Adaptive Bayesian Estimation of a spectral density

Judith Rousseau ${ }^{\text {a,b }}$, Kruijer Willem ${ }^{\text {c }}$
${ }^{a}$ CEREMADE
Université Paris Dauphine, Place du Maréchal de Lattre de Tassigny 75016 Paris, FRANCE.
${ }^{b}$ ENSAE-CREST,
3 avenue Pierre Larousse, 92245 Malakoff Cedex, FRANCE .
${ }^{c}$ Wageningen University
Droevendaalsesteeg 1
Biometris, Building 107
6708 PB Wageningen
The Netherlands

Abstract

Rousseau et al. [8] recently studied the asymptotic behavior of Bayesian estimators in the FEXP-model for spectral densities of Gaussian time-series. For the L_{2}-norm on the log-spectral densities, they proved that the convergence rate is at least $n^{-\frac{\beta}{2 \beta+1}}(\log n)^{\frac{2 \beta+2}{2 \beta+1}}, \beta>\frac{1}{2}$ being the Sobolev-regularity of the true spectral density f_{o}. We will improve upon the logarithmic factor, and prove that given a prior only depending on $\beta_{s}>\frac{1}{2}$, we have adaptivity to any $\beta \geq \beta_{s}$.

Keywords: Bayesian non-parametric, rates of convergence, adaptive estimation, long-memory time-series, FEXP-model

1. Introduction

Let $X_{t}, t \in \mathbb{Z}$, be a stationary zero mean Gaussian time series with spectral density $f_{o}(\lambda), \lambda \in[-\pi, \pi]$ in the form

$$
\begin{equation*}
f_{o}(\lambda)=\left|1-e^{i \lambda}\right|^{-2 d_{o}} \exp \left\{\sum_{j=0}^{\infty} \theta_{o, j} \cos (j \lambda)\right\}, \quad \theta_{o} \in \Theta\left(\beta, L_{o}\right) \tag{1.1}
\end{equation*}
$$

where $d_{o} \in\left(-\frac{1}{2}, \frac{1}{2}\right), \Theta\left(\beta, L_{o}\right)=\left\{\theta \in l_{2}(\mathbb{N}): \sum_{j \geq 0} \theta_{j}^{2}(1+j)^{2 \beta} \leq L_{o}\right\}$ is a Sobolev ball. The parameter d_{o} is called the long-memory parameter; we
will refer to $\exp \left\{\sum_{j=0}^{\infty} \theta_{o, j} \cos (j \lambda)\right\}$ as the short-memory part of the spectral density. The parameter β controls the regularity of the short-memory part. It is then natural to use the fractionally exponential or FEXP-model (see Beran [2] and Moulines and Soulier [6] and references therein) $\mathcal{F}=\cup_{k \geq 0} \mathcal{F}_{k}$, where
$\mathcal{F}_{k}=\left\{f_{d, k, \theta}(\lambda)=\left|1-e^{i \lambda}\right|^{-2 d} \exp \left\{\sum_{j=0}^{k} \theta_{j} \cos (j \lambda)\right\}, d \in\left(-\frac{1}{2}, \frac{1}{2}\right), \theta \in \mathbb{R}^{k+1}\right\}$.
We study Bayesian estimation of f_{o} within this FEXP-model. Let $\pi(d, k, \theta)$ denote the prior on (d, k, θ); this induces a prior on \mathcal{F} which we also denote π. Let $T_{n}(f)$ denote the covariance matrix of the observations $X=$ $\left(X_{1}, \ldots, X_{n}\right)$, and let l_{n} be the associated log-likelihood

$$
\begin{equation*}
l_{n}(d, k, \theta)=-\frac{k+1}{2} \log (2 \pi)-\frac{1}{2} \log \left|T_{n}(f)\right|-\frac{1}{2} X^{\prime} T_{n}^{-1}(f) X \tag{1.2}
\end{equation*}
$$

Bayesian estimates of the spectral density f_{o} are based on the posterior

$$
\begin{equation*}
\pi(f \in A \mid X)=\frac{\int_{A} e^{l_{n}(d, k, \theta)} d \pi(f)}{\int_{\mathcal{F}} e^{l_{n}(d, k, \theta)} d \pi(f)}, \quad A \subset \mathcal{F} \tag{1.3}
\end{equation*}
$$

For example the posterior mean or median could be taken as 'point'-estimators of f_{o}. In this work however we focus on the posterior itself, and study the rate of convergence at which the posterior concentrates at f_{o}. More precisely, we lower-bound the posterior mass on the sets

$$
B\left(\epsilon_{n}\right)=\left\{f \in \mathcal{F}: l\left(f, f_{o}\right) \leq \epsilon_{n}^{2}\right\},
$$

where ϵ_{n} is a sequence tending to zero and

$$
l\left(f, f_{o}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\log f_{o}(\lambda)-\log f(\lambda)\right)^{2} d \lambda
$$

Whether $\pi\left(B\left(\epsilon_{n}\right) \mid X\right)$ tends to one for a certain sequence ϵ_{n} critically depends on the smoothness of f_{o} as well as the smoothness induced by the prior. In Theorem 4.2 of Rousseau et al. [8] (RCL hereafter) it is shown that when $\theta_{o} \in \Theta\left(\beta, L_{o}\right)$ and the prior on θ has support contained in a Sobolev ball $\Theta(\beta, L)$ with L large enough, then the rate is $\epsilon_{0}(L) n^{-\frac{2 \beta}{2 \beta+1}}(\log)^{\frac{4 \beta+4}{2 \beta+1}}$, for fixed $\beta>\frac{1}{2}$ and $\epsilon_{0}(L)$ large enough depending on L. In the present work we prove
that such priors in fact lead to an adaptive concentration rate (in β) and we improve upon the constant $\epsilon_{0}(L)$ and the logarithmic factor. Adaptivity is of great interest since it is difficult to know the smoothness of the function f a priori. Improving on the constant ϵ_{0} is crucial in Kruijer and Rousseau [4] but has also interest in its own. Indeed in Theorem 2.1 we prove that ϵ_{0} depends only on L_{o} the radius of the Sobolev ball containing θ_{o}. In RCL however ϵ_{0} depends on L, with the risk that would L be very large ϵ_{0} might also be very large. Here we prove that this is not the case and that we can choose L as large as the application requires. This suggests that the result might actually hold without the constraint L in the prior on θ, but we have not been able to prove that.

