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Abstract

In this paper, I will review the main results on the asymptotic proper-

ties of the posterior distribution in nonparametric or large dimensional

models. In particular I will explain how posterior concentration rates

can be derived and what we learn from such analysis in terms of impact

of the prior distribution in large dimensional models. These results con-

cern fully Bayes and empirical Bayes procedures. I will also describe

some of the results that have been obtained recently in semi-parametric

models, focusing mainly on the Bernstein - von Mises property. Al-

though these results are theoretical in nature, they shed light on some

subtle behaviours of the prior models and sharpen our understanding

of the family of functionals that can be well estimated, for a given prior

model.
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1. INTRODUCTION

Some five years ago, it was said at a Bayesian nonparametric workshop that the field

was now growing so fast that it was not possible to keep up with all the evolutions and

new findings. And indeed, Bayesian nonparametrics has grown to be a major field in

Bayesian statistics with applications in a large number of fields within biostatistics, physics,

economy, social sciences, computational biology, comuter vision and language processing.

There is now a collection of textbooks on general Bayesian nonparametric models , such as

(Dey et al., 1998, Ghosh and Ramamoorthi, 2003, Hjort et al., 2010) or even on some spe-

cific aspects of Bayesian nonparametric, see for instance (Rasmussen and Williams, 2006)

for Machine learning and Gaussian processes.

With the elaboration of more sophisticated models, the need to understand their theo-

retical properties becomes crucial. Theoretical studies on Bayesian nonparametric or large

dimensional models can be split - typically - into two parts: asymptotic frequentist prop-

erties and probabilistic properties of the random process defining the prior and/or the

posterior distribution. In this paper, I will mainly describe the advances that have been

obtained on the asymptotic frequentist properties of Bayesian nonparametric procedures.

When opposing Bayesian to frequentist statistics, one is merely opposing the meth-

ods of validation, since, at least from a frequentist view - point there is not a frequentist

methods but all sorts of different ” algorithms”, say, and the question is on how to eval-

uate them. Interestingly, Bayesian statistics form a global approach in that it provides

a generic methodology to make inference, together with inherent evaluation tools. This

coherency sometimes lead (Bayesian) statisticians to question the need for understanding

their (asymptotic) frequentist properties. I will not enter this dispute, however I will try

along the way to explain why it is helpful to understand the asymptotic frequentist prop-

erties of Bayesian procedures, in particular in complex or large dimensional models, when

intuition and subjective inputs cannot be fully invoked.

Although strictly speaking nonparametric designates infinite dimensional parameters, I

will also discuss high dimensional models since they share common features with nonpara-

metric models.

Bayesian nonparametric modelling was probably intiated from de Finetti’s representa-
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tion of infinite exchangeable sequences, see (de Finetti, 1937), which states that any infinite

exchangeable sequence (Yi, i ∈ N) has a distribution which can be represented as:

Yi|P
iid∼ P, i ∈ N, P ∼ Π, (1)

so that the de Finetti measure Π can be understood as a prior distribution on P . Nowadays,

more complex structures are modelled and used in practice.

Consider a statistical model associated to a set of observations Y n ∈ Y(n) ∼ Pθ, θ ∈ Θ

where n denotes a measure of information of the data Y n. In the exchangeable model (1)

for instance Θ designates the set of probabilities on Y1, or the set of probability densities on

Y1 if we restrict our attention to dominated models. In regression or classification models of

Y on X, Θ may denote the set of regression functions, or the set of conditional distributions

or densities given X. Generally speaking Θ can have a very complex structure, be high or

infinite dimensional. Hence, in such cases the influence of the prior is strong and does not

entirely vanish asymptotically. It is then interesting to understand the types of implicit

assumptions which are made by the choice of a specific prior and also within a family of

priors which are the hyperparameters whose influence does not disappear as the number

of observations increases. In some applications, hyperparameters are determined based on

prior knowledge, as in (Yau et al., 2011), in others they are chosen based on the data as in

(van de Wiel et al., 2013); in the latter case the approach is called empirical Bayes. In both

cases it is important to assess the influence of these choices. From a theoretical view-point

subjective priors and data dependent priors do not present the same difficulties, in Section

?? I describe the asymptotic behaviour of posterior distributions associated to priors that

do not depend on the data while in Section 4 empirical Bayes posteriors are considered.

