,GH,,,
—  oracle estimator F~, | —  adaptive estimator F7,.
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Adaptive estimation of the conditional c.d.f EESTHTIETIRNITN

Estimators

Conditional c.d.f estimation in a Gaussian mixture model

Observations: (X;,Y;)ic1,....s00} such that
Yi|Xi = x ~ 0.5N (8 — 4x||, 1) + 0.5N (8 + 4]|x||, 1),

Fast decay for (h) Intermediate decay for (k) Low decay for ¢(h)

true conditional c.d.f. | —  estimators (ﬁh)heﬂ,,,
—  oracle estimator '+, | —  adaptive estimator F7,.
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Response surface methodology for functional data

Outline

9 Response surface methodology for functional data
@ Response surface methodology
o Extension to the functional setting
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9 Response surface methodology for functional data
@ Response surface methodology
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BT R I R R I KA Response surface methodology

Response surface methodology
Brief history

@ Box and Wilson (1950): optimal conditions for chemical experimentation —
widely used in industry.

@ Sacks et. al (1989): Extension to numerical experiments

— Bates et. al (1996): conception of electrical circuit;
— Lee and Hajela (1996): conception of rotor blades...

@ Recent advances: Facer and Miiller (2003), Khuri and Mukhopadhyay (2010),
Georgiou, Stylianou and Aggarwal (2014).
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1i, ..., Xa;) +eni=1,...,n,

(x1,is - -, Xa,))i=; chosen by the user and n as small as possible.

46/54



Response surface methodology

Response surface methodology for functional data

Methodology

Goal: minimisation of (xi,...,x,) — m(x|,...,x;), unknown.

Information available:
yi=m(X1iy ... X)) Feni=1,...,n,
., X4,i)i—; chosen by the user and » as small as possible.

N

T T T
-10 0 5 10

x1

o
17/ 7 N\ \
\ ’; - /§ 40 %\
§§ 9 0 20
AR i)
NN
NN 9 N |
NI X ©
SN
QY 1999,
N\ 7 y
N\ 4 2 S
! g \Ne~—e/9)
| T

Example:
o m(xy,x2) = x3 + x3;

e ¢~ N(0,1).
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Response surface methodology

Response surface methodology for functional data

Methodology

Goal: minimisation of (xi,...,x,) — m(x, ..
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

., Xq), unknown.

o g
A ’; = //Q?/. w0 \%\
W V) © *
N i
N7
AR Wy q _
O Wi x <
S\,
SN -
RN 255
N\ 4 \2 s/
A\ TR 4 S _\o\%® S/~
| T T
N -10 0O 5 10
x1
Legend:

Example:
o m(xy,x2) = x3 + x3;

e ¢~ N(0,1).

e Initial point
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Response surface methodology

Response surface methodology for functional data

Methodology

Goal: minimisation of (xi, ...,
Information available:
LX) Feni=1,...,n,

Xu) — m(xy, ..., xs), unknown.

yi = m(xi, ..
(x1,iy ..., xa,))i—, chosen by the user and n as small as possible
o
N/ AR
§N N{ v - 20
N A7
§§:.’=|I"|I' ’!‘W
N7 X © .
QN )
N\ 7 5
N\ 4 2 S
AN %4 =t 4&30 & © S[
| T T T T
— -10 0 5 10
x1
Example: Legend:
o m(x,x,) = X3 +x2; . Inl.tljcll p01nt.
e Minimal point (target)

e ¢~ N(0,1).
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Response surface methodology

Response surface methodology for functional data

Methodology
Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,
(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

Factorial 2° design: 4 points

(0)

o
- 7/ { “ N\ \
A 1 727 SN A
N 7 ” X, X
Nt S o .
N\ <
SN
\\N# 7 .
\ 4 \& s/ (0) X1
2 R % S \A\®» &/, XO
| T T T
- 0
—— 10 0 5 10 Xgo) XA(; )
x1
Example: Legend:
' . s .
o m(xi,x)) =13 + 3 Inl.tlfcll p01nt.
N0, 1) e Minimal point (target)
@~ 1), . . .
’ e Factorial design points
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:
yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