Notation:

The m-dimensional identity matrix is denoted I_{m}. For matrices A we write $|A|$ for the Frobenius or Hilbert-Schmidt norm $|A|=\sqrt{\operatorname{tr} A A^{t}}$, where A^{t} denotes the transpose of A. The operator or spectral norm is denoted $\|A\|^{2}=$ $\sup _{\|x\|=1} x^{\prime} A x$. We also use $\|\cdot\|$ for the Euclidean norm of finite dimensional vectors or sequences in $l^{2}(\mathbb{N})$, and for the L_{2}-norm of functions. If $u \in l^{1}(\mathbb{N})$ we denote $\|u\|_{1}=\sum_{j}\left|u_{j}\right|$. Given a sequence $\left\{u_{j}\right\}_{j \geq 0}$ and a nonnegative integer m, we write $u_{[m]}$ for the vector $\left(u_{0}, \ldots, u_{m}\right)$ and $\|u\|_{>m}$ for the l^{2}-norm of the sequence u_{m+1}, u_{m+2}, \ldots. When we write $\sum_{j \geq 0}\left(\theta_{j}-\theta_{o, j}\right)^{2}$ or $\sum_{j \geq 0} \mid \theta_{j}-$ $\theta_{o, j} \mid$ for a finite-dimensional vector θ and $\theta_{o} \in l_{2}(\overline{\mathbb{N}}), \theta_{j}$ is understood to be zero when $j>k$. For any function $h \in L_{1}([-\pi, \pi]), T_{n}(h)$ is the matrix with entries $\int_{-\pi}^{\pi} e^{i l l-m \mid \lambda} h(\lambda) d \lambda, l, m=1, \ldots, n$. For example, $T_{n}(f)$ is the covariance matrix of observations $X=\left(X_{1}, \ldots, X_{n}\right)$ from a time series with spectral density f. Let P_{o} denote the law associated with the true spectral density f_{o} and E_{o} expectations with respect to P_{o}.

2. Main results

Let $\beta_{s}>\frac{1}{2}$ be a fixed constant. We consider the following family of priors on (d, k, θ). d is a priori independent of (k, θ) with density π_{d} with respect to Lebesgue measure. For some positive $t<1 / 2$, the support of π_{d} is included in $[-1 / 2+t, 1 / 2-t]$. We consider two cases for the prior on k :
Deterministic sieve $\pi_{k}(k)=\delta_{k_{A, n}}(k)$, i.e. it is the Dirac mass at $k_{A, n}=$ $\left\lfloor A(n / \log n)^{1 /\left(2 \beta_{s}+1\right)}\right\rfloor$, for some positive A.
Random sieve the support of π_{k} is \mathbb{N} and satisfies:

$$
e^{-c_{1} k \log k} \leq \pi_{k}(k) \leq e^{-c_{2} k \log k}
$$

for some positive c_{1}, c_{2} and k large enough. $\pi_{\theta \mid k}$, the prior on θ given k, has a density with respect to the Lebesgue measure on \mathbb{R}^{k}. This density is also denoted $\pi_{\theta \mid k}$, and is such that, for some constants $L>0$ and $\beta_{s}>1 / 2$, $\pi_{\theta \mid k}$ is positive on $\Theta_{k}(\beta, L)$ and $\pi_{\theta \mid k}\left[\Theta_{k}\left(\beta_{s}, L\right)^{c}\right]=0$. These priors have been considered in particular in RCL, in Holan et al. [3] and in Kruijer and Rousseau [4]. We now state the main result.

Theorem 2.1. Suppose we observe $X=\left(X_{1}, \ldots, X_{n}\right)$ from a stationary, zero mean Gaussian time-series whose spectral density f_{o} is as in (1.1), with $d_{o} \in\left[-\frac{1}{2}+t, \frac{1}{2}-t\right], \theta_{o} \in \Theta\left(\beta, L_{o}\right)$ and $\beta \geq \beta_{s}>\frac{1}{2}$. Consider a prior $\pi=\pi_{d} \pi_{k} \pi_{\theta \mid k}$ as described above such that there exists $c_{0}>0$ for which

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \min _{k \in \mathcal{K}_{n}} \inf _{\theta \in \Theta_{k}\left(\beta, L_{o}\right)} e^{c_{0} k \log k} \pi_{\theta \mid k}(\theta)>1 \tag{2.1}
\end{equation*}
$$

where, for some $B>0$ and $k_{B, n}=\left\lfloor B(n / \log n)^{1 /\left(2 \beta_{s}+1\right)}\right\rfloor, \mathcal{K}_{n}=\left\{0, \ldots, k_{B, n}\right\}$ in the case of the random sieve prior, and $\mathcal{K}_{n}=\left\{k_{A, n}\right\}$ in the case of the deterministic prior. Assume also that L is large enough.

- In the case of the random sieve prior, for any $\beta_{2}>\beta_{s}$, we have the following uniform result:

$$
\begin{equation*}
\sup _{f_{o} \in \cup_{\beta_{s} \leq \beta \leq \beta_{2}} \Theta\left(\beta, L_{o}\right)} E_{o} \pi\left((d, k, \theta): l\left(f_{d, k, \theta}, f_{o}\right) \geq l_{0}^{2} \epsilon_{n}^{2}(\beta) \mid X\right) \leq n^{-3}, \tag{2.2}
\end{equation*}
$$

where $\epsilon_{n}(\beta)=(n / \log n)^{-\frac{\beta}{2 \beta+1}}$ and l_{0} only depends on L_{o}. In particular, it is independent of L.

