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Université Paris Dauphine and CREST-ENSAE
E-mail: rousseau@ceremade.dauphine.fr

In this paper, we study the asymptotic posterior distribution of
linear functionals of the density. In particular, we give general condi-
tions to obtain a semi-parametric version of the Bernstein-von Mises
theorem. We then apply this general result to non-parametric priors
based on infinite dimensional exponential families. As a byproduct,
we also derive adaptive non-parametric rates of concentration of the
posterior distributions under these families of priors on the class of
Sobolev and Besov spaces.

1. Introduction. The Bernstein-von Mises property, in Bayesian anal-
ysis, concerns the asymptotic form of the posterior distribution of a quantity
of interest, and more specifically it corresponds to the asymptotic normality
of the posterior distribution centered at some kind of maximum likelihood es-
timator with the variance being equal to the asymptotic frequentist variance
of the centering point. Such results are well know in parametric frameworks,
see for instance [16] where general conditions are given. This is an impor-
tant property for both practical and theoretical reasons. In particular the
asymptotic normality of the posterior distributions allows us to construct
approximate credible regions and the duality between the behavior of the
posterior distribution and the frequentist distribution of the asymptotic cen-
tering point of the posterior implies that credible regions will have also good
frequentist properties. These results are given in many Bayesian textbooks
see for instance [19] or [1].

In a frequentist perspective the Bernstein-von Mises property enables the
construction of confidence regions since under this property a Bayesian credi-
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2 V. RIVOIRARD AND J. ROUSSEAU.

ble region will be asymptotically a frequentist confidence region as well. This
is even more important in complex models, since in such models the con-
struction of confidence regions can be difficult whereas the Markov Chain
Monte Carlo algorithms usually make the construction of a Bayesian cred-
ible region feasible. However the more complex the model the harder it is
to derive Bernstein-von Mises theorems. In infinite dimensional setups, the
mechanisms are even more complex.

Semi-parametric and non-parametric models are widely popular both
from a theoretical and practical perspective and have been used by frequen-
tists as well as Bayesians although their theoretical asymptotic properties
have been mainly studied in the frequentist literature. The use of Bayesian
non-parametric or semi-parametric approaches is more recent and has been
made possible mainly by the development of algorithms such as Markov
Chain Monte-Carlo algorithms but has grown rapidly over the past decade.

However, there is still little work on asymptotic properties of Bayesian
procedures in semi-parametric models or even in non-parametric models.
Most of existing works on the asymptotic posterior distributions deal with
consistency or rates of concentration of the posterior. In other words it con-
sists in controlling objects of the form Pπ [Un|Xn] where Pπ[.|Xn] denotes
the posterior distribution given a n vector of observations Xn and Un de-
notes either a fixed neighborhood (consistency) or a sequence of shrinking
neighborhoods (rates of concentration). As remarked by [6] consistency is
an important condition since it is not possible to construct subjective prior
in a non-parametric framework. Obtaining concentration rates of the pos-
terior helps to understand the impact of the choice of a specific prior and
allows for a comparison between priors to some extent. However, to obtain
a Bernstein-von Mises theorem it is necessary not only to bound Pπ [Un|Xn]
but to determine an equivalent of Pπ [Un|Xn] for some specific types of sets
Un. This difficulty explains that there is up to now hardly any work on
Bernstein-von Mises theorems in infinite dimensional models. The most well
known results are negative results and are given in [7]. Some positive results
are provided by [8] on the asymptotic normality of the posterior distribu-
tion of the parameter in an exponential family with increasing number of
parameters. In a discrete setting, [2] derive Bernstein-von Mises results, in
particular satisfied by Dirichlet priors. Nice positive results are obtained in
[14] and [15], however they rely heavily on a conjugacy property and on the
fact that their priors put mass one on discrete probabilities which makes the
comparison with the empirical distribution more tractable.

In a semi-parametric framework, where the parameter can be separated
into a finite dimensional parameter of interest and infinite dimensional nui-
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 3

sance parameter, [3] obtains interesting conditions leading to a Bernstein-
von Mises theorem on the parameter of interest, clarifying an earlier work
of [20].

In this paper we are interested in studying the existence of a Bernstein-von
Mises property in semi-parametric models where the parameter of interest is
a functional of the density of the observations. The estimation of functionals
of infinite dimensional parameters such as the cumulative distribution func-
tion at a specific point, is a widely studied problem both in the frequentist
literature and in the Bayesian literature. There is a vast literature on the
rates of convergence and on the asymptotic distribution of frequentist esti-
mates of functionals of unknown curves and of finite dimensional functionals
of curves in particular, see for instance [23] for an excellent presentation of
a general theory on such problems.

One of the most common functionals considered in the literature is the
cumulative distribution function calculated at a given point, say F (x0). The
empirical cumulative distribution function is a natural frequentist estimator
and its asymptotic distribution is Gaussian with mean F (x0) and variance
F (x0)(1− F (x0))/n.

The Bayesian counterpart of this estimator is the one derived from a
Dirichlet process prior and it is well known to be asymptotically equiva-
lent to Fn(x0), see for instance [11].This result is obtained by using the
conjugate nature of the Dirichlet prior, leading to an explicit posterior dis-
tribution. Other frequentist estimators, based on density estimates such as
kernel estimators have also been studied in the frequentist literature. Hence
a natural question arises. Can we generalize the Bernstein-von Mises theo-
rem of the Dirichlet estimator to other Bayesian estimators? What happens
if the prior has support on distributions absolutely continuous with respect
to the Lebesgue measure?

In this paper we provide an answer to these questions by establishing
conditions under which a Bernstein-von Mises theorem can be obtained for
linear functional of the density of f such as F (x0).We also study cases where
the asymptotic posterior distribution of the functional is not asymptotically
Gaussian but is asymptotically a mixture of Gaussian distributions with
different centering points.

1.1. Notation and aim. In this paper, we assume that, given a distribu-
tion P with a compactly supported density f with respect to the Lebesgue
measure, X1, ..., Xn are independent and identically distributed according
to P. We set Xn = (X1, ..., Xn) and denote F the cumulative distribution
function associated with f . Without loss of generality we assume that for
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4 V. RIVOIRARD AND J. ROUSSEAU.

any i, Xi ∈ [0, 1] and we set

F =
{
f : [0, 1]→ R+ s.t.

∫ 1

0
f(x)dx = 1

}
.

We denote `n(f) the log-likelihood associated with the density f and if f
is parametrized by a finite dimensional parameter θ, we set `n(θ) = `n(fθ).
For any integrable function g, we set F (g) =

∫ 1
0 f(u)g(u)du. We denote by

< ., . >f the inner product and by ||.||f the associated norm in

L2(F ) =
{
g s.t.

∫
g2(x)f(x)dx < +∞

}
.

We also consider the classical inner product in L2[0, 1], denoted < ., . >2, and
||.||2, the associated norm. The Kullback-Leibler divergence and the Hellinger
distance between two densities f and f ′ will be respectively denoted K(f, f ′)
and h(f, f ′). We recall that

K(f, f ′) = F
(
log(f/f ′)

)
, h(f, f ′) =

[∫ (√
f(x)−

√
f ′(x)

)2

dx

]1/2

.

In the sequel, we shall also use

V (f, f ′) = F
(
(log(f/f ′))2

)
.

Let P0 be the true distribution of the observations Xi whose density and
cumulative distribution function are respectively denoted f0 and F0. We
consider usual notation on empirical processes, namely

Pn(g) =
1
n

n∑
i=1

g(Xi), Gn(g) =
1√
n

n∑
i=1

[g(Xi)− F0(g)]

and Fn is the empirical distribution function. Now, we simply denote < ., . >
and ||.|| instead of < ., . >f0 and ||.||f0 respectively.

For any given ψ ∈ L∞[0, 1], we consider Ψ the functional on M, the set
of finite measures on [0, 1], defined by

(1.1) Ψ(µ) =
∫
ψdµ, µ ∈M.

In particular, we have

Ψ(Pn) = Pn(ψ) =
∑n
i=1 ψ(Xi)
n

.
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 5

Most of the time, to simplify notation when µ is absolutely continuous with
respect to the Lebesgue measure with g = dµ

dx , we use Ψ(g) instead of Ψ(µ).
A typical example of such functionals is given by

Ψx0(f) = F (x0) =
∫

1lx≤x0f(x)dx, x0 ∈ R.

Now, we consider a prior π on the set F . The aim of this paper is to study
the posterior distribution of Ψ(f) and to derive conditions under which

Pπ
[√
n(Ψ(f)−Ψ(Pn)) ≤ z|Xn]→ ΦV0(z) in P0-probability,(1.2)

where V0 is the variance of
√
nΨ(Pn) under P0 and ΦV0(z) is the cumulative

distribution function of a centered Gaussian random variable with variance
V0. Note that under this duality between the Bayesian and the frequentist
behaviors, highest posterior credible regions for Ψ(f) (such as equal tail or
one-sided intervals) have also the correct asymptotic frequentist coverage.

In this paper we propose general conditions leading to (1.2) and we study
in detail the special case of infinite dimensional exponential families as de-
scribed in the following section.

1.2. Infinite dimensional exponential families based on Fourier and wavelet
expansions. Fourier and wavelet bases are the dictionaries from which we
build exponential families in the sequel. We recall that Fourier bases con-
stitute unconditional bases of periodized Sobolev spaces W γ where γ is the
smoothness parameter. Wavelet expansions of any periodized function h take
the following form:

h(x) = θ−101l[0,1](x) +
+∞∑
j=0

2j−1∑
k=0

θjkϕjk(x), x ∈ [0, 1]

where θ−10 =
∫ 1

0 h(x)dx and θjk =
∫ 1

0 h(x)ϕjk(x)dx. We recall that the func-
tions ϕjk are obtained by periodizing dilations and translations of a mother
wavelet ϕ that can be assumed to be compactly supported. Under stan-
dard properties of ϕ involving its regularity and its vanishing moments (see
Lemma 4.1), wavelet bases constitute unconditional bases of Besov spaces
Bγp,q for 1 ≤ p, q ≤ +∞ and γ > max

(
0, 1

p −
1
2

)
. We refer the reader to

[12] for a good review of wavelets and Besov spaces. We just mention that
the scale of Besov spaces includes Sobolev spaces: W γ = Bγ2,2. In the se-
quel, to shorten notation, the considered orthonormal basis will be denoted
Φ = (φλ)λ∈N, where φ0 = 1l[0,1] and
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6 V. RIVOIRARD AND J. ROUSSEAU.

- for the Fourier basis, if λ ≥ 1,

φ2λ−1(x) =
√

2 sin(2πλx), φ2λ(x) =
√

2 cos(2πλx),

- for the wavelet basis, if λ = 2j +k, with j ∈ N and k ∈ {0, . . . , 2j−1},

φλ = ϕjk.