Least-squares fit of a first

o

\ ; - order model:
\ 1 0 :
N A7 ,
§§§: i E:E?:% Y o y=B1x1 + Baxa + €.
N

SN L

\t\\\\%\\\g\\si '%@/’;’7// Direction of steepest de-

NN 2%, .
\; 7 % scent estimated :
xI (=B, —B2).
x1
Example: Legend:
e Initial point — direction of descent

o m(xi,x2) = x7 + x3;

° ¢~ N(0,1). e Minimal point (target)

e Factorial design points
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

o Observed response:
\ ’; = o - R
N ) ) y=f(n —aBi,x—ap)+e
N 77
o % o o
) g 7]\,
7 Eel '\
NN 9 £ N .
A\ N o S - . e
) T R "
° ; : T :
T 0.0 0.2 04 06 0.8 1.0
x1 a
Example: Legend:
o m(xi,xp) = x7 + x3; e Initial point e Descent steps

e Minimal point (target)
e Factorial design points

e ¢~ N(0,1).
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

X 7 =] Observed response:
SN Jgé w y=fla —afi,x—af)+e
W 91/
gst’ L:“?? N o % o -,
N7 < AR
N1 g\
e 7 I N
\\\\\\\\\§$ %:/’//// 3 7] N ofhe descentdrecton .«
A\ 7 ie N K
s L : e .
T 0.0 0.2 0.4 0.6 0.8 1.0
x1 a
Example: Legend:
) o .. . .
o m(xi,xp) = x7 + x3; Initial point Descent steps

e Minimal point (target)
e Factorial design points

e ¢~ N(0,1).
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

o

—\
RINUSSUTTTSN

X2

C—

N
N
SN

R
N

‘?
\ \\\\\‘

Example: Legend:
) 5. e Minimal point of the descent direction
om (Xl 5 x2) = x|+ Xx3; e  Minimal point (target)

e ¢~ N(0,1).
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

‘ Central Composite Design: 8 points
i X2
i «
el
W §
7997
7
X ' a X
Xt x1
Example: Legend:
) o, [ Minimal point of the descent direction
o I’)’l(X] B )Cz) = X] + X5, ° Minimal point (target)
. Factorial design points
@ N(O 1)' *  CCD axial points
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

‘ Least-squares fit of a second-order
j’ﬂ model:
]
'5“‘ t "
}Ega N y = Bixi+Baxa+(x1, x2)B(x1, x2) +¢
%
’{’Z’//’/’/// Stationary point:
£ 1
* S/ At
, X, ) = =B B1, B
— . (7,x3) = 3B (B, B)
Example: Legend:
> s, . Minimal point of the descent direction
o m(X] 7x2) = X7+ Xx3; e  Minimal point (target)
° Factorial design points
o e N(O 1)' %  CCD axial points
¢ Stationary point (estimated minimal point)
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Response surface methodology for functional data ISRV AL O ITd

Methodology

Goal: minimisation of (xi,...,x,) — m(xi,...,xs), unknown.
Information available:

yi=m(X1iy ... X)) Feni=1,...,n,

(x1,is - - ., Xxa,))i—; chosen by the user and n as small as possible.

S 0
\ 1 5870
AN v it 2.1
§§§E:{§‘I|II' :;‘éé N o ¢ 2
NN o 4
NN 927 5 N7
N\ 7 i 1
N7 g
N 2% 4 o 2 ‘
L /\ 4 Fli g o1y T T T T T
0 5 10 15 20 25
XI 1 number of experiments
Example: Legend:
) 5. . Step points
] m(xl,xz) = x|+ Xx3; e  Minimal point (target)

e ¢~ N(0,1).
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9 Response surface methodology for functional data

o Extension to the functional setting
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I S I SR (VR T KX PW  Extension to the functional setting

Problems raised by the functional context

o First and second-order models can be defined easily but
... How to define functional design of experiments ?
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I S I SR (VR T KX PW  Extension to the functional setting

Problems raised by the functional context

o First and second-order models can be defined easily but
... How to define functional design of experiments ?

