Modélisation statistique pour données fonctionnelles : approches non-asymptotiques et méthodes adaptatives.

Angelina Roche thèse effectuée sous la direction d'Elodie Brunel et André Mas

7 juillet 2014

Statistical framework

- Aim: study the link between two random variables.
 - $Y \in \mathbb{R}$ a variable of interest.
 - X ∈ ℍ an explanative (functional) variable, with (ℍ, ⟨., .⟩, ||.||) a separable Hilbert space.

Typically
$$\mathbb{H} = L^2([a,b])$$
, $\mathbb{H} = a$ Sobolev space...

• **Observations**: $(X_i, Y_i)_{i \in \{1,...,n\}}$ a sample following the same distribution as (X, Y).

- Functional linear model: $Y = \langle \beta, X \rangle + \varepsilon$, with $\beta \in \mathbb{H}$ and ε a noise term, centred, independent of X, with finite variance.
- Model without structural constraint
- *Nonparametric* regression : $Y = m(X) + \varepsilon$, with $m : \mathbb{H} \to \mathbb{R}$ a function and ε a noise term.

• Functional linear model: $Y = \langle \beta, X \rangle + \varepsilon$, with $\beta \in \mathbb{H}$ and ε a noise term, centred, independent of X, with finite variance.

Estimation of the slope function β . Goal: prediction of a new value of Y given a new curve X.

- Model without structural constraint
- *Nonparametric* regression : $Y = m(X) + \varepsilon$, with $m : \mathbb{H} \to \mathbb{R}$ a function and ε a noise term.

• Functional linear model: $Y = \langle \beta, X \rangle + \varepsilon$, with $\beta \in \mathbb{H}$ and ε a noise term, centred, independent of X, with finite variance.

Estimation of the slope function β . Goal: prediction of a new value of Y given a new curve X.

Model without structural constraint

Estimation of the conditional cumulative distribution function

$$\begin{array}{ccc} F \ : \ \mathbb{H} \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \mapsto & F^x(y) = \mathbb{P} \left(Y \leq y | X = x \right). \end{array}$$

• *Nonparametric* regression : $Y = m(X) + \varepsilon$, with $m : \mathbb{H} \to \mathbb{R}$ a function and ε a noise term.

• Functional linear model: $Y = \langle \beta, X \rangle + \varepsilon$, with $\beta \in \mathbb{H}$ and ε a noise term, centred, independent of X, with finite variance.

Estimation of the slope function β . Goal: prediction of a new value of Y given a new curve X.

Model without structural constraint

Estimation of the conditional cumulative distribution function

$$F : \mathbb{H} \times \mathbb{R} \longrightarrow \mathbb{R}$$

$$(x, y) \mapsto F^{x}(y) = \mathbb{P}(Y \le y | X = x).$$

• *Nonparametric* regression : $Y = m(X) + \varepsilon$, with $m : \mathbb{H} \to \mathbb{R}$ a function and ε a noise term.

Minimisation of the conditional expectation:

$$x^* = \arg\min_{x \in \mathcal{C}} \{m(x)\}.$$

Outline

- Prediction in the functional linear model
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Outline

- Prediction in the functional linear model
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Functional linear model

We suppose that

$$Y = \langle \beta, X \rangle + \varepsilon, \tag{1}$$

with

- *X* a centred random variable with values in a separable Hilbert space $(\mathbb{H}, \langle \cdot, \cdot \rangle, \| \cdot \|)$ with infinite dimension;
- β , the slope function: an unknown element of \mathbb{H} ;
- ε a noise term, centred, independent of X and with **unknown** variance σ^2 .

Aim: estimate the slope function β using the information of the sample $\{(X_i, Y_i), i = 1, \dots, n\}$ following (1).

Multiplying the model equation $Y = \langle \beta, X \rangle + \varepsilon$ by X(s) and taking expectation we obtain

$$\mathbb{E}\left[YX\right] = \mathbb{E}\left[\langle \beta, X \rangle X\right]$$

$$\vdots$$

$$g \in \mathbb{H} = \Gamma \beta$$

where

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right]$$

is the covariance operator associated to X.

- Γ positive compact self-adjoint
 - \Rightarrow basis $(\psi_j)_{j\geq 1}$ of eigenfunctions

 $(\lambda_j)_{j\geq 1}$ associated eigenvalues, non-increasing sequence.

- $\lambda_j \searrow 0 \Rightarrow$ ill-posed inverse problem.
- For identifiability, we suppose that

$$\operatorname{Ker}(\Gamma) = \{0\} \Leftrightarrow \lambda_j > 0 \text{ for all } j.$$

Multiplying the model equation $Y = \langle \beta, X \rangle + \varepsilon$ by X(s) and taking expectation we obtain

$$\begin{array}{rcl} \mathbb{E}\left[YX\right] & = & \mathbb{E}\left[\langle\beta,X\rangle\!X\right] \\ & & & \\ g \in \mathbb{H} & = & \Gamma\beta \end{array}$$

where

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right]$$

is the covariance operator associated to X.

- \bullet Γ positive compact self-adjoint
 - \Rightarrow basis $(\psi_j)_{j\geq 1}$ of eigenfunctions $(\lambda_j)_{j\geq 1}$ associated eigenvalues, non-increasing sequence.
- $\lambda_j \searrow 0 \Rightarrow$ ill-posed inverse problem.
- For identifiability, we suppose that

$$Ker(\Gamma) = \{0\} \Leftrightarrow \lambda_j > 0 \text{ for all } j.$$

Multiplying the model equation $Y = \langle \beta, X \rangle + \varepsilon$ by X(s) and taking expectation we obtain

$$\mathbb{E}\left[YX\right] = \mathbb{E}\left[\langle \beta, X \rangle X\right]$$

$$g \in \mathbb{H} = \Gamma \beta$$

where

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right]$$

is the covariance operator associated to X.

- \bullet Γ positive compact self-adjoint
 - \Rightarrow basis $(\psi_j)_{j\geq 1}$ of eigenfunctions $(\lambda_j)_{j>1}$ associated eigenvalues, non-increasing sequence.
- $\lambda_j \searrow 0 \Rightarrow$ ill-posed inverse problem.
- For identifiability, we suppose that

$$\operatorname{Ker}(\Gamma) = \{0\} \Leftrightarrow \lambda_j > 0 \text{ for all } j.$$

Multiplying the model equation $Y = \langle \beta, X \rangle + \varepsilon$ by X(s) and taking expectation we obtain

$$\mathbb{E}\left[YX\right] = \mathbb{E}\left[\langle \beta, X \rangle X\right]$$

$$\vdots$$

$$g \in \mathbb{H} = \Gamma \beta$$

where

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right]$$

is the covariance operator associated to X.

- \bullet Γ positive compact self-adjoint
 - \Rightarrow basis $(\psi_j)_{j\geq 1}$ of eigenfunctions
 - $(\lambda_j)_{j\geq 1}$ associated eigenvalues, non-increasing sequence.
- $\lambda_j \searrow 0 \Rightarrow$ ill-posed inverse problem.
- For identifiability, we suppose that

$$Ker(\Gamma) = \{0\} \Leftrightarrow \lambda_i > 0 \text{ for all } j.$$

Definition

The prediction error of an estimator $\widehat{\beta}$ is the quantity

$$\mathbb{E}\left[\left(\widehat{Y}_{n+1} - \mathbb{E}\left[Y_{n+1}|X_{n+1}\right]\right)^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \mathbb{E}\left[\left\langle\widehat{\beta} - \beta, X_{n+1}\right\rangle^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \left\langle\Gamma(\widehat{\beta} - \beta),\widehat{\beta} - \beta\right\rangle = \|\widehat{\beta} - \beta\|_{\mathbb{F}}^{2}$$