- In the case of the deterministic prior, for any $\beta_{2}>\beta_{s}$, we have the following uniform result:

$$
\begin{equation*}
\sup _{f_{o} \in \cup_{\beta_{s} \leq \beta \leq \beta_{2}} \Theta\left(\beta, L_{o}\right)} E_{o} \pi\left((d, k, \theta): l\left(f_{d, k, \theta}, f_{o}\right) \geq l_{0}^{2} \epsilon_{n}^{2}\left(\beta_{s}\right) \mid X\right) \leq n^{-3} \tag{2.3}
\end{equation*}
$$

where l_{0} only depends on L_{o} and is independent of L.
The constraint $\beta>1 / 2$ is necessary to ensure that the short memory part $\exp \left(\sum_{j} \theta_{o j} \cos (j x)\right)$ is bounded and continuous. As mentioned in the introduction, the fact that l_{0} is independent of L is interesting since it allows us, in practice, to choose L arbitrarily high without penalizing the posterior concentration rate. It suggests that such results could hold with $L=\infty$,
however we have no proof for it. The random sieve prior leads to an adaptive posterior concentration rate over the range $\beta \geq \beta_{s}$, since for all $\beta>1 / 2$, $\epsilon_{n}(\beta)$ is the minimax (up to a $\log n$ term) rate over the class of FEXP spectral densities given by (1.1) and associated to $\theta \in \Theta\left(\beta, L_{o}\right)$. The deterministic sieve prior does not lead to an adaptive procedure since the posterior concentration rate is $\epsilon_{n}\left(\beta_{s}\right)$ in this case. Obtaining adaptation by putting a prior on the dimension of the model is a commonly used strategy in Bayesian non parametrics, see for instance Arbel [1] or Rivoirard and Rousseau [7].

3. Proof of Theorem 2.1

We first introduce some notions that are useful throughout the proof.

3.1. Notation and preliminary results

We first introduce various (pseudo)-distances. We denote the Kullback Leibler divergence between the Gaussian distributions associated with spectral densities f_{o} and f by

$$
K L_{n}\left(f_{o} ; f\right)=\frac{1}{2 n}\left\{\operatorname{tr}\left[T_{n}\left(f_{o}\right) T_{n}^{-1}(f)-I_{n}\right]-\log \operatorname{det}\left(T_{n}\left(f_{o}\right) T_{n}^{-1}(f)\right)\right\}
$$

a symmetrized version of it by $h_{n}\left(f_{o}, f\right)=K L_{n}\left(f_{o} ; f\right)+K L_{n}\left(f ; f_{o}\right)$ and the variance of the log-likelihood ratio by

$$
b_{n}\left(f_{o}, f\right)=\frac{1}{n} \operatorname{tr}\left\{T_{n}^{-1}(f)\left(T_{n}\left(f_{o}-f\right) T_{n}^{-1}(f) T_{n}\left(f_{o}-f\right)\right\} .\right.
$$

The limiting values of $b_{n}\left(f_{o}, f\right)$ and $h_{n}\left(f_{o}, f\right)$ are denoted

$$
h\left(f_{o}, f\right)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left[\frac{f_{o}(\lambda)}{f(\lambda)}+\frac{f(\lambda)}{f_{o}(\lambda)}-2\right] d \lambda, \quad b\left(f_{o}, f\right)=(2 \pi)^{-1} \int_{-\pi}^{\pi}\left(\frac{f_{o}}{f}(\lambda)-1\right)^{2} d \lambda
$$

Then $h\left(f_{o}, f\right) \geq l\left(f_{o}, f\right)$ (RCL, p.6). Using Lemma 2 in RCL we find that for all $k \in \mathbb{N}$,

$$
\begin{align*}
b_{n}\left(f_{o}, f_{d, k, \theta}\right) & \leq\left\|T_{n}\left(f_{o}\right)^{1 / 2} T_{n}(f)^{-1 / 2}\right\|^{2} h_{n}\left(f_{o}, f_{d, k, \theta}\right) \\
& \leq C\left(\left\|\theta_{o}\right\|_{1}+\|\theta\|_{1}\right) n^{2\left(d_{o}-d\right)+} h_{n}\left(f_{o}, f\right) \tag{3.1}
\end{align*}
$$

where C is a universal constant. Similarly,

$$
\begin{equation*}
h_{n}\left(f_{o}, f\right) \leq\left\|T_{n}^{-\frac{1}{2}}(f) T_{n}^{\frac{1}{2}}\left(f_{o}\right)\right\|^{2} b_{n}\left(f_{o}, f\right) \tag{3.2}
\end{equation*}
$$

In line with the notation of (1.2), let $\phi(x ; d, k, \theta)$ denote the density of X, which is the Gaussian density with mean zero and covariance matrix $T_{n}\left(f_{d, k, \theta}\right)$ and let $\phi\left(x ; d_{o}, \theta_{o}\right)$ denote the Gaussian density associated with $T_{n}\left(f_{o}\right)$. We write $R_{n}\left(f_{d, k, \theta}\right)=\phi(X ; d, k, \theta) / \phi\left(X ; d_{o}, \theta_{o}\right)$ for the likelihood-ratio.

The proof of Theorem 2.1 contains two parts. First, it needs to be shown that the rate is $l_{0}^{2} \epsilon_{n}^{2}$, for a constant l_{0} that may depend on L and β_{s}. Then by re-insertion of the rate obtained in the first part, we improve upon the constant l_{0}. In particular, it is shown to be independent of L for L large enough.

3.2. Proof of Theorem 2.1

Throughout the proof C denotes a universal constant. Let $0<t<1 / 2$ and
$\mathcal{G}_{k}\left(t, \beta_{s}, L\right)=\left\{f_{d, k, \theta}: d \in\left[-\frac{1}{2}+t, \frac{1}{2}-t\right], \theta \in \Theta_{k}\left(\beta_{s}, L\right)\right\}, \quad \mathcal{G}=\cup_{k=0}^{\infty} \mathcal{G}_{k}\left(t, \beta_{s}, L\right)$.
By the results of RCL (Theorem 3.1, and Corollary 1 in the supplement) we have consistency for $h\left(f_{o}, f_{d, k, \theta}\right)$ and $\left|d-d_{o}\right|$, i.e. for all $\delta, \epsilon>0$, $\pi\left(f_{d, k, \theta}: h\left(f_{d, k, \theta}, f_{o}\right)<\epsilon^{2},\left|d-d_{o}\right|<\delta \mid X\right)$ tends to one in probability. Hence it suffices to show that

$$
\begin{equation*}
\pi\left[W_{n} \mid X\right]=\frac{\int_{W_{n}} R_{n}(f) d \pi(f)}{\int R_{n}(f) d \pi(f)}:=\frac{N_{n}}{D_{n}} \xrightarrow{P_{o}} 0, \tag{3.3}
\end{equation*}
$$