Now, the decomposition of each periodized function h ∈ L2[0, 1] on (φλ)λ∈N
is written as follows:

h(x) =
∑
λ∈N

θλφλ(x), x ∈ [0, 1],

where θλ =
∫ 1

0 h(x)φλ(x)dx. We denote ||.||γ and ||.||γ,p,q the norms associated
with W γ and Bγp,q respectively.

We use such expansions to build non-parametric priors on F in the fol-
lowing way: For any k ∈ N∗, we set

Fk =

{
fθ = exp

(
k∑

λ=1

θλφλ − c(θ)
)

s.t. θ ∈ Rk

}
,

where

c(θ) = log

(∫ 1

0
exp

(
k∑

λ=1

θλφλ(x)

)
dx

)
.(1.3)

So, we define a prior π on the set F∞ = ∪kFk ⊂ F by defining a prior p
on N∗ and then, once k is chosen, we fix a prior πk on Fk. Such priors are
often considered in the Bayesian non-parametric literature. See for instance
[21]. The special case of log-spline priors has been studied by [9] and [13],
whereas the prior considered by [24] is based on Legendre polynomials. For
the wavelet case, [13] considered the special case of the Haar basis.

We now specify the class of priors π on these models.

Definition 1.1. Given β > 1/2, the prior p on k satisfies one of the
following conditions:

[Case (PH)] There exist two positive constants c1 and c2 such that for
any k ∈ N∗,

(1.4) exp (−c1kL(k)) ≤ p(k) ≤ exp (−c2kL(k)) ,
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 7

where L is the function that can be either L(x) = 1 or L(x) = log(x).

[Case (D)] If k∗n = n1/(2β+1),

p(k) = δk∗n(k),

where δk∗n denotes the Dirac mass at the point k∗n.

Conditionally on k the prior πk on Fk is defined by

θλ√
τλ

iid∼ g, τλ = τ0λ
−2β 1 ≤ λ ≤ k,

where τ0 is a positive constant and g is a continuous density on R such that
for any x,

A∗ exp (−c̃∗|x|p∗) ≤ g(x) ≤ B∗ exp (−c∗|x|p∗) ,

where p∗, A∗, B∗, c̃∗ and c∗ are positive constants.

Observe that the prior is not necessarily Gaussian since we allow for
densities g to have different tails. In the Dirac case (D), the prior on k is non
random. For the case (PH), L(x) = log(x) typically corresponds to a Poisson
prior on k and the case L(x) = 1 typically corresponds to hypergeometric
priors.

1.3. Organization of the paper. After emphasizing difficulties raised by
natural heuristics for proving Bernstein-von Mises theorems in non-parametric
setups (see Section 2.1), Theorem 2.1 of Section 2.2 gives the asymptotic
posterior distribution of Ψ(f) which can be either Gaussian or a mixture
of Gaussian distributions, when the prior is based on infinite dimensional
exponential families. Corollary 2.2 illustrates positive results with respect
to our purpose, but Proposition 2.1 shows that some bad phenomenons may
happen. Theorem 2.1 is derived from Theorem 2.2, a more general result
established in Section 2.3. These theorems depend on concentration rates
established in Theorem 3.1. Since our purpose is not to focus on such re-
sults, Theorem 3.1 is postponed in Section 3. Proofs of the results are given
in Section 4.

2. Bernstein-von Mises theorems.

2.1. Some heuristics for proving Bernstein-von Mises theorems. We first
introduce some notions that are useful in the study of asymptotic properties
of semi-parametric models. More details can be found, for instance, in [23].
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8 V. RIVOIRARD AND J. ROUSSEAU.

As in Chapter 25 of [23], the usual way to study the asymptotic behav-
ior of semi-parametric models is to consider local 1-dimensional differen-
tiable paths around the true parameter f0, namely submodels of the form:
u → f∗u,s for 0 < u < u0, for some u0 > 0 such that for each path there
exists a measurable function s called the score function for the submodel
{f∗u,s s.t. 0 < u < u0} at u = 0 satisfying

lim
u→0

∫
R

f∗u,s1/2(x)− f1/2
0 (x)

u
− 1

2
s(x)f1/2

0 (x)

2

dx = 0.(2.1)

We denote by Ff0 the tangent set, i.e. the collection of score functions s
associated with these differentiable paths. Using (2.1), Ff0 can be identified
with a subset of {s ∈ L2(F0) s.t. F0(s) = 0}. For instance, when consider-
ing all probability laws, the most usual collection of differentiable paths is
given by

(2.2) f∗u,s(x) = d(u)f0(x)eus(x)

with ||s||∞ < ∞ and d such that d(0) = 1 and d′(0) = 0. In this case,
s is the score function. Note that as explained in [23], the collection of
differentiable paths of the form f∗u,s(x) = 2d(u)f0(x)(1 + exp(−2us(x)))−1

(with previous conditions on d), leads to the tangent space given by {s ∈
L2(F0) s.t. F0(s) = 0}.

Consider a functional Ψ associated to a function ψ ∈ L∞[0, 1], as defined
in Section 1.1, then for any differentiable path u→ f∗u,s with score function s,

Ψ(f∗u,s)−Ψ(f0)
u

=
∫
ψ(x)s(x)f0(x)dx+

∫ (
f∗u,s

1/2(x)− f1/2
0 (x)

)2

u
ψ(x)dx

+2
∫
ψ(x)

f∗u,s1/2(x)− f1/2
0 (x)

u
− 1

2
s(x)f1/2

0 (x)

 f1/2
0 (x)dx

= < ψ, s > +o(1).

Then, we can define the efficient influence function ψ̃ belonging to lin(Ff0)
(the closure of the linear space generated by Ff0) that satisfies for any
s ∈ Ff0 , ∫

ψ̃(x)s(x)f0(x)dx =
∫
ψ(x)s(x)f0(x)dx.

This implies:

(2.3) lim
u→0

Ψ(f∗u,s)−Ψ(f0)
u

=< ψ̃, s > .
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BVM FOR LINEAR FUNCTIONALS OF THE DENSITY 9

The efficient influence function, which is a key notion to characterize asymp-
totically efficient estimators (see Section 25.3 of [23]), will play an important
role for our purpose. To shed lights on these notions, we consider the follow-
ing three examples:

Example 2.1. As in Section 1.1, for fixed x0 ∈ R, consider for any
density function f whose cdf is F ,

Ψx0(f) =
∫

1lx≤x0f(x)dx = F (x0)

so that in this case, if Ff0 is the subspace of L2(F0) of functions s satisfying
F0(s) = 0 then ψ̃(x) = 1lx≤x0 − F0(x0).

Example 2.2. More generally, for any measurable set A consider ψ(x) =
1lx∈A. For any density function f

ΨA(f) =
∫

1lx∈Af(x)dx

satisfies the above conditions and ψ̃(x) = 1lx∈A −
∫
A f0(x)dx.

Example 2.3. If f0 has bounded support, say on [0, 1], then the func-
tional

Ψ(f) = Ef [X1] =
∫ 1

0
xf(x)dx

satisfies the above conditions. Then, ψ(x) = x and ψ̃(x) = x− Ef0 [X1].

In this framework, the Bernstein-von Mises theorem could be derived from
the convergence of the following Laplace transform defined for any t ∈ R by

Ln(t) = E π[exp(t
√
n(Ψ(f)−Ψ(Pn)))|Xn]

=
∫

exp (t
√
n(Ψ(f)−Ψ(Pn)) + `n(f)− `n(f0)) dπ(f)∫

exp (`n(f)− `n(f0)) dπ(f)
.

Now, let us set f∗∗s,n = f∗u,s if u = n−
1
2 . We have:

√
n
(
Ψ(f∗∗s,n)−Ψ(Pn)

)
=
√
n

∫
ψ(x)(f∗∗s,n(x)− f0(x))dx−Gn(ψ̃)

= ∆n(s)+ < ψ̃, s > −Gn(ψ̃),

with
∆n(s) =

√
n
(
Ψ(f∗∗s,n)−Ψ(f0)

)
− < ψ̃, s > .
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10 V. RIVOIRARD AND J. ROUSSEAU.

Furthermore,

`n(f∗∗s,n)− `n(f0) = Rn(s) +Gn(s)− F0(s2)
2

,

with

Rn(s) = nPn

(
log

(
f∗∗s,n
f0

))
−Gn(s) +

F0(s2)
2

.

So,

t
√
n
(
Ψ(f∗∗s,n)−Ψ(Pn)

)
+ `n(f∗∗s,n)− `n(f0)

= Rn(s)− F0(s2)
2

+Gn(s− tψ̃) + t∆n(s) + t < ψ̃, s >

= Rn(s− tψ̃) +Gn(s− tψ̃)− F0((s− tψ̃)2)
2

+
t2F0(ψ̃2)

2
+ Un(s),

with
Un(s) = t∆n(s) +Rn(s)−Rn(s− tψ̃).

Lemma 25.14 of [23] shows that under (2.1), Rn(s) = o(1) and (2.3) yields
∆n(s) = o(1) for a fixed s. It is not enough however to derive a Bernstein-von
Mises theorem. Nonetheless if we can choose a prior distribution π adapted
to the previous framework to obtain uniformly Un = o(1) and

√
n
(
Ψ(f∗∗s,n)−Ψ(f)

)
+ `n(f∗∗s,n)− `n(f) = o(1)

then

Ln(t) = exp

(
t2F0(ψ̃2)

2

) ∫
eRn(s−tψ̃)+Gn(s−tψ̃)−F0((s−tψ̃)2)

2 dπ(f)∫
eRn(s)+Gn(s)−F0(s2)

2 dπ(f)
(1 + o(1))

= exp

(
t2F0(ψ̃2)

2

)
(1 + o(1))(2.4)

if∫
eRn(s−tψ̃)+Gn(s−tψ̃)−F0((s−tψ̃)2)

2 dπ(f)∫
eRn(s)+Gn(s)−F0(s2)

2 dπ(f)
=

∫
exp (`n(f)− `n(f0)) dπ(fs+tψ̃)∫

exp (`n(f)− `n(f0)) dπ(f)

= 1 + o(1).(2.5)

However s 7→ Un(s) is not uniformly bounded on Ff0 . We thus consider an
alternative approach, which uses however some of the ideas described above
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but allows for a better control of a term similar to Un(s) but of a slightly
different nature. A condition similar to (2.5) will still be required. Since it
may be hard to prove and even to handle this condition in many setups, we
first focus, in Section 2.2, on a specific family of non-parametric priors.

In the sequel, we consider a functional Ψ as defined in (1.1) associated
with the function ψ ∈ L∞[0, 1] and we set

(2.6) ψ̃(x) = ψ(x)− F0(ψ).