Before describing theoretical properties of Bayesian nonparametric procedures, I will re-

call in Section 2 the two main categories of Bayesian nonparametric prior models : namely

those based on Dirichlet processes or its extensions and those based on Gaussian process

priors. In Section 3 then the main results on posterior consistency and posterior concentra-

tion rates are presented, Section 4 treats the recent results on empirical Bayes procedures

and Section 5 briefly describes advances in Semi-parametric models.

2. COMMON BAYESIAN NONPARAMETRIC MODELS

We do not intend to cover the whole spectrum of Bayesian nonparametric, but in this section

we will review two important families of processes that are used in Bayesian nonparametric

modelling.

2.1. Around the Dirichlet process

The most celebrated process used in prior modelling is the Dirichlet process prior DP ,

introduced by (Ferguson, 1974). The Dirichlet process can be characterized in many ways.

It is parameterized by a mass M > 0 and and probability measure G0 on a space X . An

explicit construction of its distribution is known as the stick - breaking representation, it is
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due to (Sethuraman, 1994) and is given by

G =

∞X
j=1

pjδθj ,

pj = Vj
Y
l<j

(1− Vl), with Vj
iid∼ Beta(1,M) and θj

iid∼ G0,

(2)

mutually independently, where δθj stands for the Dirac point mass at θj . We write G ∼
DP (M,G0). The Dirichlet process has various other representations which makes it a very

useful process, see for instance (Ghosh and Ramamoorthi, 2003, Lijoi and Prünster, 2010).

Most often, the Dirichlet process is not used alone in the prior modelling. It is commonly

used combined with some kernel fθ in a mixture model :

Yi|θi ∼ fθi , θi|P
iid∼ P, P ∼ DP (M,G0). (3)

The above type of model is a powerful tool to estimate the density of Yi but it can

also be considered for clustering given the discrete nature of the Dirichlet process. All

sorts of variations around the mixture model (3) can be considered. For instance in

(Kyung and Casella, 2010) the authors model the distribution of the random effects in a

random effect model using a Dirichlet process. To go beyond exchangeable data, hierarchi-

cal Dirichlet processes, dependent Dirichlet processes, infinite hiden Markov models have

been constructed, see (Hjort et al., 2010) for descriptions of these extensions.

Also, extensions of the Dirichlet process (2) have been constructed based either on

the Sethuraman representation or one of its other representations : normalized completely

random measure, Polya urn representation, see (Lijoi and Prünster, 2010), or as a special

case of Polya trees, (Lavine, 1992).

2.2. Around Gaussian processes

Gaussian processes form another class of very popular processes used in prior modelling in

Bayesian nonparametrics. Bayesian modelling via Gaussian processes has strong connec-

tions with machine learning approaches as described in (Rasmussen and Williams, 2006).

They are used to model curves. Roughly speaking a zero mean Gaussian process can

be viewed as a set of random variables on a probability space (Ω,B, P ), (Wt, t ∈ T )

for some set T , with finite dimensional marginals following multivariate Gaussian dis-

tributions. It is caracterized by a covariance kernel K(s, t), s, t ∈ T . The behaviour

of the Gaussian process is therefore driven by the choice of the Kernel. The most

well known kernels are the exponential kernel Ka(s, t) = e−a‖t−s‖
2
, the Matérn Kernel

Kν,a(s, t) = 21−ν(
√

2ν‖s − t‖/a)νKν(
√

2ν‖s − t‖/a)/Γ(ν) where Kν is the Bessel func-

tion, a, ν > 0, and the Brownion motion kernel K(s, t) = s ∧ t. The first two refer to

stationary Gaussian processes with T a normed space, while the Brownion motion is non

stationary and sits on T ⊂ R+. These three classes of kernels are associated to very dif-

ferent behaviour of the process, the curves (Wt, t ∈ T ) drawn from these distributions

have in particular different smoothness properties. The exponential kernel leads to in-

finitely differentiable curves, contrarywise to the Matérn or the Brownion motion. A key

feature in understanding the behaviour of the Gaussian process associated to a given ker-

nel, is its Reproducing Kernel Hilbert space (RKHS) H. Roughly speaking the RKHS is a