where in the case of the random sieve prior,

$$
W_{n}=\left\{f_{d, k, \theta} \in \mathcal{G}: l\left(f_{o}, f_{d, k, \theta}\right) \geq l_{0} \epsilon_{n}^{2}(\beta), h\left(f_{o}, f_{d, k, \theta}\right) \leq \epsilon^{2},\left|d-d_{o}\right| \leq \delta\right\}
$$

for a constant $l_{0}>0$ depending only on L_{o}, β_{s} and the prior on k. In the case of the deterministic sieve prior, we replace $\epsilon_{n}^{2}(\beta)$ in this definition by $\epsilon_{n}^{2}\left(\beta_{s}\right)$. We present the proof of (3.3) for the case of the random sieve prior; the proof for the case of the deterministic sieve prior can be deduced by replacing β by β_{s}. The proof consists of two parts: first we show that for some $c>0$,

$$
\begin{equation*}
P_{o}\left[D_{n}<e^{-2 n u_{0} \epsilon_{n}^{2}(\beta)} / 2\right] \leq e^{-c n \epsilon_{n}^{2}(\beta)} \tag{3.4}
\end{equation*}
$$

for which we will establish a lower bound the prior mass on a KullbackLeibler neighborhood of f_{o}. In the second part we show that under the event
$D_{n} \geq \frac{1}{2} e^{-n u_{0} \epsilon_{n}^{2}(\beta)}$ we can control N_{n} / D_{n}. This will be done by giving a bound on the upper-bracketing entropy of the model.

For the proof of (3.4), note that RCL already found that if $\beta \geq \beta_{s}>1 / 2$, there exists $u_{0} \geq 0$ depending only on L_{o} such that

$$
P_{o}\left[D_{n}<e^{-n u_{0} \epsilon_{n}^{2}(\beta)(\log n)^{1 /(2 \beta+1)}} / 2\right]=o\left(n^{-1}\right)
$$

To prove (3.4), we thus need to improve on the $\log n$ term in the preceding equation. Set
$\overline{\mathcal{B}}_{n}=\left\{(d, k, \theta) ; K L_{n}\left(f_{o}, f_{d, k, \theta}\right) \leq \frac{\epsilon_{n}^{2}(\beta)}{4}, b_{n}\left(f_{o}, f_{d, k, \theta}\right) \leq \epsilon_{n}^{2}(\beta), d_{o} \leq d \leq d_{o}+\delta\right\}$, for some positive δ. Recall that

$$
\begin{aligned}
D_{n} & =\sum_{k} \pi_{k}(k) \int e^{l_{n}(d, k, \theta)-l_{n}\left(f_{o}\right)} d \pi_{\theta \mid k}(\theta) d \pi_{d}(d), \\
P_{o}^{n}\left[D_{n}<e^{-2 n u_{0} \epsilon_{n}^{2}(\beta)}\right] & \leq P_{o}^{n}\left[\int_{\overline{\mathcal{B}}_{n}} e^{l_{n}(f)-l_{n}\left(f_{o}\right)} d \pi(f)<e^{-2 n u_{0} \epsilon_{n}^{2}(\beta)}\right] .
\end{aligned}
$$

From the proof of Theorem 4.1 in RCL (section 5.2.1), it follows that

$$
P_{0}^{n}\left(D_{n} \leq e^{-n u_{0} \epsilon_{n}^{2}(\beta)} \pi\left(\overline{\mathcal{B}}_{n}\right) / 2\right) \leq e^{-C n \epsilon_{n}^{2}(\beta)}
$$

for some constant $C>0$ (independent of L). We now show that

$$
\begin{equation*}
\pi\left(\overline{\mathcal{B}}_{n}\right) \geq e^{-n u_{0} \epsilon_{n}^{2}(\beta) / 4} \tag{3.5}
\end{equation*}
$$

Define
$\tilde{\mathcal{B}}_{n}=\left\{\left(d, k_{B, n}, \theta\right) ; d_{o} \leq d \leq d_{o}+\epsilon_{n}^{2}(\beta) n^{-a},\left|\theta_{j}-\theta_{o, j}\right| \leq(1+j)^{-\beta} \epsilon_{n}(\beta) n^{-a}, j=0, \ldots, k_{B, n}\right\}$.
We first prove that $\pi\left(\tilde{\mathcal{B}}_{n}\right) \geq e^{-n u_{0} \epsilon_{n}^{2}(\beta) / 4}$ and then that $\tilde{\mathcal{B}}_{n} \subset \overline{\mathcal{B}}_{n}$. As in RCL (see the paragraph following equation (29) on p. 26), we find that

$$
\sum_{j=1}^{\infty}(1+j)^{2 \beta} \theta_{j}^{2} \leq 2 L_{o}+\epsilon_{n}^{2}(\beta) n^{-2 a} \leq 3 L_{o}, \forall \theta \in \tilde{\mathcal{B}}_{n}
$$

for n large enough. Combined with condition (2.1) on $\pi_{\theta \mid k}$, this implies

$$
\pi\left(\tilde{\mathcal{B}}_{n}\right) \geq\left(c \epsilon_{n}(\beta) k_{B, n}^{-\beta} n^{-a}\right)^{k+3} e^{-c_{0} k_{B, n} \log k_{B, n}} \geq e^{-c\left(\beta_{s}\right) k_{0} n \epsilon_{n}^{2}(\beta)}, \quad \forall \beta \geq \beta_{s}
$$

This achieves the proof of (3.4) with $u_{0}=c\left(\beta_{s}\right) k_{0}$.
To show that $\tilde{\mathcal{B}}_{n}$ is included in $\overline{\mathcal{B}}_{n}$, first note that equation (3.1) implies that it is enough to bound $h_{n}\left(f_{o}, f\right)$ on $\tilde{\mathcal{B}}_{n}$. To this end, we use the decomposition $f_{o}=f_{o, k_{B, n}} e^{\Delta_{d_{o}, k_{B, n}}}$, where $f_{o, k_{B, n}}=f_{d_{o}, k_{B, n}, \theta_{o}}$ and

$$
\Delta_{d_{o}, k_{B, n}}(\lambda)=\sum_{j=k_{B, n}+1}^{\infty} \theta_{o, j} \cos (j x), \quad \forall \lambda \in[-\pi, \pi] .
$$