Note that this notation is coherent with the definition of the influence func-
tion associated with the tangent set {s ∈ L2(F0) s.t. F0(s) = 0}.

2.2. Bernstein-von Mises in infinite dimensional exponential families. In
this section, we consider the non-parametric models (priors) defined in Sec-
tion 1.2. Assume that f0 is 1-periodic and f0 ∈ F∞. Let Φ = (φλ)λ∈N be
one of the bases introduced in Section 1.2, then there exists a sequence
θ0 = (θ0λ)λ∈N∗ such that

f0(x) = exp

∑
λ∈N∗

θ0λφλ(x)− c(θ0)

 .
We denote Πf0,k the projection operator on the vector space generated by
(φλ)0≤λ≤k for the scalar product < ., . >f0 and

∆ψ,k = ψ −Πf0,kψ = ψ̃ −Πf0,kψ̃,

where ψ̃ is defined in (2.6). We expand the functions ψ̃ and Πf0,kψ̃ on Φ:

ψ̃(x) =
∑
λ∈N

ψ̃λφλ(x), Πf0,kψ̃(x) =
k∑

λ=0

ψ̃Π,λφλ(x), x ∈ [0, 1]

so that (ψ̃λ)λ∈N and (ψ̃Π,λ)λ≤k denote the sequences of coefficients of the
expansions of the functions ψ̃ and Πf0,kψ̃ respectively. We finally note:

ψ̃
[k]
Π = (ψ̃Π,1, ..., ψ̃Π,k).

Now, we consider the sequence (εn)n decreasing to zero defined in Theo-
rem 3.1 (see Section 3). We use the sequence L(n) introduced in Defini-
tion 1.1 for the case (PH) and, in the sequel, we set L(n) = 1 in the case (D)
by convention. Using Definition 1.1, for all a > 0, there exists a constant
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12 V. RIVOIRARD AND J. ROUSSEAU.

l0 > 0 large enough so that Pp
(
k > l0nε2n

L(n)

)
≤ e−anε

2
n . From [9], it implies

that there exists c > 0 and l0 large enough such that

P0

[
Pπ
(
k >

l0nε
2
n

L(n)

∣∣∣∣∣Xn

)
≤ e−cnε2n

]
= 1 + o(1).

Define ln = l0nε
2
n/L(n) in the case (PH). In the case (D) we set ln = k∗n. We

have the following result.

Theorem 2.1. We assume that || log(f0)||∞ <∞ and log(f0) ∈ Bγp,q with
p ≥ 2, 1 ≤ q ≤ ∞ and γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Let us also assume that the prior is defined as in Definition 1.1 and assume
that for all t ∈ R, for all 1 ≤ k ≤ ln, uniformly on{

θ ∈ Rk s.t.
k∑

λ=1

(θλ − θ0λ)2 ≤ (log n)3

L(n)2
ε2n

}
,

we have:

πk(θ)

πk

(
θ − tψ̃

[k]
Π√
n

) = 1 + o(1)(2.7)

and

sup
k≤ln

||∑
λ>k

ψ̃λφλ||∞ +
√
k||
∑
λ>k

ψ̃λφλ||2

 = o

(
(log n)−3

√
nε2n

)
(2.8)

(replace k ≤ ln with k = ln in the case (D)). Then, for all z ∈ R,

(2.9) Pπ
[√
n(Ψ(f)−Ψ(Pn)) ≤ z|Xn

]
=
∑
k

p(k|Xn)ΦV0k
(z + µn,k) + oP0(1),

where

- V0k = F0(ψ̃2)− F0(∆2
ψ,k),

- µn,k =
√
nF0

(
∆ψ,k

∑
λ≥k+1 θ0λφλ

)
+Gn(∆ψ,k).

In the case (D), if

(2.10)
∑
λ>k∗n

ψ̃2
λ = o

(
n

2γ
2β+1

−1
)
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then

Pπ
[√
n(Ψ(f)−Ψ(Pn)) ≤ z|Xn] = ΦV0 (z) + oP0(1),(2.11)

where V0 = F0(ψ̃2).

Note that condition (2.10) is satisfied if γ > β+1/2 or if γ > β and ψ is a
piecewise constant function, or a smooth fuction like a continuously differen-
tiable function in the case of the Fourier basis. The proof of Theorem 2.1 is
given in Section 4.3. This result is a consequence of Theorem 2.2 depending
on three assumptions (A1), (A2) and (A3). More precisely, Conditions (A1)
and (A2) are verified using Theorem 3.1 so that (2.7) and (2.8) are required
to prove assumption (A3). Condition (2.7) corresponds to the heuristics we
have given in Section 2.1 and connects (A3) to a change of parametrization
(see Section 2.3). Condition (2.8) requires some minimal smoothness on ψ
through the decay to zero of its coefficients. These two extra conditions are
rather mild as will be shown in the few examples below, so that quite gen-
erally, the posterior distribution of

√
n(Ψ(f) − Ψ(Pn)) is asymptotically a

mixture of Gaussian distributions with variances V0 − F0(∆2
ψ,k) and mean

values −µn,k with weights p(k|Xn). To obtain an asymptotic Gaussian dis-
tribution with mean zero and variance V0 it is necessary for µn,k to be small
whenever p(k|Xn) is not. This is satisfied in the case of a prior of type (D).
In full generality, we have not proved that priors of type (PH) cannot lead
to this result. Nevertheless we give below a counter-example for which the
Bernstein-von Mises property is not satisfied in the case (PH) and we be-
lieve that in most cases, the asymptotic posterior distribution is either not a
Gaussian distribution or it does not have the correct mean or variance. We
also give a counter-example where the asymptotic normality with correct
mean and variance is not satisfied in the case of a prior of type (D) when
γ < β. We now discuss condition (2.7) in three different examples. For the
sake of simplicity, we only consider the case p = q = 2.

Corollary 2.1. Assume that log(f0) ∈W γ. Condition (2.7) is satisfied
in the following cases:

- g is the standard Gaussian density and γ > β − 1/4 for the case
(PH), γ > β − 1/2 for the case (D).

- g is the Laplace density g(x) ∝ e−|x| and γ > β for the case (PH),
γ, β > 1/2 for the case (D).

- g is a Student density g(x) ∝ (1 + x2/d)−(d+1)/2 under the same
conditions as for the Gaussian density.
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14 V. RIVOIRARD AND J. ROUSSEAU.

Corollary 2.1 holds for any bounded function ψ. For the special case
ψ(x) = 1lx≤x0 , conditions on γ and β can be relaxed. In particular, in the
case (PH), if g is the Laplace density, (2.7) is satisfied as soon as γ > β−1/2.
By choosing 1/2 < β ≤ 1, this is satisfied for any γ > 1/2 as imposed by
Theorem 2.1. Note that in the case (PH), Theorem 3.1 implies that the
posterior distribution concentrates with the adaptive minimax rate up to a
logarithmic term, so that choosing β close to 1/2 is not restrictive.

Interestingly, Theorem 2.1 shows that sieve models (increasing sequence
of parametric models) have a mixed behavior between parametric and non-
parametric models. Indeed if the posterior distribution puts most of its mass
on k’s large enough, the posterior distribution has a Bernstein-von Mises
property centered at the empirical (non-parametric MLE) estimator with
the correct variance. On the contrary, if the posterior probability of small
k’s is positive, then the posterior distribution is neither asymptotically Gaus-
sian with the right centering, nor with the right variance. An extreme case
corresponds to the situation where F0(∆2

ψ,k) 6= o(1) under the posterior
distribution, which is equivalent to

∃k0, s.t. ∀ε > 0 liminfn→∞Pn0 [Pπ [k0|Xn] > ε] > 0.

For each fixed k, if infθ∈Rk K(f0, fθ) > 0, since the model is regular, there
exists c > 0 such that P0 [Pπ [k|Xn] > e−nc]→ 1. Therefore, F0(∆2

ψ,k) 6= o(1)
under the posterior distribution if there exists k0 such that infθ∈Rk0 K(f0, fθ) >
0, i.e. if there exists θ0 ∈ Rk0 such that f0 = fθ0 . In that case it can be proved
that Pπ[k0|Xn] = 1 + oP0(1), see [4], and the posterior distribution of Ψ(f)
is asymptotically Gaussian with mean Ψ(fθ̂k0

), where θ̂k0 is the maximum
likelihood estimator in Fk0 , and the variance is the asymptotic variance of
Ψ(fθ̂k0

). However, even if ∆ψ,k = o(1), the posterior distribution might not
satisfy the non-parametric Bernstein-von Mises property with the correct
centering. See below for an illustration of these facts.

We illustrate this issue in the special case of the cumulative distribution
function calculated at a given point x0: ψ(x) = 1lx≤x0 . We recall that the
variance of Gn(ψ) under P0 is equal to V0 = F0(x0)(1−F0(x0)). We consider
the case of the Fourier basis (the case of wavelet bases can be handled in
the same way). Straightforward computations lead to the following result.

Corollary 2.2. Assume that ψ is a piecewise constant function. Con-
sider the prior defined in Section 1.2 in the case (D) with g being the Gaus-
sian or the Laplace density. Then if f0 ∈ W γ, with γ ≥ β > 1/2, the pos-
terior distribution of

√
n(F (x0) − Fn(x0)) is asymptotically Gaussian with
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mean 0 and variance V0. If g is the Student density and if γ ≥ β > 1, the
same result holds.

We now illustrate the fact that when k is random, the Bernstein-von Mises
property may be not valid.

Proposition 2.1. Let

f0(x) = exp

∑
λ≥k0

θ0λφλ(x)− c(θ0)


where k0 is fixed and for any λ, θ0,2λ+1 = 0 and

θ0,2λ =
sin(2πλx0)

λγ+1/2
√

log λ log log λ
.

Consider the prior defined in Section 1.2 with g being the Gaussian or the
Laplace density but the prior p is now the Poisson distribution with param-
eter ν > 0. If k0 is large enough, there exists x0 such that the posterior dis-
tribution of

√
n(F (x0)− Fn(x0)) is not asymptotically Gaussian with mean

0 and variance F0(x0)(1− F0(x0)).

Actually, we prove that the asymptotic posterior distribution of F (x0)−
Fn(x0) is a mixture of Gaussian distributions with means µn,k and variance
F0(x0)(1 − F0(x0))/n and the support of the posterior distribution of k is
included in {m ∈ N∗ s.t. m ≤ ckn} where c is a constant and kn is defined
in (4.23). Furthermore, we show that for all k ≤ ckn, |µn,k| ≥ C

√
log n for

some positive constant C.

2.3. Bernstein-von Mises theorem: general case. To prove Theorem 2.1,
we use a general result stated in this section. The subsequent theorem may
deserve interest in its own right and can be used for other families of priors.

For each density function f , we define h such that for any x,

h(x) =
√
n log

(
f(x)
f0(x)

)
or equivalently f(x) = f0(x) exp

(
h(x)√
n

)
.