- (X_{n+1}, Y_{n+1}) a copy of (X, Y) independent of the sample;
- \widehat{Y}_{n+1} the prediction of Y_{n+1} with the estimator $\widehat{\beta}$:

$$\widehat{Y}_{n+1} = \langle \widehat{\beta}, X_{n+1} \rangle.$$

Definition

The prediction error of an estimator $\widehat{\beta}$ is the quantity

$$\mathbb{E}\left[\left(\widehat{Y}_{n+1} - \mathbb{E}\left[Y_{n+1}|X_{n+1}\right]\right)^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \mathbb{E}\left[\left\langle\widehat{\beta} - \beta, X_{n+1}\right\rangle^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \left\langle\Gamma(\widehat{\beta} - \beta),\widehat{\beta} - \beta\right\rangle = \|\widehat{\beta} - \beta\|_{F}^{2}$$

- (X_{n+1}, Y_{n+1}) a copy of (X, Y) independent of the sample;
- \widehat{Y}_{n+1} the prediction of Y_{n+1} with the estimator $\widehat{\beta}$:

$$\widehat{Y}_{n+1} = \langle \widehat{\beta}, X_{n+1} \rangle.$$

Definition

The prediction error of an estimator $\widehat{\beta}$ is the quantity

$$\mathbb{E}\left[\left(\widehat{Y}_{n+1} - \mathbb{E}\left[Y_{n+1}|X_{n+1}\right]\right)^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \mathbb{E}\left[\left\langle\widehat{\beta} - \beta, X_{n+1}\right\rangle^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \left\langle\Gamma(\widehat{\beta} - \beta),\widehat{\beta} - \beta\right\rangle =: \|\widehat{\beta} - \beta\|_{\Gamma}^{2}$$

- (X_{n+1}, Y_{n+1}) a copy of (X, Y) independent of the sample;
- \widehat{Y}_{n+1} the prediction of Y_{n+1} with the estimator $\widehat{\beta}$:

$$\widehat{Y}_{n+1} = \langle \widehat{\beta}, X_{n+1} \rangle.$$

Definition

The prediction error of an estimator $\widehat{\beta}$ is the quantity

$$\mathbb{E}\left[\left(\widehat{Y}_{n+1} - \mathbb{E}\left[Y_{n+1}|X_{n+1}\right]\right)^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \mathbb{E}\left[\left\langle\widehat{\beta} - \beta, X_{n+1}\right\rangle^{2}|(X_{1},Y_{1}),\ldots,(X_{n},Y_{n})\right]$$

$$= \left\langle\Gamma(\widehat{\beta} - \beta),\widehat{\beta} - \beta\right\rangle =: \|\widehat{\beta} - \beta\|_{\Gamma}^{2}$$

- (X_{n+1}, Y_{n+1}) a copy of (X, Y) independent of the sample;
- \widehat{Y}_{n+1} the prediction of Y_{n+1} with the estimator $\widehat{\beta}$:

$$\widehat{Y}_{n+1} = \langle \widehat{\beta}, X_{n+1} \rangle.$$

• Estimation by projection or by roughness regularization.

On fixed basis: Fourier, *B*-splines, general o.n.b...
On data-driven basis: functional PCA.

- Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda (1999), Cai and Hall (2006), Hall and Horowitz (2007)....
 - ... but very few non-asymptotic results : Cardot and Johannes (2010, lower bounds on general \mathbb{L}^2 -risks), Comte and Johannes (2010, 2012; adaptive estimators).
- Comte and Johannes (2010, 2012):
 - → projection estimators on fixed basis:
 - \rightarrow oracle-type inequalities for general weighted \mathbb{L}^2 norms without including the prediction error;
 - → minimax convergence rates

Estimation by projection or by roughness regularization.

On fixed basis: Fourier, B-splines, general o.n.b...

On data-driven basis: functional PCA.

- Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda (1999), Cai and Hall (2006), Hall and Horowitz (2007),...
 - ... but very few non-asymptotic results : Cardot and Johannes (2010, lower bounds on general \mathbb{L}^2 -risks), Comte and Johannes (2010, 2012; adaptive estimators).
- Comte and Johannes (2010, 2012):
 - → projection estimators on fixed basis
 - \rightarrow oracle-type inequalities for general weighted \mathbb{L}^2 norms without including the prediction error;
 - \rightarrow minimax convergence rates

• Estimation by projection or by roughness regularization.

On fixed basis: Fourier, *B*-splines, general o.n.b... On data-driven basis: functional PCA.

- Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda (1999), Cai and Hall (2006), Hall and Horowitz (2007),...
 - ... but very few non-asymptotic results : Cardot and Johannes (2010, lower bounds on general \mathbb{L}^2 -risks), Comte and Johannes (2010, 2012; adaptive estimators).
- Comte and Johannes (2010, 2012):
 - → projection estimators on fixed basis;
 - \to oracle-type inequalities for general weighted \mathbb{L}^2 norms without including the prediction error;
 - \rightarrow minimax convergence rates.

Estimation by projection or by roughness regularization.

On fixed basis: Fourier, *B*-splines, general o.n.b... On data-driven basis: functional PCA.

- Numerous results with asymptotic point of view: Cardot, Ferraty and Sarda (1999), Cai and Hall (2006), Hall and Horowitz (2007),...
 - ... but very few non-asymptotic results : Cardot and Johannes (2010, lower bounds on general \mathbb{L}^2 -risks), Comte and Johannes (2010, 2012; adaptive estimators).
- Comte and Johannes (2010, 2012):
 - → projection estimators on fixed basis;
 - \to oracle-type inequalities for general weighted \mathbb{L}^2 norms without including the prediction error;
 - → minimax convergence rates.

Outline

- Prediction in the functional linear model
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

fPCA

functional Principal Components Regression

Aim:

Define an approximation space S_m of dimension D_m minimising the mean distance between X and its projection on S_m .

$$S_m = \text{Vect}\{\psi_1, \ldots, \psi_{D_m}\}$$

By induction:

$$\psi_{k+1} \in \operatorname{arg\,min}_{f \in \mathbb{H}} \mathbb{E} \left[\|X - \Pi_k X - \langle X, f \rangle f\|^2 \right],$$

under the constraint $\langle \psi_{k+1}, \psi_j \rangle = 0$, for all $j \leq k$ et $||\psi_{k+1}|| = 1$ (Π_k : projector $\text{Vect}\{\psi_1, \dots, \psi_k\}$).

The family $(\psi_j)_{j\geq 1}$ is a o.n.b of $\mathbb H$ of eigenfunctions of the covariance operator

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right]$$

fPCA

functional Principal Components Regression

Aim:

Define an approximation space S_m of dimension D_m minimising the mean distance between X and its projection on S_m .

$$S_m = \operatorname{Vect}\{\psi_1, \ldots, \psi_{D_m}\}$$

By induction:

$$\psi_{k+1} \in \operatorname{arg\,min}_{f \in \mathbb{H}} \mathbb{E} \left[\|X - \Pi_k X - \langle X, f \rangle f\|^2 \right],$$

under the constraint $\langle \psi_{k+1}, \psi_j \rangle = 0$, for all $j \leq k$ et $||\psi_{k+1}|| = 1$ (Π_k : projector $\text{Vect}\{\psi_1, \dots, \psi_k\}$).

The family $(\psi_j)_{j\geq 1}$ is a o.n.b of \mathbb{H} of eigenfunctions of the covariance operator

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle X, f \rangle X\right].$$

Least-squares estimators

Case 1: the basis $(\psi_i)_{i\geq 1}$ is known

$$\widehat{\beta}_m^{(KB)} = \arg\min_{f \in S_m} \gamma_n(f),$$

with
$$S_m = \operatorname{span}\{\psi_1, \ldots, \psi_{D_m}\},\$$

where $(\psi_j)_{j\geq 1}$ are the eigenfunctions of the covariance operator

$$\Gamma:f\in\mathbb{H}\mapsto\mathbb{E}\left[\langle f,X\rangle X\right].$$

Case 2: the basis $(\psi_i)_{i\geq 1}$ is unknown

$$\widehat{\beta}_m^{(FPCR)} = \arg\min_{f \in \widehat{S_m}} \gamma_n(f),$$

with
$$\widehat{S_m} = \operatorname{span}\{\widehat{\psi}_1, \dots, \widehat{\psi}_{D_m}\},\$$

where $(\widehat{\psi}_j)_{j\geq 1}$ are the eigenfunction of the empirical covariance operator

$$\Gamma_n: f \in \mathbb{H} \mapsto \frac{1}{n} \sum_{i=1}^n \langle f, X_i \rangle X_i.$$

- $\gamma_n: f \mapsto \frac{1}{n} \sum_{i=1}^n (Y_i \langle f, X_i \rangle)^2$ is the least-squares contrast.
- $(D_m)_{m\geq 1}$ is a strictly increasing sequence such that $D_1\geq 1$ (e.g. $D_m=m$ or $D_m=2m+1$).