@ One possible answer: combine dimension reduction with classical
finite-dimensional design of experiments

° (xéi) = (x(()ol, e 7x(()')[,) €RYi=1,...,n) d-dimensional design of experiments;
e {®1,...,@aq} orthonormal family of H
d
) =x + Zxél}@j,
=1

— functional design of experiments.
... How can we define the directions {¢y, ..., @4} ?
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I S I SR (VR T KX PW  Extension to the functional setting

Problems raised by the functional context

o First and second-order models can be defined easily but
... How to define functional design of experiments ?

@ One possible answer: combine dimension reduction with classical
finite-dimensional design of experiments

° (xéi) = (x(()ol, e 7x(()')[,) €RYi=1,...,n) d-dimensional design of experiments;
e {®1,...,@aq} orthonormal family of H
d
) =x + Zxél}@j,
=1

— functional design of experiments.
... How can we define the directions {¢y, ..., @4} ?
@ Possible basis of approximation

o Fixed basis: Fourier, B-splines, wavelets,...
o If a training sample exists: data driven basis
@ PCA basis;
@ PLS basis Wold (1975), Preda and Saporta (2005), Delaigle and Hall (2012): allows to
take into account the interaction between x and y.
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Response surface methodology for fi (P Extension to the functional setting

Example of functional design of experiments
Factorial 2¢ design in H = LL?([0, 1])

d =2, 16 curves d = 4,32 curves d = 8, 280 curves
Fourier Z E -
PCA' = 5 -]
PLS? - : -

X brownian motion, ¥ = [|X — f||* + &, f(t) = cos(4nt) + 3sin(nt) + 10, & ~ N(0,0.01)

!calculated from (X;)3%
2calculated from (X, ¥;)3%
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Response surface methodology for fi (P Extension to the functional setting

Example of functional design of experiments
Central Composite Designs in H = L2([0, 1])

d = 2, 4 curves d =4, 16 curves d = 8, 256 curves
Fourier Z E -
PeA’ - 5 -]
PLS' - : -

X brownian motion, ¥ = [|X — f||* + &, f(t) = cos(4nt) + 3sin(nt) + 10, & ~ N(0,0.01)

3calculated from (X;)3%
4calculated from (X;, ¥7)3%
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RESHVINGRTLEVENE LW R QS TTIGSEIRETERE - Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

Example:
@ m(x) = |]x — f||* with
f(t) = cos(4mt)+3 sin(wt)+10;
@ ¢~ N(0,10).
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I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

g -
2 -
S -
cwd
o 4
LP -
s
' O‘.O 012 014 016 018 110
t
Example: Legend:
@ m(x) = ||x — f||> with — Initial point

f(t) = cos(4mt)+3 sin(wt)+10;
@ = ~ N(0,10).
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Response surface gy for functional Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

10 15 20
I

(®
5
I

" oo 02 04 e o8 10
t
Example: Legend:
@ m(x) = ||x — f||> with — Initial point
f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOintf(t) (target)
@ =~ N(0,10).

51/54



I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

T O‘O 0‘2 014 0‘6 0‘8 1‘0
Example: Legend:
@ m(x) = ||x — f||> with — Initial point
f(t) = cos(4mt)+3 sin(wt)+10; — Minimal pOintf(t) (target)
o <~ N(0, 10). — 28 factorial design’

Sdirections : PLS basis calculatéd from (X;, m(X;) + ai)fgol (X; brownian motion)
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I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

9 Least-squares fit of a first

EE order model — estima-
g v tion of direction of steep-

e est descent

T 0‘0 0‘2 014 0‘6 0‘8 1‘0

t

Example: Legend:

@ m(x) = ||x — f||> with — Initial point

f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOintf(t) (target)
@ ¢ ~ N(0,10).
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I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