For the sake of clarity, we sometime write fh instead of f and hf instead of
h to emphasize the relationship between f and h. Note that in this context
h is not the score function since F0(h) 6= 0. Then we consider the following
assumptions.
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16 V. RIVOIRARD AND J. ROUSSEAU.

(A1) The posterior distribution concentrates around f0. More precisely,
there exists un = o(1) such that if A1

un =
{
f ∈ F s.t. V (f0, f) ≤ u2

n

}
the posterior distribution of A1

un satisfies

Pπ
{
A1
un |X

n
}

= 1 + oP0(1).

(A2) The posterior distribution of the subset An ⊂ A1
un of densities such

that

(2.12)
∫ ∣∣∣∣log

(
f(x)
f0(x)

)∣∣∣∣3 (f0(x) + f(x)) dx = o(1)

satisfies
Pπ [An|Xn] = 1 + oP0(1).

(A3) Let

Rn(h) =
√
nF0(h) +

F0(h2)
2

and for any x, for any t,

ψ̄t,n(x) = ψ̃(x) +
√
n

t
log

(
F0

[
exp

(
h√
n
− tψ̃√

n

)])
.

We have for any t,∫
An

exp
(
−F0((hf−tψ̄t,n)2)

2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)
)
dπ(f)∫

An
exp

(
−
F0(h2

f
)

2 +Gn(hf ) +Rn(hf )
)
dπ(f)

= 1 + oP0(1).(2.13)

Before stating our general result, let us discuss these assumptions. Condition
(A1) concerns concentration rates of the posterior distribution and there
exists now a large literature on such results. See for instance [22] or [9] for
general results. The difficulty here comes from the use of V instead of the
Hellinger or the L1 distances. However since un does not need to be optimal,
deriving rates in terms of V from those in terms of the Hellinger distance is
often not a problem (see below).

Condition (A2) is a refinement of (A1) but can often be derived from (A1)
as illustrated in the case of exponential families.

The main difficulty comes from condition (A3). Roughly speaking, the
reason for (A3) can be glimpsed in the heuristic arguments given in Sec-
tion 2.1, where computations made under the very strong uniform condition
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(2.5) lead quite naturally to (2.4). This actually also helps to understand
what (A3) means, i.e. the possibility of considering a change of parame-
ter (transformation T ) of the form T (fh) = fh−tψ̄t,n , where ψ̄t,n is of order
1/
√
n, and such that the prior is hardly modified by this transformation.

In parametric setups, continuity of the prior near the true value is enough
to ensure that the prior would hardly be modified by such a transformation
and this remains true in the semi-parametric setups where we can write the
parameter as (θ, η) with θ the (finite dimensional) parameter of interest.
Indeed as shown in [3], under certain conditions, the transformations on fθ,η
can be transferred to transformations on θ. Our setup is more complex since
T applies on the infinite dimensional parameter f , so that a condition of the
form dπ(T (f)) = dπ(f)(1 + o(1)) does not necessarily make sense.

Now, we can state the main result of this section.

Theorem 2.2. Let f0 be a density on F such that || log(f0)||∞ < ∞.
Assume that (A1), (A2) and (A3) are true. Then, we have for any z, in
P0-probability,

Pπ
{√

n(Ψ(f)−Ψ(Pn)) ≤ z|Xn}− ΦF0(ψ̃2)(z)→ 0.(2.14)

The proof of Theorem 2.2 is given in Section 4.2. It is based on the
asymptotic behavior of the Laplace transform of

√
n(Ψ(f) − Ψ(Pn))1lAn

calculated at the point t which is proved to be equivalent to exp(t2F0(ψ̃2)/2)
times the left hand side of (2.13) under (A1) and (A2), so that (A3) implies
(2.14). We do not establish that (A3) is equivalent to (2.14) under (A1)
and (A2) (the proof is based on the limit of the asymptotic behavior of the
Laplace transform and not of the characteristic function), but we believe
that it is close to being so.

3. Posterior rates for infinite dimensional exponential families.
Since one of the key conditions needed to obtain a Bernstein-von Mises
theorem is a concentration rate of the posterior distribution of order εn, we
now give two general results on concentration rates of posterior distributions
based on the two different setups of orthonormal bases: the Fourier basis and
the wavelet basis. These results have their own interest since we obtain in
such contexts optimal adaptive rates of convergence. In a similar spirit [21]
considers infinite dimensional exponential families and derives minimax and
adaptive posterior concentration rates. Her work differs from the following
theorem in two main aspects. Firstly she restricts her attention to the case
of Sobolev spaces and Fourier basis, whereas we consider Besov spaces and
secondly she obtains adaptivity by putting a prior on the smoothness of
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18 V. RIVOIRARD AND J. ROUSSEAU.

the Sobolev class whereas we obtain adaptivity by constructing a prior on
the size k of the parametric spaces, which to our opinion is a more natural
approach. Moreover [21] merely considers Gaussian priors. Also related to
this problem are the works of [13] and [10] who derive a general framework to
obtain adaptive posterior concentration rates, the former applies her results
to the Haar basis case. The limitation in her case, apart from the fact that
she considers the Haar basis and no other wavelet basis is that she constraints
the θλ’s in each k dimensional model to belong to a ball with fixed radius.

Note also that the family of priors defined in Section 1.2 has also been
used in the infinitely many means model (equivalently in the white noise
model) by [26] where minimax but non adaptive rates were obtained for the
L2-risk.

Theorem 3.1. We assume that || log(f0)||∞ <∞ and log(f0) ∈ Bγp,q with
p ≥ 2, 1 ≤ q ≤ ∞ and γ > 1/2 is such that

β < 1/2 + γ if p∗ ≤ 2 and β < γ + 1/p∗ if p∗ > 2.

Then,

Pπ
{
fθ s.t. h(f0, fθ) ≤

√
log n
L(n)

εn|Xn

}
= 1 + oP0(1),(3.1)

and

Pπ
{
fθ s.t. ||θ0 − θ||`2 ≤ log n

√
log n
L(n)

εn|Xn

]
= 1 + oP0(1),(3.2)

where in the case (PH),

εn = ε0

(
log n
n

) γ
2γ+1

,

in the case (D), L(n) = 1,

εn = ε0(log n)n−
β

2β+1 , if γ ≥ β

εn = ε0n
− γ

2β+1 , if γ < β

and ε0 is a constant large enough.

The proof of Theorem 3.1 is given in Section 4.1. If the density g only
satisfies a tail condition of the form

g(x) ≤ Cg|x|−p∗ ,
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where Cg is a constant and p∗ > 1, then, in the case (PH), if γ > 1, the
rates defined by (3.1) and (3.2) remain valid. Note that in the case (PH)
the posterior concentration rate is, up to a log n term, the minimax rate
of convergence, whereas in the case (D) the minimax rate is achieved only
when γ = β.

4. Proofs. In this section we prove results stated previously. We first
prove Theorem 3.1. Then the proof of Theorem 2.2 is given. From these
results, we finally deduce the proofs of Theorem 2.1 and of the related results.
In the sequel, C denotes a generic positive constant whose value is of no
importance and may change from line to line.

4.1. Proof of Theorem 3.1. We first give a preliminary lemma which will
be extensively used in the sequel.

4.1.1. Preliminary lemma.

Lemma 4.1. Set Kn = {1, 2, . . . , kn} with kn ∈ N∗. Assume either of the
following two cases:

- γ > 0, p = q = 2 when Φ is the Fourier basis
- 0 < γ < r, 2 ≤ p ≤ ∞, 1 ≤ q ≤ ∞ when Φ is the wavelet basis with r

vanishing moments (see [12]).

Then the following results hold.

- There exists a constant c1,Φ depending only on Φ such that for any
θ = (θλ)λ ∈ Rkn,

(4.1)

∥∥∥∥∥∥
∑
λ∈Kn

θλφλ

∥∥∥∥∥∥
∞

≤ c1,Φ

√
kn||θ||`2 .

- If log(f0) ∈ Bγp,q(R), then there exists c2,γ depending on γ only such
that

(4.2)
∑
λ/∈Kn

θ2
0λ ≤ c2,γ R

2k−2γ
n .

- If log(f0) ∈ Bγp,q(R) with γ > 1
2 , then there exists c3,Φ,γ depending on

Φ and γ only such that:

(4.3)

∥∥∥∥∥∥
∑
λ/∈Kn

θ0λφλ

∥∥∥∥∥∥
∞

≤ c3,Φ,γ R k
1
2
−γ

n .
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Proof. Let us first consider the Fourier basis. We have:∥∥∥∥∥∥
∑
λ∈Kn

θλφλ

∥∥∥∥∥∥
∞

≤
∑
λ∈Kn

|θλ| × ||φλ||∞

≤ ||φ||∞
∑
λ∈Kn

|θλ|,

which proves (4.1). Inequality (4.2) follows from the definition of Bγ2,2 = W γ .
To prove (4.3), we use the following inequality: for any x,∣∣∣∣∣∣

∑
λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣ ≤ ||φ||∞
∑
λ/∈Kn

|θ0λ|

≤ ||φ||∞

 ∑
λ/∈Kn

|λ|2γθ2
0λ

 1
2
 ∑
λ/∈Kn

|λ|−2γ

 1
2

.

Now, we consider the wavelet basis. Without loss of generality, we assume
that log2(kn + 1) ∈ N∗. We have for any x,∣∣∣∣∣∣

∑
λ∈Kn

θλφλ(x)

∣∣∣∣∣∣ ≤
 ∑
λ∈Kn

θ2
λ

 1
2
 ∑
λ∈Kn

φ2
λ(x)

 1
2

≤ ||θ||`2

 ∑
−1≤j≤log2(kn)

∑
k<2j

ϕ2
jk(x)

 1
2

,

with ϕ−10 = 1l[0,1]. Since ϕ(x) = 0 for x /∈ [−A,A], for j ≥ 0,

card
{
k ∈ {0, . . . , 2j − 1} s.t. ϕjk(x) 6= 0

}
≤ 3(2A+ 1).

(see [17], p. 282 or [18], p. 112). So, there exists cϕ depending only on ϕ
such that∣∣∣∣∣∣

∑
λ∈Kn

θλφλ(x)

∣∣∣∣∣∣ ≤ ||θ||`2

 ∑
0≤j≤log2(kn)

3(2A+ 1)2jc2
ϕ

 1
2

,

which proves (4.1). For the second point, we just use the inclusion Bγp,q(R) ⊂
Bγ2,∞(R) and

∑
λ/∈Kn

θ2
0λ =

∑
j>log2(kn)

2j−1∑
k=0

θ2
0jk ≤ R

2
∑

j>log2(kn)

2−2jγ ≤ R2

1− 2−2γ
k−2γ
n .
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Finally, for the last point, we have for any x:∣∣∣∣∣∣
∑
λ/∈Kn

θ0λφλ(x)

∣∣∣∣∣∣ ≤
∑

j>log2(kn)

2j−1∑
k=0

θ2
0jk

 1
2
2j−1∑
k=0

ϕ2
jk(x)

 1
2

≤ Ck
1
2
−γ

n ,

where C ≤ R(3(2A+ 1))
1
2 cϕ(1− 2

1
2
−γ)−1.