Least-squares estimators

Case 1: the basis $(\psi_j)_{j\geq 1}$ is known

$$\widehat{\beta}_m^{(KB)} = \operatorname{arg\,min}_{f \in S_m} \gamma_n(f),$$

with
$$S_m = \operatorname{span}\{\psi_1, \ldots, \psi_{D_m}\}$$

where $(\psi_j)_{j\geq 1}$ are the eigenfunctions of the covariance operator

$$\Gamma: f \in \mathbb{H} \mapsto \mathbb{E}\left[\langle f, X \rangle X\right].$$

Case 2: the basis $(\psi_i)_{i\geq 1}$ is unknown

$$\widehat{\beta}_m^{(FPCR)} = \arg\min_{f \in \widehat{S}_m} \gamma_n(f),$$

with
$$\widehat{S_m} = \operatorname{span}\{\widehat{\psi}_1, \dots, \widehat{\psi}_{D_m}\},\$$

where $(\widehat{\psi}_j)_{j\geq 1}$ are the eigenfunction of the empirical covariance operator

$$\Gamma_n: f \in \mathbb{H} \mapsto \frac{1}{n} \sum_{i=1}^n \langle f, X_i \rangle X_i.$$

- $\gamma_n: f \mapsto \frac{1}{n} \sum_{i=1}^n (Y_i \langle f, X_i \rangle)^2$ is the least-squares contrast.
- $(D_m)_{m\geq 1}$ is a strictly increasing sequence such that $D_1\geq 1$ (e.g. $D_m=m$ or $D_m=2m+1$).

Dimension selection (I)

Problem:

How to choose the dimension D_m ?

Best dimension for prediction error:

 D_{m^*} with

$$m^* \in \operatorname{arg\,min}_{m=1,...,N_n} \mathbb{E}\left[\left\|\widehat{\beta}_m^{(FPCR)} - \beta\right\|_{\Gamma}^2\right]$$

→ unknown in practice !!!

 $\widehat{\beta}_{m^*}^{(FPCR)}$ is the best estimator it is possible to select in the family $\{\widehat{\beta}_m, m = 1, \dots, N_n\}$. We call it *oracle*.

Dimension selection (II)

Bias-variance decomposition of the risk

$$\mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \beta\right\|_{\Gamma}^{2}\right] = \mathbb{E}\left[\left\|\widehat{\Pi}_{m}\beta - \beta\right\|_{\Gamma}^{2}\right] + \mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \widehat{\Pi}_{m}\beta\right\|_{\Gamma}^{2}\right],$$

where $\hat{\Pi}_m \beta$ is the orthogonal projection on span $\{\hat{\psi}_1, \dots, \hat{\psi}_{D_m}\}$.

Approximation error wbias term:

- decreases with the dimension D_m ;
- order unknown in practice (depends on the regularity of β).

Estimation error \iff variance term: $\simeq \sigma^2 \frac{D_m}{n}$ σ^2 : noise variance

Dimension selection (II)

Bias-variance decomposition of the risk

$$\mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \beta\right\|_{\Gamma}^{2}\right] = \mathbb{E}\left[\left\|\widehat{\Pi}_{m}\beta - \beta\right\|_{\Gamma}^{2}\right] + \mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \widehat{\Pi}_{m}\beta\right\|_{\Gamma}^{2}\right],$$

where $\hat{\Pi}_m \beta$ is the orthogonal projection on span $\{\widehat{\psi}_1, \dots, \widehat{\psi}_{D_m}\}$.

Approximation error \infty bias term:

- decreases with the dimension D_m ;
- order unknown in practice (depends on the regularity of β).

Estimation error \longleftrightarrow variance term: $\simeq \sigma^2 \frac{D_m}{n}$ σ^2 : noise variance

Dimension selection (II)

Bias-variance decomposition of the risk

$$\mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \beta\right\|_{\Gamma}^{2}\right] = \mathbb{E}\left[\left\|\widehat{\Pi}_{m}\beta - \beta\right\|_{\Gamma}^{2}\right] + \mathbb{E}\left[\left\|\widehat{\beta}_{m}^{(FPCR)} - \widehat{\Pi}_{m}\beta\right\|_{\Gamma}^{2}\right],$$

where $\hat{\Pi}_m \beta$ is the orthogonal projection on span $\{\hat{\psi}_1, \dots, \hat{\psi}_{D_m}\}$.

Approximation error \infty bias term:

- decreases with the dimension D_m ;
- order unknown in practice (depends on the regularity of β).

Estimation error \iff variance term: $\simeq \sigma^2 \frac{D_m}{n}$ σ^2 : noise variance

Dimension selection (III)

Dimension selection criterion

We select

$$\widehat{m} \in \arg\min_{m=1,...,N_n} \left\{ \gamma_n(\widehat{\beta}_m^{(FPCR)}) + \kappa \widehat{\sigma}_m^2 \frac{D_m}{n} \right\}$$

with

$$\widehat{\sigma}_m^2 := \frac{1}{n} \sum_{i=1}^n \left(Y_i - \langle \widehat{\beta}_m^{(FPCR)}, X_i \rangle \right)^2 = \gamma_n(\widehat{\beta}_m^{(FPCR)})$$

an estimator of the noise variance σ^2 .

Outline

- Prediction in the functional linear model
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Assumptions

- Assumption on the noise: there exists p > 4, such that $\mathbb{E}[\varepsilon^p] < +\infty$.
- Assumption on the target function β : there exists r, R > 0 such that

$$\beta \in \mathcal{W}_r^R := \left\{ f \in \mathbb{H}, \ \sum_{j \ge 1} j^r < f, \psi_j >^2 \le R^2 \right\}$$

- Assumptions on the process *X*:
 - on the principal components scores:
 - $\sup_{j\geq 1} \mathbb{E}\left[\frac{\langle X,\psi_j\rangle^{2\ell}}{\lambda_j^\ell}\right] \leq \ell! b^{\ell-1}$, for all $\ell\geq 1$ \to Verified for all Gaussian
 - For all $j \neq k$, $\langle X, \psi_j \rangle$ is independent of $\langle X, \psi_k \rangle$. processes
 - on the eigenvalues of Γ :
 - $\lambda_1 > \lambda_2 > \dots$
 - $cj^{-a} \le \lambda_j \le Cj^{-a}$ with a > 1, c, C > 0 (polynomial decrease) or $ce^{-j^a} \le \lambda_i \le Ce^{-j^a}$, a, c, C > 0 (exponential decrease).
 - There exists a constant $\gamma > 0$ such that $(j\lambda_j \max\{\ln^{1+\gamma}(j), 1\})_{j>1}$ is decreasing.
 - \rightarrow Brownian motion: $\lambda_j = \pi^{-2}(j-0.5)^{-2}$, Brownian bridge: $\lambda_j = \pi^{-2}j^{-2}$

Assumptions

- Assumption on the noise: there exists p > 4, such that $\mathbb{E}[\varepsilon^p] < +\infty$.
- Assumption on the target function β : there exists r, R > 0 such that

$$\beta \in \mathcal{W}_r^R := \left\{ f \in \mathbb{H}, \ \sum_{j \ge 1} j^r < f, \psi_j >^2 \le R^2 \right\}$$