Hilbert space and is the closure in L2(Ω,B, P ) of the functions t → E[Wt

P
i αiWsi ], see

(van der Vaart and van Zanten, 2008a) for a review on the subject.
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There are many other ways to construct probabilities on curves, in a similar spirit to

Gaussian processes. Indeed Gaussian processes, under weak conditions, can be decomposed

as
P
j Zjλjej where (ej)j form an orthonormal basis, λj > 0 and the Zj

iid∼ N (0, 1). Other

types of projections on linear spaces can be considered using wavelets, splines, Legendre

polynomials to name but a few. The prior is then typically formed by (1) choosing the

dimension of the space from some distribution on N and (2) given the dimension of the

space, drawing the coefficients of the projection on the space from some specific distribution.

We now describe the tools which have been developped to study the asymptotic be-

haviour of the posterior distribution on large or infinite dimensional spaces.

3. ASYMPTOTIC PROPERTIES OF THE POSTERIOR DISTRIBUTION

3.1. Notations and setup

Herafter we consider a Bayesian model (Y(n), Pθ, θ ∈ Θ) where (Θ,A) is the parameter

space which is possibly infinite dimensional and A is its σ− field, with a prior probability

Π on Θ. We assume that the model is dominated by some measure ν on Yn and we write

fθ the density of Pθ with respect to ν and `n(θ) = log fθ(Y
n) the log-likelihood. Then the

posterior distribution can be represented as, for all B ∈ A,

Π(B|Y n) =

R
B
fθ(Y

n)dΠ(θ)R
Θ
fθ(Y n)dΠ(θ)

. (4)

Hereafter θ0 denotes the true value of the parameter, as we are now focusing on the

frequentist properties of Π(.|Y n). For all θ ∈ Θ, Eθ and Vθ denote respectively expectation

and variance with respect to Pθ.

3.2. Posterior consistency

Consider a Bayesian model as described in Section 3.1 with a prior probability Π on Θ,

we say that the posterior distribution is consistent with respect to a loss function d(., .) on

Θ0 ⊂ Θ if for all θ0 ∈ Θ0,

∀ε > 0; Π (d(θ, θ0) < ε|Y n)→ 1 Pθ0 a.s. as n goes to +∞ (5)

In other words posterior consistency means that the posterior distribution concentrates

around the true parameter θ0, in terms of the loss d(., .). Posterior concentration is a

minimal requirement, in particular in the context of large dimensional models where it is

not possible to construct fully subjective priors. Moreover, even from a subjective Bayes

point of view, posterior consistency is important since it is the necessary and sufficient

condition for the asymptotic merging of 2 posterior distributions associated to 2 different

priors as the information in the data, n, goes to infinity, see (Diaconis and Freedman, 1986).

Although not all priors lead to posterior consistency, posterior consistency has been verified

in a large number of models and of prior distributions. This was initiated by the work

of (Schwartz, 1965) in the case of density estimation and extended by (Barron, 1988) for

generic models.

From (Schwartz, 1965) and (Barron, 1988), posterior consistency at θ0 under the loss

d(., .) is achieved if for all θ ∈ Θ there exists D(θ0; θ) (typically the Kullback-Leibler diver-

gence) such that

limsupnn
−1 (`n(θ0)− `n(θ)) = D(θ0; θ), Pθ0 a.s.
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and under the following conditions on the model and the prior: for all ε > 0,

• (i) Kullback-Leibler condition:

Π(Sε) > 0, Sε = {θ;D(θ0; θ) < ε}

• (ii) Testing condition : there exist Θn ⊂ Θ, r, δ > 0 and a sequence of test functions

φn ∈ [0, 1] such that

Π(Θc
n) ≤ e−nr, Eθ0 (φn) ≤ e−nδ, sup

θ∈Θn,d(θ0,θ)>ε

Eθ(1− φn) ≤ e−nδ

Condition (i) ensures that the prior mass puts positive (enough) mass on neighbourhoods

(here Kullback-Leibler neighbourhoods) of the true distribution while condition (ii) means

that we are able to construct (exponential) tests separating the true parameter θ0 to points

that are far away from it in the d(., .) metric (or pseudo-metric). In other words φn is a

statistical test for the problem H0 : θ = θ0 versus H1 : d(θ0, θ) > ε and θ ∈ Θn. Condition