4.1.2. Proof of Theorem 3.1. To prove Theorem 3.1, we use the following
version of theorems on posterior convergence rates. Its proof is not given,
since it is a slight modification of Theorem 2.4 of [9].

Theorem 4.1. Let f0 be the true density and let π be a prior on F
satisfying the following conditions: There exist (εn)n a positive sequence de-
creasing to zero with nε2n → +∞ and a constant c > 0 such that for any n,
there exists F∗n ⊂ F satisfying

- (A)
Pπ {F∗n

c} = o(e−(c+2)nε2n).

- (B) For any j ∈ N∗, let

Sn,j = {f ∈ F∗n s.t. jεn < h(f0, f) ≤ (j + 1)εn},

and Hn,j the Hellinger metric entropy of Sn,j. There exists J0,n (that
may depend on n) such that for all j ≥ J0,n,

Hn,j ≤ (K − 1)nj2ε2n,

where K is an absolute constant.
- (C) Let

Bn(εn) = {f ∈ F s.t. K(f0, f) ≤ ε2n, V (f0, f) ≤ ε2n}.
Then,

Pπ {Bn(εn)} ≥ e−cnε2n .
We have:

Pπ {f s.t. h(f0, f) ≤ J0,nεn|Xn} = 1 + oP0(1).

To prove Theorem 3.1 it is thus enough to verify conditions (A), (B) and
(C). We consider (Λn)n the increasing sequence of subsets of N∗ defined by
Λn = {1, 2, . . . , ln} with ln ∈ N∗. For any n, we set:

F∗n =

fθ ∈ Fln s.t. fθ = exp

 ∑
λ∈Λn

θλφλ − c(θ)

 , ||θ||`2 ≤ wn
 ,
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with
wn = exp(w0n

ρ(log n)q), ρ > 0, q ∈ R.

Recall that

- εn = ε0n
− γ

2γ+1 (log n)
γ

2γ+1 and ln = l0nε2n
L(n) in the case (PH),

- εn = ε0n
− β

2β+1 and ln = k∗n = n
1

2β+1 in the case (D).

Condition (A):. Since β > 1/2,
∑
λ τλ < ∞ and for the sake of simplic-

ity, without loss of generality, we assume that
∑
λ τλ ≤ 1. Using the tail

assumption on g,

π {F∗n
c} ≤

∑
λ>ln

p(λ) + Pπ
∑
λ≤ln

θ2
λ > w2

n


≤ C exp (−c2lnL(ln)) +

∑
λ≤ln

Pπ
{
θ2
λ

τλ
> w2

n

}

≤ C exp
(
−c2l0nε

2
n

)
+
∑
λ≤ln

Pπ
{

exp

(
c∗|θλ|p∗

2τp∗/2λ

)
> exp

(
c∗w

p∗
n

2

)}

≤ C exp
(
−c2l0nε

2
n

)
+ Cln exp

(
−c∗w

p∗
n

2

)
≤ C exp

(
−c2l0nε

2
n

)
+ C exp

(
−nH

)
for any positive H > 0. Hence,

π {F∗n
c} ≤ C exp

(
−c2(l0 − 1)nε2n

)
and Condition (A) is proved for l0 large enough.

Condition (B):. We apply Lemma 4.1 with Kn = Λn and kn = ln. For this
purpose, we show that the Hellinger distance between two functions of F∗n
is related to the `2-distance of the associated coefficients. So, let us consider
fθ and fθ′ belonging to F∗n with

fθ = exp

 ∑
λ∈Λn

θλφλ − c(θ)

 , fθ′ = exp

 ∑
λ∈Λn

θ′λφλ − c(θ′)

 .
Let us assume that ||θ′− θ||`1 ≤ c̃1εnl

−1/2
n with c̃1 a positive constant. Then,∥∥∥∥∥∥

∑
λ∈Λn

(θ′λ − θλ)φλ

∥∥∥∥∥∥
∞

≤ C
√
ln||θ′ − θ||`2 ≤ C

√
ln||θ′ − θ||`1 ≤ Cc̃1εn → 0
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and

∣∣c(θ)− c(θ′)∣∣ =

∣∣∣∣∣∣log

∫ 1

0
fθ(x) exp

 ∑
λ∈Λn

(θ′λ − θλ)φλ(x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣log

1 + C||
∑
λ∈Λn

(θ′λ − θλ)φλ||∞

∣∣∣∣∣∣
≤ C||

∑
λ∈Λn

(θ′λ − θλ)φλ||∞.

Then,

h2(fθ, fθ′) =
∫
fθ(x)

exp

1
2

∑
λ∈Λn

(θ′λ − θλ)φλ(x) +
1
2
(
c(θ)− c(θ′)

)− 1

2

dx

≤
∫ 1

0
fθ(x)

exp

C|| ∑
λ∈Λn

(θ′λ − θλ)φλ||∞

− 1

2

dx

≤ C||
∑
λ∈Λn

(θλ − θ′λ)φλ||2∞

≤ Cln||θ − θ′||2`1 ≤ Cl
2
n||θ − θ′||2`2 .(4.4)

The next lemma establishes a converse inequality.

Lemma 4.2. Let c0 = infx∈[0,1] f0(x) > 0. There exists a constant c ≤
1/2 depending on γ, β,R and Φ such that if

(j + 1)2ε2nln ≤ c×min
(
c0, (1− e−1)2

)
then for fθ ∈ Sn,j,

||θ0 − θ||2`2 ≤
1
c0c

(log n)2h2(f0, fθ).

Proof. Using Theorem 5 of [25], with M1 =
(∫ 1

0
f2
0 (x)
fθ(x)dx

) 1
2 , if

h2(f0, fθ) ≤
1
2

(1− e−1)2,

we have

V (f0, fθ) ≤ 5h2(f0, fθ) (| logM1| − log(h(f0, fθ))
2 .(4.5)
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But

M1 =
∫ 1

0
f0(x) exp

 ∑
λ∈Λn

(θ0λ − θλ)φλ(x) +
∑
λ/∈Λn

θ0λφλ(x)− c(θ0) + c(θ)

 dx
≤

∫ 1

0
f0(x) exp

(
C[
√
ln||θ0 − θ||`2 +Rl

1
2
−γ

n ]− c(θ0) + c(θ)
)
dx,

by using (4.1) and (4.3). Furthermore,

|c(θ0)− c(θ)| ≤ C[
√
ln||θ0 − θ||`2 +R l

1
2
−γ

n ].(4.6)

So,

| logM1| ≤ C[
√
ln||θ0 − θ||`2 +R l

1
2
−γ

n ].

Finally, since fθ ∈ Sn,j for j ≥ 1,

V (f0, fθ) ≤ 5h2(f0, fθ)
(
C[
√
ln||θ0 − θ||`2 +R l

1
2
−γ

n ]− log(εn)
)2

≤ Ch2(f0, fθ)
(
ln||θ0 − θ||2`2 + (log n)2

)
.

Since f0(x) ≥ c0 for any x and
∫ 1

0 φλ(x)dx = 0 for any λ ∈ Λn, we have

V (f0, fθ) ≥ c0||θ0 − θ||2`2 .(4.7)

Combining (4.4) and (4.7), we conclude that

||θ0 − θ||2`2 ≤ 2Cc−1
0 (log n)2h2(f0, fθ),

if h2(f0, fθ)ln ≤ (j + 1)2ε2nln ≤ c0/(2C). Lemma 4.2 is proved by taking
c = (max(C, 1))−1/2.

Now, under the assumptions of Lemma 4.2, using (4.4), we obtain

Hn,j ≤ log
(
(Cln(j + 1) log n)ln

)
≤ ln log

(
Cε−1

n

√
ln log n

)
.

Then, we have Hn,j ≤ (K − 1)nj2ε2n as soon as j ≥ J0,n =
√
j0 log nL(n)−1,

where j0 is a constant and condition (B) is satisfied for such j’s. Now, let j
such that

(4.8) c(j + 1)2ε2nln > min
(
c0

2
,
1
2

(1− e−1)2
)
.
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In this case, since for fθ ∈ F∗n,

||θ||`1 ≤
√
ln||θ||`2 ≤

√
lnwn,

for n large enough,

Hn,j ≤ log
((
Clnwnε

−1
n

)ln)
≤ 2ln log(wn) ≤ 2w0lnn

ρ(log n)q.

Choosing w0, q and ρ small enough such that l2n(log n)q ≤ n1−ρ, together
with (4.8), implies condition (B).

Condition (C). Let kn ∈ N increasing to ∞ and Kn = {1, ..., kn}, define

A(un) =

θ s.t. θλ = 0 for every λ /∈ Kn and
∑
λ∈Kn

(θ0λ − θλ)2 ≤ u2
n

 ,
where un goes to 0 such that

(4.9)
√
knun → 0.

We define for any λ,

βλ(f0) =
∫ 1

0
φλ(x)f0(x)dx.

Denote

f0Kn = exp

 ∑
λ∈Kn

θ0λφλ(x)− c(θ0Kn)

 , f0K̄n = exp

 ∑
λ/∈Kn

θ0λφλ(x)− c(θ0K̄n)

 .
We have

K(f0, f0Kn) =
∑
λ/∈Kn

θ0λβλ(f0) + c(θ0Kn)− c(θ0)

=
∑
λ/∈Kn

θ0λβλ(f0) + log
(∫ 1

0
f0(x)e−

∑
λ/∈Kn

θ0λφλ(x)
dx

)
.