Then we have the expansion

$$
f_{o}=f_{o, k_{B, n}}\left(1+\Delta_{d_{o}, k_{B, n}}+\Delta_{d_{o}, k_{B, n}}^{2} / 2+O\left(\Delta_{d_{o}, k_{B, n}}^{3}\right)\right), \quad\left|\Delta_{d_{o}, k_{B, n}}\right|_{\infty}=o(1)
$$

and

$$
\begin{equation*}
h_{n}\left(f_{o}, f\right) \leq 2\left[h_{n}\left(f_{o}, f_{o, k_{B, n}}\right)+h_{n}\left(f_{o, k_{B, n}}, f\right)\right] . \tag{3.6}
\end{equation*}
$$

We first deal with the first term above. Let $b_{o, n}=e^{\Delta_{d_{o}, k_{B, n}}}-1$ and without loss of generality we can assume that $b_{o, n}$ is positive in the expression of $h_{n}\left(f_{o}, f_{o, k_{B, n}}\right)$ so that for all $\beta>1 / 2$,

$$
\begin{align*}
h_{n}\left(f_{o}, f_{o, k_{B, n}}\right) & :=\frac{1}{2 n} \operatorname{tr}\left[T_{n}^{-1}\left(f_{o}\right) T_{n}\left(f_{o} b_{o, n}\right) T_{n}^{-1}\left(f_{o}\right) T_{n}\left(f_{o} b_{o, n}\right)\right] \\
& \leq \frac{c}{n} \operatorname{tr}\left[T_{n}^{-1}\left(g_{o}\right) T_{n}\left(g_{o} b_{o, n}\right) T_{n}^{-1}\left(g_{o}\right) T_{n}\left(g_{o} b_{o, n}\right)\right] \\
& =\frac{c}{n} \operatorname{tr}\left[T_{n}^{2}\left(b_{o, n}\right)\right]+c \gamma_{1}+c \gamma_{2} \tag{3.7}
\end{align*}
$$

where $g_{o}(\lambda)=|\lambda|^{-2 d_{o}}$ and c depends only on $\sum_{j=0}^{\infty}\left|\theta_{o, j}\right| \leq L_{o}^{1 / 2}(2 \beta-1)^{-1 / 2}$, and

$$
\begin{aligned}
& \gamma_{1}=\frac{1}{n}\left(\operatorname{tr}\left[\left(T_{n}\left(\frac{1}{4 \pi^{2} g_{o}}\right) T_{n}\left(g_{o} b_{o, n}\right)\right)^{2}\right]-\operatorname{tr}\left[T_{n}^{2}\left(b_{o, n}\right)\right]\right) \\
& \gamma_{2}=\frac{1}{n}\left(\operatorname{tr}\left[\left(T_{n}^{-1}\left(g_{o}\right) T_{n}\left(g_{o} b_{o, n}\right)\right)^{2}\right]-\operatorname{tr}\left[\left(T_{n}\left(\frac{1}{4 \pi^{2} g_{o}}\right) T_{n}\left(g_{o} b_{o, n}\right)\right)^{2}\right]\right) .
\end{aligned}
$$

We first bound the first term of the right hand side of (3.7). Note that $b_{o, n}(\lambda)=\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}+R_{0}$, where

$$
\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}(\lambda)=\sum_{j=k_{B, n}+1}^{K_{n}} \theta_{o, j} \cos (j \lambda), \quad K_{n}=\epsilon_{n}(\beta)^{-1 / \beta}(\log n)^{1 / \beta}
$$

and $\left\|R_{0}\right\|^{2} \leq \epsilon_{n}^{2}(\beta)(\log n)^{-2}$ so that

$$
\begin{align*}
\operatorname{tr}\left[T_{n}^{2}\left(b_{o, n}\right)\right] & =\operatorname{tr}\left[T_{n}^{2}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}\right)\right]+O\left(\log n\left[K_{n}^{-2 \beta}+K_{n}^{-\beta} k_{B, n}^{-\beta}\right]\right) \\
& =\operatorname{tr}\left[T_{n}^{2}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}\right)\right]+O\left(\epsilon_{n}^{2}(\beta)\right), \tag{3.8}
\end{align*}
$$

where the term $O\left(\log n\left[K_{n}^{-2 \beta}+K_{n}^{-\beta} k_{B, n}^{-\beta}\right]\right)$ comes from the fact that

$$
\left|\operatorname{tr}\left[T_{n}^{2}\left(b_{o, n}\right)\right]-\operatorname{tr}\left[T_{n}^{2}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}\right)\right]\right| \leq \operatorname{tr}\left[T_{n}^{2}\left(R_{0}\right)\right]+\left|T_{n}\left(R_{0}\right)\right|\left|T_{n}\left(\tilde{b}_{o, n}\right)\right|
$$

and from the use of inequality (20) in Lemma 6 of RCL, with $f_{1}=f_{2}=1$, $\delta=0$ and b either equal to $\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}$ or R_{0}. Note that the constant in the term $O\left(\epsilon_{n}^{2}(\beta)\right)$ in (3.8) does not depend on L. Lemma 2.1 in Kruijer and Rousseau [5] together with the fact that

$$
\left|\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}(\lambda)-\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}(y)\right| \leq \sum_{j=k_{B, n}}^{K_{n}} j\left|\theta_{o, j}\right| \leq C(\beta) L_{0} K_{n}^{-\beta+3 / 2} \vee k_{B, n}^{-\beta+3 / 2}
$$

implies that for large enough n,

$$
\begin{aligned}
& n^{-1}\left|\operatorname{tr}\left[T_{n}^{2}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}\right)\right]-2 \pi \operatorname{tr}\left[T_{n}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}^{2}\right)\right]\right| \\
& \quad \leq K C(\beta) L_{o} n^{-2 \beta+1+\epsilon} \epsilon_{n}^{2}(\beta)=o\left(\epsilon_{n}^{2}(\beta)\right), \quad \forall \epsilon>0,
\end{aligned}
$$

uniformly over $\beta_{s} \leq \beta \leq \beta_{2}$ and $\theta_{o} \in \Theta\left(\beta, L_{o}\right)$. Consequently,

$$
\begin{equation*}
\frac{c}{n} \operatorname{tr}\left[T_{n}^{2}\left(b_{o, n}\right)\right] \leq \operatorname{tr}\left[T_{n}^{2}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}\right)\right]+C\left(L_{o}, \beta\right) \epsilon_{n}^{2}(\beta), \tag{3.9}
\end{equation*}
$$

for a constant $C\left(L_{o}, \beta\right)$ independent of L. Next we apply Lemma 2.4 in Kruijer and Rousseau [5] with $f=g_{o}$ and $b_{1}=b_{2}=b_{o, n}$; it then follows that

$$
\begin{equation*}
\gamma_{1} \leq\left\|b_{o, n}\right\|_{\infty}^{2} n^{\delta-1} n^{\epsilon-1}=o\left(\epsilon_{n}^{2}(\beta)\right), \quad \forall \epsilon>0 \tag{3.10}
\end{equation*}
$$