- Assumptions on the process *X*:
 - on the principal components scores:
 - $\sup_{j\geq 1} \mathbb{E}\left[\frac{\langle X,\psi_j\rangle^{2\ell}}{\lambda_j^\ell}\right] \leq \ell! b^{\ell-1}$, for all $\ell\geq 1$ \longrightarrow Verified for all Gaussian
 - For all $j \neq k$, $\langle X, \psi_j \rangle$ is independent of $\langle X, \psi_k \rangle$. processes
 - on the eigenvalues of Γ :
 - $\lambda_1 > \lambda_2 > \dots$
 - $cj^{-a} \le \lambda_j \le Cj^{-a}$ with a > 1, c, C > 0 (polynomial decrease) or $ce^{-j^a} \le \lambda_j \le Ce^{-j^a}$, a, c, C > 0 (exponential decrease).
 - There exists a constant $\gamma > 0$ such that $(j\lambda_j \max\{\ln^{1+\gamma}(j), 1\})_{j>1}$ is decreasing.
 - \rightarrow Brownian motion: $\lambda_i = \pi^{-2}(j-0.5)^{-2}$, Brownian bridge: $\lambda_i = \pi^{-2}j^{-2}$

Assumptions

- Assumption on the noise: there exists p > 4, such that $\mathbb{E}[\varepsilon^p] < +\infty$.
- Assumption on the target function β : there exists r, R > 0 such that

$$\beta \in \mathcal{W}_r^R := \left\{ f \in \mathbb{H}, \ \sum_{j \ge 1} j^r < f, \psi_j >^2 \le R^2 \right\}$$

- Assumptions on the process *X*:
 - on the principal components scores:
 - $\sup_{j\geq 1} \mathbb{E}\left[\frac{\langle X,\psi_j\rangle^{2\ell}}{\lambda_j^\ell}\right] \leq \ell! b^{\ell-1}$, for all $\ell\geq 1$ \longrightarrow Verified for all Gaussian
 - For all $j \neq k$, $\langle X, \psi_j \rangle$ is independent of $\langle X, \psi_k \rangle$. processes
 - on the eigenvalues of Γ :
 - $\lambda_1 > \lambda_2 > \dots$
 - $cj^{-a} \le \lambda_j \le Cj^{-a}$ with a > 1, c, C > 0 (polynomial decrease) or $ce^{-j^a} \le \lambda_j \le Ce^{-j^a}$, a, c, C > 0 (exponential decrease).
 - There exists a constant $\gamma > 0$ such that $(j\lambda_j \max\{\ln^{1+\gamma}(j), 1\})_{j>1}$ is decreasing.
 - \rightarrow Brownian motion: $\lambda_j = \pi^{-2}(j-0.5)^{-2}$, Brownian bridge: $\lambda_j = \pi^{-2}j^{-2}$

Oracle inequality and rates

Theorem

Under the previous assumptions and if a + r/2 > 2 (for the polynomial decrease),

$$\mathbb{E}\left[\left\|\widehat{\beta}_{\widehat{m}}^{(\mathit{FPCR})} - \beta\right\|_{\Gamma}^{2}\right] \leq C_{1} \min_{m=1,...,N_{n}} \left\{ \mathbb{E}\left[\left\|\widehat{\Pi}_{m}\beta - \beta\right\|_{\Gamma}^{2}\right] + \kappa\sigma^{2} \frac{D_{m}}{n} \right\} + \frac{C_{2}}{n},$$

where $C_1, C_2 > 0$ are independent of n and β and $\widehat{\Pi}_m$ is the orthogonal projector onto \widehat{S}_m .

Rates of convergence

	Polynomial decrease	
		$ce^{-j^a} \le \lambda_j \le Ce^{-j^a}$
$\sup_{\beta \in \mathcal{W}_r^R} \mathbb{E} \left[\left\ \widehat{\beta}_{\widehat{m}}^{(FPCR)} - \beta \right\ _{\Gamma}^2 \right]$	$\leq Cn^{-(a+r)/(a+r+1)}$	$\leq Cn^{-1}(\ln(n))^{1/a}$

 \rightarrow coincides with the lower-bounds established by Cardot and Johannes (2010)

 \rightarrow The estimator is optimal in the minimax sense

Oracle inequality and rates

Theorem

Under the previous assumptions and if a + r/2 > 2 (for the polynomial decrease),

$$\mathbb{E}\left[\left\|\widehat{\beta}_{\widehat{m}}^{(\mathit{FPCR})} - \beta\right\|_{\Gamma}^{2}\right] \leq C_{1} \min_{m=1,...,N_{n}} \left\{ \mathbb{E}\left[\left\|\widehat{\Pi}_{m}\beta - \beta\right\|_{\Gamma}^{2}\right] + \kappa\sigma^{2} \frac{D_{m}}{n} \right\} + \frac{C_{2}}{n},$$

where $C_1, C_2 > 0$ are independent of n and β and $\widehat{\Pi}_m$ is the orthogonal projector onto \widehat{S}_m .

Rates of convergence

	Polynomial decrease	
	$cj^{-a} \leq \lambda_j \leq Cj^{-a}$	$ce^{-j^a} \le \lambda_j \le Ce^{-j^a}$
$\sup_{\beta \in \mathcal{W}_r^R} \mathbb{E} \left[\left\ \widehat{\beta}_{\widehat{m}}^{(FPCR)} - \beta \right\ _{\Gamma}^2 \right]$	$\leq Cn^{-(a+r)/(a+r+1)}$	$\leq Cn^{-1}(\ln(n))^{1/a}$

 \rightarrow coincides with the lower-bounds established by Cardot and Johannes (2010).

→ The estimator is optimal in the minimax sense

Outline

- Prediction in the functional linear model
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Simulation of *X*

$$X = \sum_{j=1}^{100} \sqrt{\lambda_j} \xi_j \psi_j,$$

with $\xi_1, ..., \xi_{100}$ independent realizations of $\mathcal{N}(0, 1)$ and $\psi_j(x) = \sqrt{2}\sin(\pi(j - 0.5)x)$.

Figure: Sample of 5 random curves

$$\beta_1(t) = \exp(-(t - 0.3)^2 / 0.05) \cos(4\pi t), n = 1000$$

 $\lambda_i = j^{-2}$ $\lambda_i = j^{-3}$

 $\lambda_i = \exp(-j)$

$$\beta_2(t) = \ln(15t^2 + 10) + \cos(4\pi t), n = 1000$$

 $\lambda_j = j^{-2}$ $\lambda_j = j^{-3}$

We compare our selection criterion with other methods:

Cross validation:

$$\widehat{m}^{CV} := \arg\min_{m=1,...,N_n} \frac{1}{n} \sum_{i=1}^n \left(Y_i - \widehat{Y}_i^{(m,-i)} \right)^2,$$

where $\widehat{Y}_{i}^{(m,-i)}$ is the prediction of *Y* made from the sample $\{(X_{i},Y_{j}),j\neq i\}$.

Generalized cross-validation:

$$\widehat{m}^{GCV} := \arg\min_{m=1,\dots,N_n} \frac{\gamma_n(\widehat{\beta}_m)}{\left(1 - \frac{\operatorname{tr}(H_m)}{n}\right)^2},$$

where $\widehat{Y}_{i}^{(m)} := \langle \widehat{\beta}_{m}, X_{i} \rangle$ (prediction of *Y*) and H_{m} is the Hat matrix defined by $\widehat{\mathbf{V}}^{(m)} = H \cdot \mathbf{V}$

Figure: Left: comparison of estimators $\hat{\beta}_m$ when m is selected by minimization of the penalized criterion or the CV criterion. Right: comparison with the GCV criterion. n = 2000, $\lambda_i = j^{-3}$.

Comparison of risks

Figure: Boxplot of prediction errors calculated from 500 independent samples. Estimation of β_1 , $\lambda_j = j^{-3}$.

Ratio to the oracle

Figure: Ratio $\|\widehat{\beta}_{\widehat{m}} - \beta\|_{\Gamma}^2 / \|\widehat{\beta}_{m^*} - \beta\|_{\Gamma}^2$ where $\|\widehat{\beta}_{m^*} - \beta\|_{\Gamma}^2 = \min_{1,...,N_n} \{\|\widehat{\beta}_m - \beta\|_{\Gamma}^2\}$. Estimation of β_1 , $\lambda_j = j^{-3}$.