Using inequality (4.3) of Lemma 4.1, we obtain∫ 1

0
f0(x)e−

∑
λ/∈Kn

θ0λφλ(x)
dx

= 1−
∑
λ/∈Kn

θ0λβλ(f0) +
1
2

∫ 1

0
f0(x)

 ∑
λ/∈Kn

θ0λφλ(x)

2

dx× (1 + o(1)) .
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We have ∣∣∣∣∣∣
∑
λ/∈Kn

θ0λβλ(f0)

∣∣∣∣∣∣ ≤ ‖f0‖2

 ∑
λ/∈Kn

θ2
0λ

 1
2

and

∫ 1

0
f0(x)

 ∑
λ/∈Kn

θ0λφλ(x)

2

dx ≤ ‖f0‖∞
∑
λ/∈Kn

θ2
0λ

So,

log
(∫ 1

0
f0(x)e−

∑
λ/∈Kn

θ0λφλ(x)
dx

)
= −

∑
λ/∈Kn

θ0λβλ(f0)− 1
2

 ∑
λ/∈Kn

θ0λβλ(f0)

2

+
1
2

∫ 1

0
f0(x)

 ∑
λ/∈Kn

θ0λφλ(x)

2

dx+ o

 ∑
λ/∈Kn

θ2
0λ

 ,
and

K(f0, f0Kn) =
1
2

∫ 1

0
f0(x)

 ∑
λ/∈Kn

θ0λφλ(x)

2

dx− 1
2

 ∑
λ/∈Kn

θ0λβλ(f0)

2

+ o

 ∑
λ/∈Kn

θ2
0λ

 .
This implies that for n large enough,

K(f0, f0Kn) ≤ ‖f0‖∞
∑
λ/∈Kn

θ2
0λ ≤ Ck−2γ

n .

Now, if θ ∈ A(un) we have

K(f0, fθ) = K(f0, f0Kn) +
∑
λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ)

≤ Ck−2γ
n +

∑
λ∈Kn

(θ0λ − θλ)βλ(f0)− c(θ0Kn) + c(θ).

We set for any x, T (x) =
∑
λ∈Kn(θλ − θ0λ)φλ(x). Using (4.1), ‖T‖∞ ≤

C
√
knun → 0. So,∫ 1

0
f0Kn(x) exp(T (x))dx = 1+

∫ 1

0
f0Kn(x)T (x)dx+

∫ 1

0
f0Kn(x)T 2(x)v(n, x)dx,
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where v is a bounded function. Since log(1 + u) ≤ u for any u > −1, for
θ ∈ A(un) and n large enough,

−c(θ0Kn) + c(θ) = log
(∫ 1

0
f0Kn(x)eT (x)dx

)
≤

∫ 1

0
f0Kn(x)T (x)dx+

∫ 1

0
f0Kn(x)T 2(x)v(n, x)dx

≤
∑
λ∈Kn

(θλ − θ0λ)βλ(f0Kn) + Cknu
2
n.

So,

K(f0, fθ) ≤ Ck−2γ
n +

∑
λ∈Kn

(θ0λ − θλ) (βλ(f0)− βλ(f0Kn))

≤ Ck−2γ
n + un‖f0 − f0Kn‖2.

Besides (4.3) implies

‖f0 − f0Kn‖22 ≤ ‖f0‖2∞
∫ 1

0

1− exp

− ∑
λ/∈Kn

θ0λφλ(x)− c(θ0Kn) + c(θ0)

2

dx

and

|c(θ0Kn)− c(θ0)| ≤ ||
∑
λ/∈Kn

θ0λφλ||∞.

Finally,

‖f0 − f0Kn‖2 ≤ C||
∑
λ/∈Kn

θ0λφλ||∞ ≤ Ck
1
2
−γ

n

and

(4.10) K(f0, fθ) ≤ Ck−2γ
n + Cunk

1
2
−γ

n .

We now bound V (f0, fθ). For this purpose, we refine the control of |c(θ0Kn)− c(θ0)|:

|c(θ0Kn)− c(θ0)| =

∣∣∣∣∣∣log

∫ 1

0
f0(x) exp

− ∑
λ/∈Kn

θ0λφλ(x)

 dx
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣log
∫ 1

0
f0(x)

1−
∑
λ/∈Kn

θ0λφλ(x) + w(n, x)

 ∑
λ/∈Kn

θ0λφλ(x)

2
 dx

∣∣∣∣∣∣∣ ,

imsart-aos ver. 2007/12/10 file: BVM-rev1.tex date: March 15, 2010



28 V. RIVOIRARD AND J. ROUSSEAU.

where w is a bounded function. So,

|c(θ0Kn)− c(θ0)| ≤ C

 ∑
λ/∈Kn

|θ0λβλ(f0)|+
∫ 1

0

 ∑
λ/∈Kn

θ0λφλ(x)

2

dx


≤ C

 ∑
λ/∈Kn

θ2
0λ

 1
2

≤ Ck−γn .

In addition,

|c(θ0Kn)− c(θ)| ≤
∑
λ∈Kn

|θλ − θ0λ| |βλ(f0Kn)|+ Cknu
2
n

≤ un (||f0 − f0Kn ||2 + ||f0||2) + Cknu
2
n

≤ Cun + Cknu
2
n.

Finally,

V (f0, fθ) ≤ u2
n + Ck−2γ

n + Ck2
nu

4
n.(4.11)

Now, let us consider the case (PH). We take kn and un such that

(4.12) kn = k0ε
−1/γ
n and un = u0εnk

− 1
2

n ,

where k0 and u0 are constants depending on ||f0||∞, γ, R and Φ. Note that
(4.9) is then satisfied. If ε0 is large enough and u0 is small enough, then, by
using (4.10) and (4.11),

K(f0, fθ) ≤ ε2n and V (f0, fθ) ≤ ε2n.

So, Condition (C) is satisfied if

Pπ {A(un)} ≥ e−cnε2n ,

where A(un) is defined in (4.9). We have:

Pπ {A(un)} ≥ Pπ
θ s.t.

∑
λ∈Kn

(θλ − θ0λ)2 ≤ u2
n

∣∣∣∣∣∣ kn
× exp (−c1knL(kn)} .
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The prior on θ implies that, with Gλ = λβθλτ
−1/2
0 ,

P1 = Pπ
θ s.t.

∑
λ∈Kn

(θλ − θ0λ)2 ≤ u2
n

∣∣∣∣∣∣ kn


≥ Pπ
θ s.t.

∑
λ∈Kn

∣∣∣√τ0λ
−βGλ − θ0λ

∣∣∣ ≤ un
∣∣∣∣∣∣ kn


= Pπ

θ s.t.
∑
λ∈Kn

λ−β
∣∣∣∣Gλ − τ− 1

2
0 λβθ0λ

∣∣∣∣ ≤ τ− 1
2

0 un

∣∣∣∣∣∣ kn


=
∫
...

∫
1{∑

λ∈Kn
λ−β
∣∣∣xλ−τ− 1

2
0 λβθ0λ

∣∣∣≤τ− 1
2

0 un

} ∏
λ∈Kn

g(xλ)dxλ

≥
∫
...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

} ∏
λ∈Kn

g

(
yλ + τ

− 1
2

0 λβθ0λ

)
dyλ.

When γ ≥ β, we have supλ∈Kn

∣∣∣∣τ− 1
2

0 λβθ0λ

∣∣∣∣ <∞ and supn

{
τ
− 1

2
0 kβnun

}
<∞.

Using assumptions on the prior, there exists a constant D such that

P1 ≥ Dkn

∫
...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

} ∏
λ∈Kn

dyλ

≥ exp (−Ckn log n) .(4.13)

When γ < β, there exist a and b > 0 such that ∀|y| ≤ M for some positive
constant M

g(y + u) ≥ a exp(−b|u|p∗).
Using the above calculations we obtain if p∗ ≤ 2

P1 ≥ Dkn exp{−C
∑
λ∈Kn

λp∗β|θ0λ|p∗}
∫
...

∫
1{∑

λ∈Kn
λ−β |yλ|≤τ

− 1
2

0 un

} ∏
λ∈Kn

dyλ

≥ exp
[
−Ck1−p∗/2+p∗(β−γ)

n

]
exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ 1/2 + γ

and if p∗ > 2,
∑
λ∈Kn λ

p∗β|θ0λ|p∗ ≤ kp∗β−p∗γn so that

P1 ≥ Dkn exp{−C
∑
λ∈Kn

λp∗β|θ0λ|p∗} exp (−Ckn log n)

≥ exp (−Ckn log n) if β ≤ γ + 1/p∗.

Condition (C) is established by choosing k0 small enough. Similar compu-
tations lead to the result in the case (D).
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4.2. Proof of Theorem 2.2. Let Zn =
√
n(Ψ(f)−Ψ(Pn)). We have

(4.14) Pπ {An|Xn} = 1 + oP0(1).

So, it is enough to prove that conditionally on An and Xn, the distribution
of Zn converges to the distribution of a Gaussian variable whose variance is
F0(ψ̃2). This will be established if for any t ∈ R,

(4.15) lim
n→+∞

Ln(t) = exp

(
t2

2
F0

[
ψ̃2
])

,

where Ln(t) is the Laplace transform of Zn conditionally on An and Xn:

Ln(t) = E π [exp(t
√
n(Ψ(f)−Ψ(Pn)))|An, Xn]

=
E π [exp(t

√
n(Ψ(f)−Ψ(Pn)))1lAn(f)|Xn]

Pπ {An|Xn}

=

∫
An

exp (t
√
n(Ψ(f)−Ψ(Pn)) + `n(f)− `n(f0)) dπ(f)∫
An

exp (`n(f)− `n(f0)) dπ(f)
.

We set for any x,

Bh,n(x) =
∫ 1

0
(1− u)euh(x)/

√
ndu.(4.16)

So,

exp
(
h(x)√
n

)
= 1 +

h(x)√
n

+
h2(x)
n

Bh,n(x),

which implies that

f(x)− f0(x) = f0(x)

(
h(x)√
n

+
h2(x)
n

Bh,n(x)

)

and

t
√
n(Ψ(f)−Ψ(Pn)) = −tGn(ψ̃) + t

√
n

(∫
ψ̃(x)(f(x)− f0(x))dx

)
= −tGn(ψ̃) + tF0(hψ̃) +

t√
n
F0(h2Bh,nψ̃).

Since

`n(f)− `n(f0) = −F0(h2)
2

+Gn(h) +Rn(h),
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we have

Ln(t) =

∫
An

exp
(
Gn(h− tψ̃) + tF0(hψ̃) + t√

n
F0(h2Bh,nψ̃)− F0(h2)

2 +Rn(h)
)
dπ(f)∫

An
exp

(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

=

∫
An

exp
(
−F0((h−tψ̄t,n)2)

2 +Gn(h− tψ̄t,n) +Rn(h− tψ̄t,n) + Un,h
)
dπ(f)∫

An
exp

(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

,

where straightforward computations show that

Un,h = tF0(h(ψ̃ − ψ̄t,n)) +
t2

2
F0(ψ̄2

t,n) +Rn(h)−Rn(h− tψ̄t,n) +
t√
n
F0(h2Bh,nψ̃)

= tF0(hψ̃) + t
√
nF0(ψ̄t,n) +

t√
n
F0(h2Bh,nψ̃)

= tF0(hψ̃) + n log

(
F0

[
exp

(
h√
n
− tψ̃√

n

)])
+

t√
n
F0

(
h2Bh,nψ̃

)
.