Finally Lemma 2.3 in Kruijer and Rousseau [5] implies that for all $\epsilon>0$,

$$
\begin{equation*}
\gamma_{2} \leq\left\|b_{o, n}\right\|_{\infty}^{2} n^{-1+\epsilon}=o\left(\epsilon_{n}^{2}(\beta)\right) . \tag{3.11}
\end{equation*}
$$

Combining (3.9), (3.10) and (3.11), it follows that

$$
h_{n}\left(f_{o, k_{B, n}}, f_{o}\right)=n^{-1} \operatorname{tr}\left[T_{n}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}^{2}\right)\right]+C\left(L_{o}, \beta\right) \epsilon_{n}^{2}(\beta) \leq 2 C^{\prime}\left(L_{o}, \beta\right) \epsilon_{n}^{2}(\beta)
$$

where also $C^{\prime}\left(L_{o}, \beta\right)$ is independent of L. The last inequality follows from

$$
\begin{aligned}
& n^{-1} \operatorname{tr}\left[T_{n}\left(\tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}^{2}\right)\right]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \tilde{\Delta}_{d_{o}, k_{B, n}, K_{n}}^{2}(\lambda) d \lambda \\
& \quad=\sum_{j=k_{B, n}+1}^{K_{n}} \theta_{o, j}^{2} \leq C^{\prime}\left(L_{o}, \beta\right) \epsilon_{n}^{2}(\beta) .
\end{aligned}
$$

We now bound the last term in (3.6), which we write as
$h_{n}\left(f_{o, k_{B, n}}, f\right)=\frac{1}{2 n} \operatorname{tr}\left[T_{n}\left(f_{o, k_{B, n}}\right)^{-1} T_{n}(f b) T_{n}(f)^{-1} T_{n}(f b)\right], \quad b=\left(f-f_{o, k_{B, n}}\right) / f$.
Since $d \geq d_{o},|b|_{\infty}<+\infty$ and applying Lemma 6 inequality (20) of RCL, we obtain if $d, \theta \in \tilde{\mathcal{B}}_{n}$ with $a>0$,

$$
\begin{aligned}
h_{n}\left(f_{o, k_{B, n}}, f\right) & \leq C \log n\left(|b|_{2}^{2}+\left|d-d_{o}\right||b|_{\infty}^{2}\right) \\
& \leq C \log n\left(\sum_{j=1}^{k_{B, n}}\left(\theta_{j}-\theta_{o, j}\right)^{2}+n^{-a} \epsilon_{n}^{2}(\beta)\right)=o\left(\epsilon_{n}^{2}(\beta)\right),
\end{aligned}
$$

which finally implies that $\pi\left(\overline{\mathcal{B}}_{n}\right) \geq \pi\left(\tilde{\mathcal{B}}_{n}\right)$ and that (3.4) is proved. We now find an upper bound on N_{n}. First write $\bar{W}_{n}=W_{n} \cap \mathcal{F}_{n}$ where $\mathcal{F}_{n}=$ $\left\{f_{d, k, \theta} ; k \leq k_{B_{1}, n}\right\}$ and $k_{B_{1}, n}=B_{1}(n / \log n)^{1 /(2 \beta+1)}$. Then, since the prior on k is Poisson,

$$
\pi\left(\mathcal{F}_{n}^{c}\right) \leq e^{-c_{2} k_{B_{1}, n} \log k_{B_{1}, n}} \leq e^{-2 n u_{0} \epsilon_{n}^{2}(\beta)}
$$

if B_{1} is large enough (depending on $L_{o}, c_{2}, \beta_{s}, \beta_{2}$) and W_{n} can be replaced by \bar{W}_{n} in the definition of N_{n}. Following the proof of RCL, we decompose $\bar{W}_{n}=\cup_{l=l_{0}}^{l_{n}} W_{n, l}$, where $l_{0} \geq 2, l_{n}=\left\lceil\epsilon^{2} / \epsilon_{n}^{2}(\beta)\right\rceil-1$ and

$$
\begin{aligned}
W_{n, l}=\{ & f_{d, k, \theta} \in \mathcal{G}: k \leq k_{B_{1}, n}, h\left(f_{d, k, \theta}, f_{o}\right) \leq \epsilon^{2},\left|d-d_{o}\right| \leq \delta, \\
& \left.\epsilon_{n}^{2} l \leq h_{n}\left(f_{o}, f_{d, k, \theta}\right) \leq u_{n}(l+1)\right\} .
\end{aligned}
$$

In addition let $N_{n, l}=\int_{W_{n, l}} R_{n}(f) d \pi(f)$; then $N_{n}=\sum_{l=l_{0}}^{l_{n}} N_{n, l}$, and we have

$$
\begin{equation*}
E_{o}\left[\frac{N_{n}}{D_{n}}\right] \leq P_{o}^{n}\left(D_{n} \leq e^{-n u_{0} \epsilon_{n}^{2}(\beta)} / 2\right)+E_{o}\left[\sum_{l=l_{0}}^{l_{n}} \frac{N_{n, l}}{D_{n}} 1_{\left\{D_{n} \geq e^{-n u_{0} \epsilon_{n}^{2}(\beta)} / 2\right\}}\right] \tag{3.12}
\end{equation*}
$$