Ratio to the oracle

Figure: Ratio $\|\widehat{\beta}_{\widehat{m}} - \beta\|_{\Gamma}^2 / \|\widehat{\beta}_{m^*} - \beta\|_{\Gamma}^2$ where $\|\widehat{\beta}_{m^*} - \beta\|_{\Gamma}^2 = \min_{1,...,N_n} \{\|\widehat{\beta}_m - \beta\|_{\Gamma}^2\}$. Estimation of β_1 , $\lambda_j = j^{-3}$.

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Goal

Aim: estimate the conditional distribution function

$$F^{x}(y) = \mathbb{P}(Y \le y | X = x)$$

using the information of the sample $\{(X_i, Y_i), i = 1, ..., n\}$ following the same distribution as (X, Y).

Kernel estimation

$$\widehat{F}_{h,d}^{x}(y) = \frac{\sum_{i=1}^{n} K_h(d(X_i, x)) \mathbf{1}_{\{Y_i \le y\}}}{\sum_{i=1}^{n} K_h(d(X_i, x))}$$

where

- $K: \mathbb{R} \to \mathbb{R}_+$ is a kernel function. It verifies $\int_{\mathbb{R}} K(t)dt = 1$.
- h > 0 is a bandwidth.
- $d: \mathbb{H}^2 \to \mathbb{R}_+$ is a general pseudometric.
- **Reference:** Ferraty *et al.* (2006, 2010) :
 - Almost complete and uniform almost complete convergence (with bias-variance decomposition).
 - Rates of convergence on some examples of processes
- Purposes
 - provide a data-driven choice for the bandwidth h with nonasymptotic theoretical results;
 - discuss the choice of the semi-metric d in the kernel
 - compute optimal rates of convergence under various regularity assumptions

Kernel estimation

$$\widehat{F}_{h,d}^{x}(y) = \frac{\sum_{i=1}^{n} K_{h}(d(X_{i}, x)) \mathbf{1}_{\{Y_{i} \leq y\}}}{\sum_{i=1}^{n} K_{h}(d(X_{i}, x))}$$

where

- $K: \mathbb{R} \to \mathbb{R}_+$ is a kernel function. It verifies $\int_{\mathbb{R}} K(t)dt = 1$.
- h > 0 is a bandwidth.
- $d: \mathbb{H}^2 \to \mathbb{R}_+$ is a general pseudometric.
- **Reference:** Ferraty *et al.* (2006, 2010) :
 - Almost complete and uniform almost complete convergence (with bias-variance decomposition).
 - Rates of convergence on some examples of processes.
- Purposes
 - provide a data-driven choice for the bandwidth h with nonasymptotic theoretical results;
 - discuss the choice of the semi-metric d in the kernel
 - compute optimal rates of convergence under various regularity assumptions

Kernel estimation

$$\widehat{F}_{h,d}^{x}(y) = \frac{\sum_{i=1}^{n} K_{h}(d(X_{i}, x)) \mathbf{1}_{\{Y_{i} \leq y\}}}{\sum_{i=1}^{n} K_{h}(d(X_{i}, x))}$$

where

- $K: \mathbb{R} \to \mathbb{R}_+$ is a kernel function. It verifies $\int_{\mathbb{R}} K(t)dt = 1$.
- h > 0 is a bandwidth.
- $d: \mathbb{H}^2 \to \mathbb{R}_+$ is a general pseudometric.
- **Reference:** Ferraty *et al.* (2006, 2010) :
 - Almost complete and uniform almost complete convergence (with bias-variance decomposition).
 - Rates of convergence on some examples of processes.

Purposes

- provide a data-driven choice for the bandwidth h with nonasymptotic theoretical results;
- discuss the choice of the semi-metric *d* in the kernel;
- compute optimal rates of convergence under various regularity assumptions

Kernel estimation

$$\widehat{F}_{h,d}^{x}(y) = \frac{\sum_{i=1}^{n} K_{h}(d(X_{i}, x)) \mathbf{1}_{\{Y_{i} \leq y\}}}{\sum_{i=1}^{n} K_{h}(d(X_{i}, x))}$$

where

- $K: \mathbb{R} \to \mathbb{R}_+$ is a kernel function. It verifies $\int_{\mathbb{R}} K(t)dt = 1$.
- h > 0 is a bandwidth.
- $d: \mathbb{H}^2 \to \mathbb{R}_+$ is a general pseudometric.
- **Reference:** Ferraty *et al.* (2006, 2010) :
 - Almost complete and uniform almost complete convergence (with bias-variance decomposition).
 - Rates of convergence on some examples of processes.

Purposes

- provide a data-driven choice for the bandwidth h with nonasymptotic theoretical results;
- discuss the choice of the semi-metric *d* in the kernel;
- compute optimal rates of convergence under various regularity assumptions.

Kernel estimation

$$\widehat{F}_{h,d}^{x}(y) = \frac{\sum_{i=1}^{n} K_{h}(d(X_{i}, x)) \mathbf{1}_{\{Y_{i} \leq y\}}}{\sum_{i=1}^{n} K_{h}(d(X_{i}, x))}$$

where

- $K: \mathbb{R} \to \mathbb{R}_+$ is a kernel function. It verifies $\int_{\mathbb{R}} K(t)dt = 1$.
- h > 0 is a bandwidth.
- $d: \mathbb{H}^2 \to \mathbb{R}_+$ is a general pseudometric.
- **Reference:** Ferraty *et al.* (2006, 2010) :
 - Almost complete and uniform almost complete convergence (with bias-variance decomposition).
 - Rates of convergence on some examples of processes.

Purposes

- provide a data-driven choice for the bandwidth h with nonasymptotic theoretical results;
- discuss the choice of the semi-metric *d* in the kernel;
- compute optimal rates of convergence under various regularity assumptions.

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Considered risk

• For the main part of the talk: $d(x, x') = ||x - x'||, (x, x') \in \mathbb{H}$.

$$\widehat{F}_h^x(y) := \widehat{F}_{h,d}^x(y) = \frac{\sum_{i=1}^n K_h(\|X_i - x\|) \mathbf{1}_{\{Y_i \le y\}}}{\sum_{i=1}^n K_h(\|X_i - x\|)}$$

Integrated risk

$$\mathcal{R}(\widehat{F}_h, F) := \mathbb{E}\left[\int_B \left(\int_D \left(\widehat{F}_h^x(y) - F^x(y)\right)^2 dy\right) d\mathbb{P}_X(x)\right] = \mathbb{E}\left[\|\widehat{F}_h^{X'} - F^{X'}\|_D^2 \mathbf{1}_B(X')\right]$$

with

- X' is a copy of X, independent of the data-sample.
- D is a compact subset of \mathbb{R} ;
- B is a bounded subset of \mathbb{H} .

Assumptions to control the risk

- Assumptions on the kernel
 - $supp(K) \subset [0;1]$
 - $0 < c_K \le K(t) \le C_K < +\infty, t \in [0; 1]$
- Assumption on the target function *F*:

$$\exists \beta \in (0;1), \ \exists C_D > 0, \ \forall x, x' \in \mathbb{H}, \ \|F^x - F^{x'}\|_D \le C_D \|x - x'\|^{\beta}$$

- \longrightarrow F belongs to a Hölder space with smoothness index β .
- Assumption on the process *X*:
 - through the small ball probabilities

$$\varphi(h) := \mathbb{P}(\|X\| \le h) \text{ and } \varphi^{x_0}(h) := \mathbb{P}(\|X - x_0\| \le h), \ \ x_0 \in \mathbb{H}.$$

• $\exists c_{\varphi}, C_{\varphi} > 0$, such that

$$\forall h > 0, \ \forall x_0 \in B, \ c_{\varphi}\varphi(h) \leq \varphi^{x_0}(h) \leq C_{\varphi}\varphi(h).$$

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

$$\mathcal{R}(\widehat{F}_h, F) \leq C \left(h^{2\beta} + \frac{1}{n\varphi(h)} \right),$$

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

$$\mathcal{R}(\widehat{F}_h, F) \leq C\left(h^{2\beta} + \frac{1}{n\varphi(h)}\right),$$

Unknown oracle choice

$$h^* = \arg\min_{h \in \mathcal{H}_n} \mathcal{R}(\widehat{F}_h, F)$$

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

$$\mathcal{R}(\widehat{F}_h, F) \leq C\left(h^{2\beta} + \frac{1}{n\varphi(h)}\right),$$

Unknown oracle choice

$$h^* = \arg\min_{h \in \mathcal{H}_n} \underbrace{\mathcal{R}(\widehat{F}_h, F)}_{\leq C\left(h^{2\beta} + \frac{1}{n\varphi(h)}\right)}$$

Proposition

Under the previous assumptions, there exists C > 0, such that, for any h > 0,

$$\mathcal{R}(\widehat{F}_h, F) \leq C\left(h^{2\beta} + \frac{1}{n\varphi(h)}\right),$$

Unknown oracle choice

$$h^* = \arg\min_{h \in \mathcal{H}_n} \underbrace{\mathcal{R}(\widehat{F}_h, F)}_{\leq C \left(h^{2\beta} + \frac{1}{n\varphi(h)}\right)}$$

Question: How to choose h without the knowledge of β and $\varphi(h)$?