Now, let us study each term of the last expression. We have

F0

[
exp

(
h√
n
− tψ̃√

n

)]
= F0

[
e
h√
n

(
1− tψ̃√

n
+
t2

2n
ψ̃2

)]
+ 0(n−

3
2 )

= 1− t√
n
F0

[
e
h√
n ψ̃

]
+
t2

2n
F0

[
e
h√
n ψ̃2

]
+ 0(n−

3
2 ).

So,

F0

[
e
h√
n ψ̃

]
=
F0[hψ̃]√

n
+
F0[h2Bh,nψ̃]

n
; F0

[
e
h√
n ψ̃2

]
= F0

[
ψ̃2
]
+
F0[hψ̃2]√

n
+
F0[h2Bh,nψ̃

2]
n

.

Note that, on An, we have F0(h2) = 0(nu2
n) and F0

(
h2Bh,n

)
= o(n). There-

fore, uniformly on An,

F0

[
exp

(
h√
n
− tψ̃√

n

)]
= 1− t√

n

(
F0[hψ̃]√

n
+
F0[h2Bh,nψ̃]

n

)

+
t2

2n

(
F0

[
ψ̃2
]

+
F0[hψ̃2]√

n
+
F0[h2Bh,nψ̃

2]
n

)
+ o

(
n−1

)
= 1− t

n

[
F0[hψ̃] +

F0[h2Bh,nψ̃]√
n

− tF0(ψ̃2)
2

+ o(1)

]
= 1 + o

(
n−1/2

)
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and

n log

(
F0

[
exp

(
h√
n
− tψ̃√

n

)])
= −t

[
F0(hψ̃) +

F0[h2Bh,nψ̃]√
n

− tF0(ψ̃2)
2

]
+ o(1).

Finally,

Un,h =
t2

2
F0

[
ψ̃2
]

+ o(1)

and up to a multiplicative factor equal to 1 + o(1),

Ln(t) = exp

(
t2

2
F0

[
ψ̃2
]) ∫

An
exp

(
−F0((h−tψ̄t,n)2)

2 +Gn(h− tψ̄t,n) +Rn(h− tψ̄t,n)
)
dπ(f)∫

An
exp

(
−F0(h2)

2 +Gn(h) +Rn(h)
)
dπ(f)

.

Finally (A3) implies (4.15) and the theorem is proved.

4.3. Proof of Theorem 2.1. We apply Theorem 2.2 of Section 2.3, so
we prove that conditions (A1), (A2) and (A3) are satisfied. Let εn be the
posterior concentration rate obtained in Theorem 3.1. Let us consider f =
fθ ∈ Fk for 1 ≤ k ≤ ln where ln is defined in Section 2.2. First, using (4.5),
we have

(4.17) V (f0, f) ≤ C(log n)3ε2n,

as soon as h(f0, f) ≤
√

log nεn. Thus, using (3.1), we have

Pπ
{
A1
un |X

n
}

= 1 + oP0(1)

with un = u0(log n)3ε2n, for a constant u0 large enough. Note that we can
restrict ourselves to A1

un ∩ (∪k≤lnFk), since Pπ [(∪k≤lnFk)c] ≤ e−cnε
2
n for any

c > 0 by choosing l0 large enough.
To establish (A2), we observe that

|| log fθ − log f0||∞ ≤ ||
∑
λ∈N∗

(θ0λ − θλ)φλ||∞ + |c(θ)− c(θ0)|

≤ C

(√
ln||θ − θ0||`2 + l

1
2
−γ

n

)
= o(1),

by using γ > 1/2, Lemma 4.1 and (4.6). So, (A2) is implied by (A1). Now,
let us establish (A3). Without loss of generality, we can assume that An,
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the set defined in assumption (A2), is included into (∪k≤lnFk). For any t,
we study the term

In =

∫
An

exp
(
−F0((hf−tψ̄t,n)2)

2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)
)
dπ(f)∫

An
exp

(
−
F0(h2

f
)

2 +Gn(hf ) +Rn(hf )
)
dπ(f)

=

∑
1≤k≤ln p(k)

∫
An∩Fk exp

(
−F0((hf−tψ̄t,n)2)

2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)
)
dπk(f)∑

1≤k≤ln p(k)
∫
An∩Fk exp

(
−
F0(h2

f
)

2 +Gn(hf ) +Rn(hf )
)
dπk(f)

.

If we set

bn,k,t =
tΠf0,kψ̃ − tψ̃Π,0√

n
=

t√
n

k∑
λ=1

ψ̃Π,λφλ,

we have, using (4.1) and since k ≤ ln,

||bn,k,t||∞ ≤ Ct
√
k√
n
||Πf0,kψ̃ − ψ̃Π,0||f0

≤ Ct
√
ln√
n
||ψ̃||∞ = O(εn).

Recall that for fθ ∈ Fk,

hθ =
√
n

∑
λ∈N∗

(θλ − θ0λ)φλ − c(θ) + c(θ0)


so, for θ′ = θ − t ψ̃

[k]
Π√
n

, with Hn = (hθ − tψ̃)/
√
n and ∆ψ,k = ψ̃ −Πf0,kψ̃

hθ′ = hθ −
√
nbn,k,t +

√
n

(
c(θ)− c

(
θ − t ψ̃

[k]
Π√
n

))

= hθ − tψ̄t,n + t(ψ̃ −Πf0,kψ̃)−
√
n log

[
F0(eHn+t∆ψ,k/

√
n)

F0(eHn)

]
= hθ − tψ̄t,n + t∆ψ,k −∆n,

with

∆n =
√
n log

[
F0(eHn+t∆ψ,k/

√
n)

F0(eHn)

]
.

imsart-aos ver. 2007/12/10 file: BVM-rev1.tex date: March 15, 2010



34 V. RIVOIRARD AND J. ROUSSEAU.

Now, as previously, (4.6) implies ||hθ||∞/
√
n ≤

√
kεn = o(1) and since

F (∆2
ψ,k) = O(1), ||∆ψ,k||∞ = O(

√
ln) = O(

√
nεn),

F0(eHn+t∆ψ,k/
√
n) = F0

(
eHn

(
1 +

t∆ψ,k√
n

+
t2∆2

ψ,k

2n

))
+ 0

(
F (∆2

ψ,k)
||∆ψ,k||∞
n3/2

)

= F0

(
eHn

(
1 +

t∆ψ,k√
n

+
t2∆2

ψ,k

2n

))
+ 0

(
εn
n

)

= F0

(
eHn

)
+

t√
n
F0(eHn∆ψ,k) +

t2

2n
F0(eHn∆2

ψ,k) + o

(
1
n

)
.

Furthermore, for any function v satisfying F0(|v|) <∞,

F0(eHnv) = F0

(
vehθ/

√
n
)
− t√

n
F0

(
vehθ/

√
nψ̃
)

+O

(
1
n

)
.(4.18)

Note that in the case v = 1 since F0(ehθ/
√
n) = 1 we can be more precise

and we obtain

F0(eHn) = 1− t√
n
F0

(
ehθ/

√
nψ̃
)

+O(1/n)

= 1− tF0(hθψ̃)
n

+O

(
ε2n√
n

+
1
n

)
= 1 + o

(
1√
n

)
.(4.19)

Moreover,

F0

(
vehθ/

√
n
)

= F0(v) + o(F0(|v|)).(4.20)

Therefore, using (4.18) with v = ∆2
ψ,k leads to

F0(eHn+t∆ψ,k/
√
n)

F0(eHn)
= 1 +

t√
n

F0(eHn∆ψ,k)
F0(eHn)

+
t2

2n
F0(∆2

ψ,k) + o

(
1
n

)
,

and using (4.18) with v = ∆ψ,k together with (4.19) and using (4.20)

t√
n
F0(eHn∆ψ,k) =

t√
n
F0

(
∆ψ,ke

hθ/
√
n
)
− t2

n
F0

(
∆ψ,kψ̃

)
+ o

(
1
n

)
.

Moreover,

F0

(
∆ψ,ke

hθ/
√
n
)

=
1√
n

[
F0 (hθ∆ψ,k) +

1√
n
F0

(
h2
θBhθ,n∆ψ,k

)]
,
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where Bh,n is defined by (4.16). Since F0(ehθ/
√
nψ̃) = F0(ψ̃) + o(1) = o(1),

F0(eHn) = 1 + o
(

1√
n

)
and F0(ψ̃∆ψ,k) = F0(∆2

ψ,k) we obtain

F0(eHn+t∆ψ,k/
√
n)

F0(eHn)
= 1 +

t√
n
F0

(
ehθ/

√
n∆ψ,k

)
− t2

2n
F0

(
∆2
ψ,k

)
+ o

(
1
n

)
and finally,

∆n =
√
n log

[
F0(eHn+t∆ψ,k/

√
n)

F0(eHn)

]

= tF0

(
ehθ/

√
n∆ψ,k

)
− t2

2
√
n
F0

(
∆2
ψ,k

)
+ o

(
1√
n

)
=

t√
n

[
F0 (hθ∆ψ,k) +

F0
(
h2
θBhθ,n∆ψ,k

)
√
n

− t

2
F0(∆2

ψ,k)

]
+ o

(
1√
n

)
.(4.21)

Moreover

F0

(
h2
θBhθ,n∆ψ,k

)
=

1
2
F0

(
h2
θ∆ψ,k

)
+ o

(
F0

(
h2
θ|∆ψ,k|

))
and by using (4.17),

F0
(
h2
θ|∆ψ,k|

)
√
n

≤ ‖∆ψ,k‖∞
F0
(
h2
θ

)
√
n

≤ C‖∆ψ,k‖∞
√
n (log n)3 ε2n.

To bound ||∆ψ,k||∞, we set ψ+k =
∑
λ>k ψ̃λφλ, so

∆ψ,k = ψ+k −Πf0,k(ψ+k).

Then by using (4.1),

||∆ψ,k||∞ ≤ ||ψ+k||∞ + ||Πf0,kψ+k||∞
≤ ||ψ+k||∞ + C

√
k||Πf0,kψ+k||f0

≤ ||ψ+k||∞ + C
√
k||ψ+k||f0

≤ ||ψ+k||∞ + C
√
k||ψ+k||2.

Under (2.8), we obtain

∆n =
t√
n

[
F0 (hθ∆ψ,k)−

t

2
F0(∆2

ψ,k)
]

+ o(n−1/2).
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Note that ∆n = o(1). Finally,

Rn(hθ′) =
√
nF0(hθ′) +

F0(h2
θ′)

2

= Rn(hθ − tψ̄t,n)−
√
n∆n −

t2

2
F0(∆2

ψ,k) + tF0(hθ∆ψ,k)−∆nF0(hθ) + o(1)

= Rn(hθ − tψ̄t,n)−∆nF0(hθ) + o(1).