Observed response on descent path:

s %— 2N
sl ——————— is \
iy i >~/
o 00 02 0.4 06 os 10 00 0z 0: 08 o8
t
Example: Legend:
@ m(x) = ||x —sz with —  Initial point
f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOil’ltf(l) (target)
® =~ N0, 10). — Points of the descent direction
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I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

Observed response on descent path:

h—/ﬁ 2
R R RSRE EeSSSSS——— g
/—/—/—’—w aQ
S — g4 Minimal point
B g 4 \ of the descent direction «
3 o | ~.
. g® \.\,\//.
o ° T T T T
- 1 . . . T T 00 02 04 06 08
0.0 0.2 0.4 0.6 0.8 1.0
t a
Example: Legend:
@ m(x) = ||x — f||* with —  Minimal point of the descent direction
f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOil’ltf(I) (target)
® =~ N0, 10). — Points of the descent direction
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Response surface gy for functional Extension to the functional setting

Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

X(t)
5 10 15 20 25
|

O‘.O 012 014 016 018 110
t
Example: Legend:
@ m(x) = ||x — f||* with — Minimal point of the descent direction

f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOintf(t) (target)

@ =~ N(0,10).
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I S I SR (VR T KX PW  Extension to the functional setting

Methodology

Adaptation to a functional context
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Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

: : Least-squares fit of a sec-
< o ond order model — esti-

- mation of stationary point
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Example: Legend:

@ m(x) = ||x — f||* with —  Minimal point of the descent direction

f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pOthf(l) (target)
® =~ N(0,10). ~ } Central Composite Design’

Sdirections : PLS basis calculatéd from (X;, m(X,-) + ai)fgol (X; brownian motion, d = 8)
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Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.

0‘0 0‘2 014 0‘6 0‘8 1‘0
t
Example: Legend:
@ m(x) = ||x — f||* with —  Minimal point of the descent direction

—  Minimal point f(7) (target)
— Stationary point (estimation of the minimal
point)

f(t) = cos(4mt)+3 sin(wt)+10;
@ = ~ N(0,10).
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Methodology

Adaptation to a functional context

Goal: minimisation of x — m(x), unknown.
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Example: Legend:
@ m(x) = ||x — f||* with —  Step points
f(t) = cos(4mt)+3 sin(wt)+10; —  Minimal pomtf(t) (target)

@ ¢ ~ N(0,10).
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Conclusion

@ Model selection for functional principal component regression
— faster and more stable than usual cross-validation
... with non-asymptotic control of the prediction error.

o Bandwidth selection for kernel estimation

— first adaptive estimation procedure in nonparametric estimation for functional
data

— precise lower bounds and convergence rates.

— both estimation procedures leads to minimax optimal estimators.

o First attempt to adapt Response Surface Methodology to functional data.
— definition of functional design of experiments.
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Conclusion and perspectives

Perspectives

o Response surface methodology: minimisation of the probability of failure of a
nuclear reactor vessel (CEA Cadarache);

o Functional single-index model: Y = g((3,X)) -+ . Is it possible to define a
projection based estimator which is adaptive ?

o Kernel estimators in high/infinite dimension (with Gaélle Chagny):
e How to choose relevant metrics for kernels ?
e Theoretical study of resulting estimators.

o Functional linear model: Adaptive parameter selection for the roughness
regularization method.

N ] n
By € argmin,cg {n Z (Yi — (f’Xi>)2 + PHfg} )

i=1

with p a smoothing parameter, S C H and || - ||s a seminorm on S.
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Conclusion and perspectives

Thank you for your attention!

Penalized contrast estimation in functional linear models with circular data.
E. Brunel and A. Roche, accepted for publication in Staristics.

Non-asymptotic Adaptive Prediction in Functional Linear Models.
E. Brunel, A. Mas and A. Roche, submitted.

Adaptive and minimax estimation of the cumulative distribution function given a
functional covariate.
G. Chagny and A. Roche, in revision.

Response surface methodology for functional data : application to nuclear safety
Work in progress.

Adaptive estimation in functional generalized linear models
Work in progress.
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