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

$$\mathcal{R}\left(\widehat{F}_h, F\right) = \mathbb{E}\left[\|F^{X'} - \mathbb{E}\left[\widehat{F}_h^{X'}|X'\right]\|_D^2 \mathbf{1}_B(X')\right] + \mathbb{E}\left[\|\mathbb{E}\left[\widehat{F}_h^{X'}|X'\right] - \widehat{F}_h^{X'}\|_D^2 \mathbf{1}_B(X')\right].$$

• Variance term of order $\frac{1}{n\varphi(h)} \to \text{can be estimated}$:

$$\widehat{V}(h) = \kappa \frac{\ln n}{n\widehat{\varphi}(h)} \text{ where } \widehat{\varphi}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\|X\| \le h\}}.$$

How to approximate the bias term '

$$\widehat{A}(h) = \max_{h' \in \mathcal{H}_n} \left(\|\widehat{F}_{h'}^{X'} - \widehat{F}_{h' \vee h}^{X'}\|_D^2 - \widehat{V}(h') \right)$$

Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

$$\mathcal{R}\left(\widehat{F}_h, F\right) = \mathbb{E}\left[\|F^{X'} - \mathbb{E}\left[\widehat{F}_h^{X'}|X'\right]\|_D^2 \mathbf{1}_B(X')\right] + \mathbb{E}\left[\|\mathbb{E}\left[\widehat{F}_h^{X'}|X'\right] - \widehat{F}_h^{X'}\|_D^2 \mathbf{1}_B(X')\right].$$

• Variance term of order $\frac{1}{n\varphi(h)} \to \text{can be estimated}$:

$$\widehat{V}(h) = \kappa \frac{\ln n}{n\widehat{\varphi}(h)} \text{ where } \widehat{\varphi}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\|X\| \le h\}}.$$

How to approximate the bias term '

$$\widehat{A}(h) = \max_{h' \in \mathcal{H}_n} \left(\|\widehat{F}_{h'}^{X'} - \widehat{F}_{h' \vee h}^{X'}\|_D^2 - \widehat{V}(h') \right) - 1$$

Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

$$\mathcal{R}\left(\widehat{F}_h, F\right) = \mathbb{E}\left[\|F^{X'} - \mathbb{E}\left[\widehat{F}_h^{X'}|X'\right]\|_D^2 \mathbf{1}_B(X')\right] + \mathbb{E}\left[\|\mathbb{E}\left[\widehat{F}_h^{X'}|X'\right] - \widehat{F}_h^{X'}\|_D^2 \mathbf{1}_B(X')\right].$$

• Variance term of order $\frac{1}{n\varphi(h)}$ \rightarrow can be estimated:

$$\widehat{V}(h) = \kappa \frac{\ln n}{n\widehat{\varphi}(h)} \text{ where } \widehat{\varphi}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\|X\| \le h\}}.$$

How to approximate the bias term?

$$\widehat{A}(h) = \max_{h' \in \mathcal{H}_n} \left(\|\widehat{F}_{h'}^{X'} - \widehat{F}_{h' \vee h}^{X'}\|_D^2 - \widehat{V}(h') \right) +$$

Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

$$\mathcal{R}\left(\widehat{F}_h,F\right) = \mathbb{E}\left[\|F^{X'} - \mathbb{E}\left[\widehat{F}_h^{X'}|X'\right]\|_D^2 \mathbf{1}_B(X')\right] + \mathbb{E}\left[\|\mathbb{E}\left[\widehat{F}_h^{X'}|X'\right] - \widehat{F}_h^{X'}\|_D^2 \mathbf{1}_B(X')\right].$$

• Variance term of order $\frac{1}{n\varphi(h)}$ \rightarrow can be estimated:

$$\widehat{V}(h) = \kappa \frac{\ln n}{n\widehat{\varphi}(h)} \text{ where } \widehat{\varphi}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\|X\| \le h\}}.$$

• How to approximate the bias term?

$$\widehat{A}(h) = \max_{h' \in \mathcal{H}_n} \left(\|\widehat{F}_{h'}^{X'} - \widehat{F}_{h' \lor h}^{X'}\|_D^2 - \widehat{V}(h') \right) +$$

Inspired from the work of Goldenshluger and Lepski (2011)

Bias-variance decomposition of the risk

$$\mathcal{R}\left(\widehat{F}_h, F\right) = \mathbb{E}\left[\|F^{X'} - \mathbb{E}\left[\widehat{F}_h^{X'}|X'\right]\|_D^2 \mathbf{1}_B(X')\right] + \mathbb{E}\left[\|\mathbb{E}\left[\widehat{F}_h^{X'}|X'\right] - \widehat{F}_h^{X'}\|_D^2 \mathbf{1}_B(X')\right].$$

• Variance term of order $\frac{1}{n\varphi(h)} \to \text{can be estimated}$:

$$\widehat{V}(h) = \kappa \frac{\ln n}{n\widehat{\varphi}(h)} \text{ where } \widehat{\varphi}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\{\|X\| \le h\}}.$$

• How to approximate the bias term?

$$\widehat{A}(h) = \max_{h' \in \mathcal{H}_n} \left(\|\widehat{F}_{h'}^{X'} - \widehat{F}_{h' \lor h}^{X'}\|_D^2 - \widehat{V}(h') \right) +$$

Main result: nonasymptotic adaptive risk bound

Theorem

Under the previous assumptions, and if the collection \mathcal{H}_n is not too large, there exist 2 constants c, C > 0 such that

$$\mathcal{R}(\widehat{F}_{\hat{h}}, F) \leq c \min_{h \in \mathcal{H}_n} \left\{ h^{2\beta} + \frac{\ln(n)}{n\varphi(h)} \right\} + \frac{C}{n}.$$

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Additional assumption on the small ball probability

$$\varphi(h) = \mathbb{P}(||X|| \le h), h > 0.$$

3 possible assumptions on the decay of the s.b.p.

Fast decay

$$\varphi(h) \asymp h^{\gamma} \exp\left(-ch^{-\alpha}\right), \ \ \gamma \in \mathbb{R}, \alpha > 0.$$

Ex: if X is a brownian motion, assumption satisfied with $\alpha = 2$.

Intermediate decay

$$\varphi(h) \simeq h^{\gamma} \exp\left(-c \ln^{-\alpha}(1/h)\right), \quad \gamma \in \mathbb{R}, \alpha > 1.$$

Low decay

$$\varphi(h) \simeq h^{\gamma}, \ \gamma > 0.$$

Ex: if $X \in \mathbb{R}^d$ (random vector), assumption satisfied with $\gamma = d$.