Recall that hθ′ = hθ − tψ̄t,n + t∆ψ,k − ∆n, ∆n = o(1) and F0(∆ψ,k) = 0.
Note also that

ψ̄t,n(x) = ψ̃(x) +
√
n

t
log

(
F0(eHn)

)
= ψ̃(x) + o(1)

so that F0(∆ψ,kψ̄t,n) = F0(∆2
ψ,k) + o(1) and

−F0(h2
θ′)

2
= −F0((hθ − tψ̄t,n)2)

2
− F0((t∆ψ,k −∆n)2)

2
− F0((hθ − tψ̄t,n)(t∆ψ,k −∆n))

= −F0((hθ − tψ̄t,n)2)
2

+
t2F0(∆2

ψ,k)
2

− tF0(hθ∆ψ,k) + ∆nF0(hθ) + o(1).

Furthermore,
Gn(hθ′) = Gn(hθ − tψ̄t,n) + tGn(∆ψ,k).

We set
µn,k = −F0(hθ∆ψ,k) +Gn(∆ψ,k)

and we finally obtain,

−F0((hθ′)2)
2

+Gn(hθ′) +Rn(hθ′)

= −F0((hθ − tψ̄t,n)2)
2

+Rn(hθ − tψ̄t,n) +Gn(hθ − tψ̄t,n) + tµn,k

+
t2F0(∆2

ψ,k)
2

+ o(1).

Note that F0(hθ∆ψ,k) = −
√
nF0[(ψ̃ − Πf0,kψ̃)

∑
λ≥k+1 θ0λφλ] so that µn,k

does not depend on θ and setting Tkθ = θ − t ψ̃
[k]
Π√
n

for all θ, we can write

Jk :=

∫
An∩Fk exp

(
−F0((hf−tψ̄t,n)2)

2 +Gn(hf − tψ̄t,n) +Rn(hf − tψ̄t,n)
)
dπk(f)∫

An∩Fk exp
(
−
F0(h2

f
)

2 +Gn(hf ) +Rn(hf )
)
dπk(f)

= e−
t2F0(∆2

ψ,k
)

2 e−tµn,k

∫
Θk∩A′n e

−
F0

(
h2
Tkθ

)
2

+Gn(hTkθ)+Rn(hTkθ)dπk(θ)∫
Θk∩A′n e

−
F0(h2

θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)),
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where A′n = {θ s.t. fθ ∈ An}. Moreover, for k ≤ ln, ||ψ̃[k]
Π ||`2 ≤ C. So, if we

set

Tk(A′n) =

{
θ ∈ Θk ∩A′n s.t. θ + t

ψ̃
[k]
Π√
n
∈ A′n

}
for all θ ∈ Tk(A′n),

||θ − θ0||2`2 ≤ 2(log n)3ε2n +
2t2C2

n
≤ 2ε2n(log n)3(1 + o(1))

since nε2n → +∞. For all θ ∈ Θk ∩A′n such that ||θ − θ0||`2 ≤
(logn)3/2εn

2

θ + t
ψ̃

[k]
Π√
n
∈ A′n ∩Θk

for n large enough and we can write

A′n,1 =

{
θ ∈ A′n : ||θ − θ0||`2 ≤

(log n)3/2εn
2

}
, A′n,2 =

{
θ ∈ A′n : ||θ − θ0||2 ≤ 3(log n)3/2εn

}
then

Θk ∩A′n,1 ⊂ Tk(A′n) ⊂ Θk ∩A′n,2(4.22)

and under assumption (2.7),

Jk ≤ e−t
2
F0(∆2

ψ,k
)

2 e−tµn,k

∫
Θk∩A′n,2

e−
F0(h2

θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)∫

Θk∩A′n e
−
F0(h2

θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)),

Jk ≥ e−t
2
F0(∆2

ψ,k
)

2 e−tµn,k

∫
Θk∩A′n,1

e−
F0(h2

θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)∫

Θk∩A′n e
−
F0(h2

θ
)

2
+Gn(hθ)+Rn(hθ)dπk(θ)

(1 + o(1)).

Therefore,

ζn(t) := E π[exp(t
√
n(Ψ(f)−Ψ(P n)))1lAn(f)|Xn]

= e
t2F0(ψ̃2)

2

 ln∑
k=1

p(k|Xn)Jk

 (1 + o(1))

≤

 ln∑
k=1

p(k|Xn)1lΘk∩A′n 6=∅e
−tµn,ket

2
F0(ψ̃2)−F0(∆2

ψ,k
)

2

 (1 + o(1))
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and

ζn(t) ≥ et
2 F0(ψ̃2)

2

ln∑
k=1

p(k|Xn)e−tµn,ke−t
2
F0(∆2

ψ,k
)

2 π
[
A′n,1|Xn, k

]
.

Besides under the above conditions on the prior, with probability converging
to 1,

π
[
(A′n,1)c|Xn

]
≤ e−ncε2n ,

for some positive constant c > 0. Then uniformly over k such that Θk ∩
A′n,1 6= ∅

π
[
(A′n,1)c|Xn, k

]
e−tµn,k = o(1)

and

ζn(t) ≥ et
2 F0(ψ̃2)

2

ln∑
k=1

p(k|Xn)1lΘk∩An 6=∅e
−tµn,ke−t

2
F0(∆2

ψ,k
)

2 (1 + o(1)).

This proves that the posterior distribution of
√
n(Ψ(f)−Ψ(Pn)) is asymp-

totically equal to a mixture of Gaussian distributions with variance V0k =
F0(ψ̃2)−F0(∆2

ψ,k), means −µn,k and weights p(k|Xn). Now if ||∆ψ,k|| = o(1)
(k → +∞) Gn(∆ψ,k) = oP0(1) and with probability converging to 1,

|µn,k| ≤ C
√
n

 +∞∑
λ=k+1

ψ̃2
λ

1/2 +∞∑
λ=k+1

θ2
0λ

1/2

+ o(1).

Thus, under (2.10), Equality (2.11) is proved.

4.4. Proof of Corollary 2.1. Let k ≤ ln (k = k∗n in the case (D)) and
λ ≤ k. If θλ ∼ N (0, τ2

0λ
−2β), we have:∑k

λ=1 ψ̃
2
Π,λλ

2β

n
≤ Ck2β

n∑k
λ=1 θλψ̃Π,λλ

2β

√
n

= O

(
1√
n

[
||θ − θ0||`2k2β + (k2β−γ + 1)

])
.

Similar computations hold when g is the Student density since∣∣∣∣∣
k∑

λ=1

log
(
1 + Cλ2βθ2

λ

)
− log

(
1 + Cλ2β(θλ − tψ̃Π,λ/

√
n)2
)∣∣∣∣∣

= 0

(
k∑

λ=1

λ2β
∣∣∣(θλ − tψ̃Π,λ/

√
n)2 − θ2

λ

∣∣∣) .
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Under conditions of Corollary 2.1, above terms are negligible when n goes
to 0 if

∑k
λ=1(θλ − θ0λ)2 ≤ (log n)4ε2n/L(n)2. If g is the Laplace density,∣∣∣∣∣log

(
g

(
θλ − tψ̃Π,λ/

√
n

√
τλ

))
− log

(
g

(
θλ√
τλ

))∣∣∣∣∣ ≤ C
|ψ̃Π,λ|λβ√

n
,

so that∣∣∣∣∣∣∣log

πk(θ − t ψ̃
[k]
Π√
n

)

πk(θ)


∣∣∣∣∣∣∣ ≤ C

∑k
λ=1 λ

β|ψ̃Π,λ|√
n

≤ o
(
kβ+1/2

√
n

)
= o(1).

4.5. Proof of Proposition 2.1. We set

(4.23) kn = n1/(2γ+1)(log n)−2/(2γ+1)(log log n)−2/(2γ+1).

Let J1 > 3. We have∑
λ≥J1

θ2
0λλ

2γ ≤
∑
λ≥J1

1
λ log λ(log log λ)2

≤
∫ ∞
J1

1
x log x(log log x)2

dx =
1

log log J1
,

and similarly∑
λ≥J1

θ2
0λ ≤

∑
λ≥J1

1
λ2γ+1 log λ(log log λ)2

≤
∫ ∞
J1

1
x2γ+1 log x(log log x)2

dx

=
[
− 1

2γx2γ log x(log log x)2

]∞
J1

(1 + o(1))

=
1

2γJ2γ
1 log J1(log log J1)2

(1 + o(1))(4.24)

when J1 →∞. Thus, for k1 large enough,

Pπ[k ≤ k1kn|Xn] = 1 + o(1).

We now study the terms µn,k and we show that there are some k’s for which
neither µn,k nor p(k|Xn) can be neglected. First note that when k → ∞
Gn(∆ψ,k) = o(1) and

µn,k =
√
nF0

∆ψ,k

∑
λ≥k+1

θ0λφλ

+ o(1)

=
√
n

∫
∆ψ,k

∑
λ≥k+1

θ0λφλ −
√
n

∫
(1− f0)∆ψ,k

∑
λ≥k+1

θ0λφλ + o(1)

:= µn,k,1 + µn,k,2 + o(1).
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We first consider µn,k,1:

µn,k,1 =
√
n

∫
ψ̃
∑

λ≥k+1

θ0λφλ =
√
n
∑

λ≥k+1

θ0λ

∫
1u≤x0φλ(u)du

=
√

2n
∑

l≥(k+1)/2

θ0,2l
sin(2πlx0)

2πl
=
√
n√
2π

∑
l≥(k+1)/2

sin2(2πlx0)
lγ+3/2

√
log l log log l

.

With x0 = 1/4, we finally obtain:

µn,k,1 =
√
n√
2π

∑
m≥(k+1)/4−1/2

1
(2m+ 1)γ+3/2 log1/2(2m+ 1) log log(2m+ 1)

,

so that there exist two constants c1 and c2 such that for all k ≤ kn,

|µn,k,1| ≥ c1

√
nk−γ−1/2

n (log kn)−1/2(log log kn)−1 ≥ c2

√
log n.

Now, let us deal with µn,k,2. We have

∆ψ,k =
∑

λ≥k+1

ψ̃λφλ −Πf0,k

 ∑
λ≥k+1

ψ̃λφλ


and ∥∥∥∥∥∥Πf0,k

 ∑
λ≥k+1

ψ̃λφλ

∥∥∥∥∥∥
2

2

≤ C
∑

λ≥k+1

ψ̃2
λ.

So,

µn,k,2 ≤ C
√
n‖f0 − 1‖∞

 ∑
λ≥k+1

ψ̃2
λ

1/2 ∑
λ≥k+1

θ2
0λ

1/2

≤ C
√
n‖f0 − 1‖∞

k−γ−1/2

√
log k log log k

.

By choosing k0 large enough ‖f0 − 1‖∞ can be made as small as needed,
so that we finally obtain that there exists c > 0 such that for all k ≤ kn

|µn,k| ≥ c
√

log n.
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