We construct tests $\bar{\phi}_{l}\left(l=l_{0}, \ldots, l_{n}\right)$ and write

$$
\begin{align*}
E_{o} & {\left[\sum_{l=l_{0}}^{l_{n}} \frac{N_{n, l}}{D_{n}} 1_{\left\{D_{n} \geq e^{\left.-n u_{n} / 2\right\}}\right.}\left(\bar{\phi}_{l}+1-\bar{\phi}_{l}\right)\right] } \tag{3.13}\\
& \leq \sum_{l=l_{0}}^{l_{n}} E_{o}\left(\bar{\phi}_{l}\right)+2 e^{n u_{n}} \sum_{l=l_{0}}^{l_{n}} E_{o}\left[N_{n, l}\left(1-\bar{\phi}_{l}\right)\right] .
\end{align*}
$$

The tests are based on a collection of spectral densities $H_{n, l}=\cup_{k=0}^{k_{B_{1}, n}} H_{n, l, k} \subset$ $W_{n, l}$ defined as follows. Let D_{l} be a grid over $\left\{d:\left|d-d_{o}\right| \leq \delta\right\}$ with spacing $l \epsilon_{n}^{2}(\beta) /(\log n)$. Let $T_{l, k}$ denote the centers of hypercubes of radius $\frac{l \epsilon_{n}^{2}(\beta)}{k}$, covering $\Theta_{k}\left(\beta_{s}, L\right)$. We define $H_{n, l, k}$ as the collection of spectral densities $f_{l, i}=(2 e)^{l \epsilon_{n}^{2}(\beta)} f_{d_{l, i}, k, \theta^{l}, i}$, with $d_{l, i} \in D_{l}$ and $\theta^{l, i} \in T_{l, k}$. With every $f_{l, i}$ we associate a test

$$
\begin{equation*}
\phi_{l, i}=1_{\left\{X^{\prime}\left(T_{n}^{-1}\left(f_{o}\right)-T_{n}^{-1}\left(f_{l, i}\right)\right) X \geq \operatorname{tr}\left\{I_{n}-T_{n}\left(f_{o}\right) T_{n}^{-1}\left(f_{l, i}\right)+\frac{n}{4} h_{n}\left(f_{o}, f_{l, i}\right)\right\}\right\}}, \tag{3.14}
\end{equation*}
$$

and set $\bar{\phi}_{l}=\max _{i} \phi_{l, i}$.
The set $H_{n, l}$ can be seen as a collection of upper-bracket spectral densities, since for each $f_{d, k, \theta} \in W_{n, l}$ there exists a $f_{l, i} \in H_{n, l, k}$ such that $f_{l, i} \geq f_{d, k, \theta}$, $0 \leq d_{l, i}-d \leq l \epsilon_{n}^{2}(\beta) /(\log n)$ and

$$
\begin{align*}
0 \leq & (2 e)^{l \epsilon_{n}^{2}(\beta)} \exp \left\{\sum_{j=0}^{k} \theta_{j}^{l, i} \cos (j x)\right\}-\exp \left\{\sum_{j=0}^{k} \theta_{j} \cos (j x)\right\} \tag{3.15}\\
& \leq \frac{l \epsilon_{n}^{2}(\beta)}{32}(2 e)^{l \epsilon_{n}^{2}(\beta)} \exp \left\{\sum_{j=0}^{k} \theta_{j}^{l, i} \cos (j x)\right\}
\end{align*}
$$

The cardinality of $\cup_{k=0}^{k_{B_{1, n}}} H_{n, l, k}$ is at most

$$
\begin{equation*}
\left(l^{-1} k_{B_{1}, n} \epsilon_{n}(\beta)^{-4}\right)^{k_{B_{1}, n}} \frac{\delta \log n}{l \epsilon_{n}^{2}(\beta)} \leq \exp \left\{2 k_{B_{1}, n} \log n\right\}=C_{n, l} \tag{3.16}
\end{equation*}
$$

for all $l \geq 2$. To bound the right hand side of (3.13), we use (3.16) in combination with the following error bounds for each of the tests $\phi_{l, i}$. Let $f \in W_{n, l}$ and let $f_{l, i} \in H_{n, l}$ be such that (3.15) holds, $\phi_{l, i}$ being the associated test-function. Then, from equation (4.4) in RCL together with the bound (3.1) on $b_{n}\left(f_{o}, f_{l, i}\right) / h_{n}\left(f_{o}, f_{l, i}\right)$ which again depends on $\left\|\theta^{l, i}\right\|_{1}$ and L_{0}, we
obtain that for all $0<\alpha<1$, there exists constants $d_{1}, d_{2}>0$ depending on L_{o} and $\left\|\theta^{l, i}\right\|_{1}$ such that

$$
\begin{equation*}
E_{o} \phi_{l, i} \leq e^{-d_{1} n l^{\alpha} \epsilon_{n}^{2}(\beta)}, \quad E_{f}^{n}\left(1-\phi_{l, i}\right) \leq e^{-d_{2} n l^{\alpha} \epsilon_{n}^{2}(\beta)} \tag{3.17}
\end{equation*}
$$

Using (3.17) we obtain the following bound on the term $\sum_{l=l_{0}}^{l_{n}} E_{o}\left(\bar{\phi}_{l}\right)$ in (3.13):

$$
\sum_{l=l_{0}}^{l_{n}} E_{o}\left(\bar{\phi}_{l}\right) \leq \sum_{l=l_{0}}^{l_{n}} C_{n, l} e^{-d_{1} n l^{\alpha} \epsilon_{n}^{2}(\beta)} \leq e^{2 k_{B_{1}, n} \log n} \sum_{l=l_{0}}^{l_{n}} e^{-d_{1} n l^{\alpha} \epsilon_{n}^{2}(\beta)} \rightarrow 0
$$

as soon as $l_{0} \geq\left(\frac{2 B_{1}}{d_{1} u_{0}}\right)^{2}$, choosing $\alpha=1 / 2$. Using (3.17) the last term in (3.13) is

$$
\sum_{l=l_{0}}^{l_{n}} E_{o}\left[N_{n, l}\left(1-\bar{\phi}_{l}\right)\right]=\sum_{l=l_{0}}^{l_{n}} \int_{W_{n, l}} E_{f}^{n}\left(1-\bar{\phi}_{l}\right) d \pi(f) \leq e^{-d_{2} n l_{0}^{1 / 2} \epsilon_{n}^{2}(\beta)} \leq e^{-2 n \epsilon_{n}^{2}(\beta)}
$$

as soon as $d_{2} l_{0}^{1 / 2} \geq 2$, i.e. $l_{0} \geq 4 d_{2}^{-2}$. Note that the two lower bounds on l_{0} depends on L_{o} and on $\left\|\theta^{l, i}\right\|_{1}$. Finally choosing, $l_{0}=\max \left(4 d_{2}^{-2},\left(\frac{2 B_{1}}{d_{1} u_{0}}\right)^{2}, 2, u_{0}\right)$ we obtain

$$
P^{\pi}\left[h_{n}\left(f, f_{o}\right) \leq l_{0} \epsilon_{n}^{2}(\beta) \mid X^{n}\right]=o\left(n^{-1}\right) .
$$