Rates of convergence

	Fast decay for $\varphi(h)$ (slow rates)	Intermediate decay for $\varphi(h)$ (intermediate)	Low decay for $\varphi(h)$ (fast rates)
(a) $\mathcal{R}(\widehat{F}_{\hat{h}}, F) \lesssim \cdots$ (adaptive rate)	$(\ln(n))^{-2\beta/\alpha}$	$\exp\left(-\frac{2\beta}{c_2^{1/\alpha}}\ln^{1/\alpha}(n)\right)$	$\left(\frac{n}{\ln(n)}\right)^{-\frac{2\beta}{2\beta+\gamma}}$

Rates of convergence

		Fast decay for $\varphi(h)$ (slow rates)	Intermediate decay $\varphi(h)$ (intermediate)	Low decay $\varphi(h)$ (fast rates)
(a)	$\mathcal{R}(\widehat{F}_{\hat{h}}, F) \lesssim \cdots$ (adaptive rate)	$(\ln(n))^{-2\beta/\alpha}$	$\exp\left(-\frac{\frac{2\beta}{c_2^{1/\alpha}}\ln^{1/\alpha}(n)\right)$	$\left(\frac{n}{\ln(n)}\right)^{-\frac{2\beta}{2\beta+\gamma}}$
(b)	Minimax rate $\inf_{\widetilde{F}} \sup_{F,X} \mathcal{R}(\widetilde{F},F) \gtrsim \cdots$ (lower bound)	$(\ln(n))^{-2\beta/\alpha}$	$\exp\left(-\frac{2\beta}{c_2^{1/\alpha}}\ln^{1/\alpha}(n)\right)$	$n^{-\frac{2\beta}{2\beta+\gamma}}$

[→] similar rates to the ones obtained by Mas (2012) for regression estimation.

 $[\]longrightarrow$ the estimator is then optimal in the minimax sense, up to the extra ln(n) factor.

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Implementation

- Choice of K: uniform kernel $K = \mathbf{1}_{[0,1]}$.
- Choice of \mathcal{H}_n : $\mathcal{H}_n = \{C/k, 1 < k < k_{\text{max}}\}.$
- Simulation of X:
 - $(W(t))_t$ a brownian motion,

• $(\xi_i)_{i>0}$ *i.i.d.* $\mathcal{N}(0,1)$.

Intermediate decay for $\varphi(h)$

$$X(t) = \xi_0 + \sqrt{2} \sum_{j=1}^{150} \xi_j \frac{e^{-j}}{\sqrt{j}} \sin(\pi(j-0.5)t)$$

$$X(t) = \xi_0 + \sqrt{2}\xi_1 \sin(\pi(j-0.5)t) + \xi_2 \sin(3\pi t/2)/\sqrt{2}$$

Low decay for $\varphi(h)$

$$X(t) = \xi_0 + \sqrt{2}\xi_1 \sin(\pi t/2)$$

+\xi_2 \sin(3\pi t/2)/\sqrt{2}

Estimators

Conditional c.d.f estimation in a regression model

Observations: $(X_i, Y_i)_{i \in \{1,...,500\}}$ such that $Y_i = \left(\int_0^1 \beta(t) X_i(t) dt\right)^2 + \varepsilon_i$ with $\beta(t) = \sin(4\pi t)$ and $\varepsilon_i \sim \mathcal{N}(0, 0.1)$.

Estimators

Conditional c.d.f estimation in a Gaussian mixture model

Observations:
$$(X_i, Y_i)_{i \in \{1, ..., 500\}}$$
 such that $Y_i | X_i = x \sim 0.5 \mathcal{N}(8 - 4||x||, 1) + 0.5 \mathcal{N}(8 + 4||x||, 1)$,

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Response surface methodology

Brief history

- Box and Wilson (1950): optimal conditions for chemical experimentation → widely used in industry.
- Sacks et. al (1989): Extension to numerical experiments
 - → Bates et. al (1996): conception of electrical circuit;
 - → Lee and Hajela (1996): conception of rotor blades...
- Recent advances: Facer and Müller (2003), Khuri and Mukhopadhyay (2010), Georgiou, Stylianou and Aggarwal (2014).

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. **Information available:**

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example

- $m(x_1, x_2) = x_1^2 + x_2^2$;
- $\varepsilon \sim \mathcal{N}(0, 1)$.

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, **unknown**. Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, **unknown**. Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

Legend:

Initial point

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. Information available:

$$y_i = m(x_{1,i},\ldots,x_{d,i}) + \varepsilon_i, i = 1,\ldots,n,$$

 $(x_{1,i},\ldots,x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; Initial point Minimal point (target)

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i},\ldots,x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

- Initial point Minimal point (target)
 - Factorial design points

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. Information available:

$$v_i \equiv m(x_1, \dots, x_{d,i}) + \varepsilon_i, i \equiv 1, \dots, n.$$

 $(x_{1,i},\ldots,x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Least-squares fit of a first order model:

$$y = \beta_1 x_1 + \beta_2 x_2 + \varepsilon'.$$

Direction of steepest descent estimated:

$$(-\widehat{\beta}_1,-\widehat{\beta}_2).$$

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

Legend:

- Initial point
- Initial point Minimal point (target)
 - Factorial design points

direction of descent

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown.

Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

Legend:

- Initial point
- Minimal point (target)
 - Factorial design points

Descent steps

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, **unknown**.

Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

Legend:

- Initial point
- Minimal point (target)
 - Factorial design points

Descent steps

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$;
- $\varepsilon \sim \mathcal{N}(0,1)$.

- Minimal point of the descent direction
- Minimal point (target)

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown.

Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i}, \dots, x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; Minimal point of the dominimal point (target) $\varepsilon \sim \mathcal{N}(0, 1)$.

- Minimal point of the descent direction

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown.

Information available:

$$y_i = m(x_{1,i},\ldots,x_{d,i}) + \varepsilon_i, i = 1,\ldots,n,$$

 $(x_{1,i},\ldots,x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Least-squares fit of a second-order model:

$$y = \beta_1 x_1 + \beta_2 x_2 + (x_1, x_2) B(x_1, x_2)^t + \varepsilon''$$

Stationary point:

$$(x_1^*, x_2^*) = \frac{1}{2}\widehat{B}^{-1}(\widehat{\beta}_1, \widehat{\beta}_2)^t$$

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2;$ $\varepsilon \sim \mathcal{N}(0, 1).$

- Minimal point of the descent direction
 - Minimal point (target)
- Factorial design points
- CCD axial points
- Stationary point (estimated minimal point)

Goal: minimisation of $(x_1, \ldots, x_n) \mapsto m(x_1, \ldots, x_d)$, unknown. Information available:

$$y_i = m(x_{1,i}, \dots, x_{d,i}) + \varepsilon_i, i = 1, \dots, n,$$

 $(x_{1,i},\ldots,x_{d,i})_{i=1}^n$ chosen by the user and n as small as possible.

Example:

- $m(x_1, x_2) = x_1^2 + x_2^2$; $\varepsilon \sim \mathcal{N}(0, 1)$.

- Step points
- Minimal point (target)

Outline

- Prediction in the functional linear mode
 - Estimation procedure
 - Theoretical results
 - Simulation results
- Adaptive estimation of the conditional c.d.f
 - Bias-variance decomposition of the risk
 - Bandwidth selection device
 - Optimal estimation in the minimax sense
 - Simulation study
- 3 Response surface methodology for functional data
 - Response surface methodology
 - Extension to the functional setting

Problems raised by the functional context

- First and second-order models can be defined easily but
 - ... How to define functional design of experiments?
- finite-dimensional design of experiments

• One possible answer: combine dimension reduction with classical

- $(\mathbf{x}_0^{(i)} = (x_{0,1}^{(i)}, \dots, x_{0,d}^{(i)}) \in \mathbb{R}^d, i = 1, \dots, n_0)$ d-dimensional design of experiments;
- ullet $\{arphi_1,\ldots,arphi_d\}$ orthonormal family of $\mathbb H$

$$x_o^{(i)} = x_0 + \sum_{j=1}^d x_{0,j}^{(i)} \varphi_j,$$

- functional design of experiments
- ... How can we define the directions $\{\varphi_1, \ldots, \varphi_d\}$?
- Possible basis of approximation
 - Fixed basis: Fourier, *B*-splines, wavelets,...
 - If a training sample exists: data driven basis
 - PCA basis;
 - PLS basis Wold (1975), Preda and Saporta (2005), Delaigle and Hall (2012): allows to take into account the interaction between x and y.