From that we deduce a concentration rate in terms of the l norm, following RCL's argument in Appendix C. Let l_{0} be an arbitrary constant and assume that $h_{n}\left(f, f_{o}\right) \leq l_{0} \epsilon_{n}^{2}(\beta)$ and $f=f_{d, k, \theta}$. Then inequality (C.3) of Lemma 6 of RCL implies that

$$
\frac{1}{n} \operatorname{tr}\left[T_{n}\left(f_{o}^{-1}\right) T_{n}\left(f_{o}-f\right) T_{n}\left(f^{-1}\right) T_{n}\left(f_{o}-f\right)\right] \leq C_{1} l_{0} \epsilon_{n}
$$

where C_{1} depends only on $\|\theta\|_{1}$ and on $\left\|\theta_{o}\right\|_{1}$. This implies that

$$
\frac{1}{n} \operatorname{tr}\left[T_{n}\left(f_{o}^{-1}\left(f_{o}-f\right)\right) T_{n}\left(f^{-1}\left(f_{o}-f\right)\right)\right] \leq 2 C_{1} l_{0} \epsilon_{n}^{2}(\beta)
$$

since the difference between the two terms is of order $O\left(n^{-1+2 a}\right) \forall a>0$, which also implies that $h\left(f_{o}, f\right) \leq 3 C_{1} l_{0} \epsilon_{n}^{2}(\beta)$, for the same reason. Since $l\left(f_{o}, f\right) \leq h\left(f_{o}, f\right)$, we finally obtain that

$$
P^{\pi}\left[l\left(f, f_{o}\right) \leq 3 C_{1} l_{0} \epsilon_{n}^{2}(\beta) \mid X^{n}\right]=o\left(n^{-1}\right)
$$

To terminate the proof of Theorem 2.1, it only remains to prove that l_{0} depends only on L_{o}, β_{s}. This is done using a simple re-insertion argument. Recall also that $k \leq k_{B_{1}, n}=B_{1} n \epsilon_{n}^{2}(\beta)$, where B_{1} is independent of the radius L of the sobolev-ball $\Theta\left(\beta_{s}, L\right)$ defining the support of the prior. We start with the following observation. From Kruijer and Rousseau [4] (equation (3.5)) it follows that for fixed d and k, the minimizer of $l\left(f_{o}, f_{d, k, \theta}\right)$ over \mathbb{R}^{k+1} is

$$
\bar{\theta}_{d, k}:=\operatorname{argmin}_{\theta \in \mathbb{R}^{k+1}} l\left(f_{o}, f_{d, k, \theta}\right)=\theta_{o[k]}+\left(d_{o}-d\right) \eta_{[k]},
$$

where η is defined by $\eta_{j}=-2 / j(j \geq 1)$ and $\eta_{0}=0$. Assuming that $l\left(f_{o}, f_{d, k, \theta}\right) \leq 3 C_{1} l_{0} \epsilon_{n}^{2}(\beta)$ and $k \leq k_{B_{1}, n}$ leads to $l\left(f_{o}, f_{d, k, \bar{\theta}_{d, k}}\right) \leq 3 C_{1} l_{0} \epsilon_{n}^{2}$ and $\left\|\theta-\bar{\theta}_{d, k}\right\|^{2}=l\left(f_{d, k, \theta}, f_{d, k, \bar{\theta}_{d, k}}\right) \leq 12 C_{1} l_{0} \epsilon_{n}^{2}$. Therefore

$$
\begin{aligned}
\sum_{j=0}^{k}\left|\theta_{j}\right| & \leq \sum_{j=0}^{k_{B_{1}, n}}\left|\theta_{j}-\left(\bar{\theta}_{d, k_{n}}\right)_{j}\right|+\sum_{j=0}^{k_{B_{1}, n}}\left|\left(\bar{\theta}_{d, k_{n}}\right)_{j}\right| \\
& \leq \sqrt{12 C} \sqrt{l_{0}} \epsilon_{n} k_{B_{1}, n}^{1 / 2}+2\left|d-d_{o}\right| \log n+\sum_{j=0}^{k_{B_{1}, n}} j^{\rho}\left|\theta_{o, j}\right| \leq 2\left(2 \beta_{s}-1\right)^{-1 / 2} \sqrt{L_{o}}
\end{aligned}
$$

when n is large enough, where the second inequality comes from Lemma 3.1 of Kruijer and Rousseau [4]. This achieves the proof of Theorem 2.1.

Acknowledgement

This work was supported by the 800-2007-2010 grant ANR-07-BLAN-0237-01 "SP Bayes".

References

[1] Arbel, J. (2010). Bayesian optimal adaptive estimation using a sieve prior, submitted.
[2] Beran, J. (1993). Fitting long-memory models by generalized linear regression. Biometrika, 80(4):817-822.
[3] Holan, S., McElroy, T., and Chakraborty, S. (2009). A Bayesian approach to estimating the long memory parameter. Bayesian anlysis, 4(1):159-190.
[4] Kruijer, W. and Rousseau, J. (2011a). Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors.
[5] Kruijer, W. and Rousseau, J. (2011b). Bayesian semi-parametric estimation of the long-memory parameter under fexp-priors. (supplement).
[6] Moulines, E. and Soulier, P. (2003). Semiparametric spectral estimation for fractional processes. In Theory and applications of long-range dependence, pages 251-301. Birkhäuser Boston, Boston, MA.
[7] Rivoirard, V. and Rousseau, J. (2010). Bernstein-von mises theorem for linear functionals of the density.
[8] Rousseau, J., Chopin, N., and Liseo, B. (2010). Bayesian nonparametric estimation of the spectral density of a long memory gaussian process.