Problems raised by the functional context

- First and second-order models can be defined easily but
 ... How to define functional design of experiments?
- One possible answer: combine dimension reduction with classical finite-dimensional design of experiments
 - $(\mathbf{x}_0^{(i)} = (x_{0,1}^{(i)}, \dots, x_{0,d}^{(i)}) \in \mathbb{R}^d, i = 1, \dots, n_0)$ d-dimensional design of experiments;
 - $\{\varphi_1, \ldots, \varphi_d\}$ orthonormal family of \mathbb{H}

$$x_o^{(i)} = x_0 + \sum_{j=1}^d x_{0,j}^{(i)} \varphi_j,$$

- functional design of experiments.
- ... How can we define the directions $\{\varphi_1, \ldots, \varphi_d\}$?
- Possible basis of approximation
 - Fixed basis: Fourier, B-splines, wavelets,...
 - If a training sample exists: data driven basis
 - PCA basis;
 - PLS basis Wold (1975), Preda and Saporta (2005), Delaigle and Hall (2012): allows to take into account the interaction between x and y.

Problems raised by the functional context

- First and second-order models can be defined easily but ... How to define functional design of experiments?
- One possible answer: combine dimension reduction with classical finite-dimensional design of experiments
 - $(\mathbf{x}_0^{(i)} = (x_{0,1}^{(i)}, \dots, x_{0,d}^{(i)}) \in \mathbb{R}^d, i = 1, \dots, n_0)$ d-dimensional design of experiments;
 - $\{\varphi_1, \ldots, \varphi_d\}$ orthonormal family of \mathbb{H}

$$x_o^{(i)} = x_0 + \sum_{j=1}^d x_{0,j}^{(i)} \varphi_j,$$

- functional design of experiments.
- ... How can we define the directions $\{\varphi_1, \ldots, \varphi_d\}$?
- Possible basis of approximation
 - Fixed basis: Fourier, B-splines, wavelets,...
 - If a training sample exists: data driven basis
 - PCA basis;
 - PLS basis Wold (1975), Preda and Saporta (2005), Delaigle and Hall (2012): allows to take into account the interaction between *x* and *y*.

Example of functional design of experiments

Factorial 2^d design in $\mathbb{H} = \mathbb{L}^2([0,1])$

Fourier
$$d=2$$
, 16 curves $d=4$, 32 curves $d=8$, 280 curves

$$d=8, 280 \text{ curves}$$

X brownian motion, $Y = ||X - f||^2 + \varepsilon$, $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10$, $\varepsilon \sim \mathcal{N}(0, 0.01)$

¹calculated from $(X_i)_{i=1}^{500}$ ²calculated from $(X_i, Y_i)_{i=1}^{500}$

Example of functional design of experiments

Central Composite Designs in $\mathbb{H} = \mathbb{L}^2([0,1])$

Fourier
$$d=2,4$$
 curves $d=4,16$ curves $d=8,256$ curves

$$PCA^3$$

$$PLS^4$$

X brownian motion, $Y = ||X - f||^2 + \varepsilon$, $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10$, $\varepsilon \sim \mathcal{N}(0, 0.01)$

³calculated from $(X_i)_{i=1}^{500}$ ⁴calculated from $(X_i, Y_i)_{i=1}^{500}$

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

Legend:

Initial point

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Initial point
- Minimal point f(t) (target)

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Initial point
- Minimal point f(t) (target)
 - 2⁸ factorial design⁵

⁵directions: PLS basis calculated from $(X_i, m(X_i) + \varepsilon_i)_{i=1}^{500} (X_i \text{ brownian motion})$

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Least-squares fit of a first order model → estimation of direction of steepest descent

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Initial point
- Minimal point f(t) (target)

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Observed response on descent path:

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Initial point
- Minimal point f(t) (target)
- Points of the descent direction

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Observed response on descent path:

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Minimal point of the descent direction
- Minimal point f(t) (target)
- Points of the descent direction

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Minimal point of the descent direction
- Minimal point f(t) (target)

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Minimal point of the descent direction
- Minimal point f(t) (target)
- Central Composite Design⁵

⁵directions: PLS basis calculated from $(X_i, m(X_i) + \varepsilon_i)_{i=1}^{500} (X_i \text{ brownian motion}, d = 8)$

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Least-squares fit of a second order model → estimation of stationary point

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Minimal point of the descent direction
- Minimal point f(t) (target)
- Central Composite Design⁵

⁵directions: PLS basis calculated from $(X_i, m(X_i) + \varepsilon_i)_{i=1}^{500} (X_i \text{ brownian motion}, d = 8)$

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
- $\varepsilon \sim \mathcal{N}(0, 10)$.

- Minimal point of the descent direction
- Minimal point f(t) (target)
- Stationary point (estimation of the minimal point)

Adaptation to a functional context

Goal: minimisation of $x \mapsto m(x)$, **unknown**.

Example:

- $m(x) = ||x f||^2$ with
- $f(t) = \cos(4\pi t) + 3\sin(\pi t) + 10;$
 - $\varepsilon \sim \mathcal{N}(0, 10)$.

- Step points
- Minimal point f(t) (target)

Model selection for functional principal component regression

- ightarrow faster and more stable than usual cross-validation
- ... with non-asymptotic control of the prediction error
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates.
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

- Model selection for functional principal component regression
 - \rightarrow faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

- Model selection for functional principal component regression
 - → faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

- Model selection for functional principal component regression
 - \rightarrow faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - → precise lower bounds and convergence rates.
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

- Model selection for functional principal component regression
 - → faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

- Model selection for functional principal component regression
 - → faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates.
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - → definition of functional design of experiments

Model selection for functional principal component regression

- → faster and more stable than usual cross-validation
- ... with non-asymptotic control of the prediction error.

Bandwidth selection for kernel estimation

- \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
- \rightarrow precise lower bounds and convergence rates.
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - \rightarrow definition of functional design of experiments

- Model selection for functional principal component regression
 - → faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates.
- → both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - \rightarrow definition of functional design of experiments

- Model selection for functional principal component regression
 - → faster and more stable than usual cross-validation
 - ... with non-asymptotic control of the prediction error.
- Bandwidth selection for kernel estimation
 - \rightarrow first adaptive estimation procedure in *nonparametric* estimation for functional data
 - \rightarrow precise lower bounds and convergence rates.
- both estimation procedures leads to minimax optimal estimators.
 - First attempt to adapt Response Surface Methodology to functional data.
 - \rightarrow definition of functional design of experiments.

Perspectives

- **Response surface methodology:** minimisation of the probability of failure of a nuclear reactor vessel (CEA Cadarache);
- Functional single-index model: $Y = g(\langle \beta, X \rangle) + \varepsilon$. Is it possible to define a projection based estimator which is adaptive?
- Kernel estimators in high/infinite dimension (with Gaëlle Chagny):
 - How to choose relevant metrics for kernels?
 - Theoretical study of resulting estimators.
- Functional linear model: Adaptive parameter selection for the roughness regularization method.

$$\widehat{\beta}_{\rho} \in \operatorname{arg\,min}_{f \in S} \left\{ \frac{1}{n} \sum_{i=1}^{n} (Y_i - \langle f, X_i \rangle)^2 + \rho \|f\|_S^2 \right\},\,$$

with ρ a smoothing parameter, $S \subset \mathbb{H}$ and $\|\cdot\|_S$ a seminorm on S.

Thank you for your attention!

- Penalized contrast estimation in functional linear models with circular data.
 É. Brunel and A. Roche, accepted for publication in Statistics.
- Non-asymptotic Adaptive Prediction in Functional Linear Models.
 É. Brunel, A. Mas and A. Roche, submitted.
- Adaptive and minimax estimation of the cumulative distribution function given a functional covariate.
 - G. Chagny and A. Roche, in revision.
- Response surface methodology for functional data: application to nuclear safety Work in progress.
- Adaptive estimation in functional generalized linear models Work in progress.