(ii) then says that the tests φn need to have exponentially decreasing first and second type

errors. Roughly speaking, when such tests exist then `n(θ)−`n(θ0) < −nδ for some δ > 0 for

all θ ∈ Θn, with large probability. Since Θ is not necessarily compact, the existence of tests

with exponential decay is seldom verified over Θ, but it is enough to construct the tests φn
on a sequence of subsets Θn increasing towards Θ and having high prior probability. They

are typically established by splitting Θn into a number say Nn of subsets Θi,n (balls for

instance) and to construct for each subset Θi,n a test function for the problem H0 : θ = θ0

versus H1 : θ ∈ Θi,n and to define φn as the maximum of such tests. We explain in more

details in Section 3.3.1 how these tests are used to derive posterior concentration.

Consistency has been established in a variety of models, as in density estimation for i.i.d

data, see (Schwartz, 1965, Barron et al., 1999, Lijoi et al., 2005) for generic results, regres-

sion function estimation (Choi and Schervish, 2007, Ghosal and Roy, 2006), or in models

with non independent data (Ghosal and Tang, 2006, Rousseau et al., 2012, Vernet, 2014)

and recently these results have been extended to data dependent priors (empirical Bayes)

in (Petrone et al., 2014). The above papers present general conditions on the true param-

eter and on the prior distribution to ensure posterior consistency. Specific prior models

have also been studied in the literature. However to understand better the impact of the

prior distribution on the analysis in complex models it is enlightening to study posterior

concentration rates.

3.3. Posterior concentration rates

Posterior concentration (or contraction) rates are defined by:

Definition 1. The posterior distribution concentrates at rate εn at θ0 if there exists M > 0

such that

Eθ0 (Π (d(θ, θ0) < Mεn|Y n)) = 1 + o(1) (6)

Posterior concentration or contraction rates are therefore a more precised version of

posterior consistency since they provide an upper bound on the rate at which the posterior

distribution shrinks towards the true parameter θ0. Typically εn depends on caracteristics

of θ0 and on properties of the prior distribution Π.

So why is it interesting to study posterior concentration rates ? From a frequentist

point of view, (6) typically implies that Bayesian estimates such as the posterior mean or
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the posterior median have a frequentist risk of order εn, see (Ghosal et al., 2000). It is

also interesting for understanding the behaviour of credible balls with respect to d(., .), i.e.

credible sets defined as

Cα = {θ; d(θ, θ̂) ≤ zα}, Π (θ ∈ Cα|Y n) ≥ 1− α

so that zα is the 1−α-th quantile of the posterior distribution of d(θ, θ̂) and θ̂ is some given

estimator, like the posterior mean of θ. Indeed as explained in (Hoffman et al., 2013), if

Eθ0

“
d(θ0, θ̂)

”
= O(εn) and if (6) is satisfied, then Eθ0 (|Cα|) = O(εn) with |Cα| denoting

the size (radius) of Cα and Z
Θ

Pθ(θ ∈ Cα)dΠ(θ) ≥ 1− α.

Hence the credible region is not necessarily a honest confidence region, but on average it is

a confidence region with coverage 1− α.

Finally, deriving the posterior concentration rates is enlightning about the way the

prior distribution acts, which is particularly important in high dimensional models; we now

explain how these posterior concentration rate can be derived. We illustrate in Section 3.3.2

in two families of examples why the study of posterior concentration rates shed some light

on the impact of the prior.

3.3.1. Conditions and results. Similarly to posterior consistency, posterior concentration

rates are obtained by verifying the following types of conditions, see (Ghosal et al., 2000,

Ghosal and van der Vaart, 2007a):

• (i) Kullback-Leibler condition: There exists c1 > 0

Π(S̃εn) ≥ e−c1nε
2
n S̃εn = {θ; KLn(θ0, θ) ≤ nε2n;V2(θ0, θ) ≤ nε2n}

where

KLn(θ0, θ) = Eθ0 (`n(θ0)− `n(θ)) ; V2(θ0, θ) = Vθ0 (`n(θ0)− `n(θ))

• (ii) Testing condition : there exist Θn ⊂ Θ and a sequence of test functions φn ∈ [0, 1]

such that

Π(Θc
n) = o(e−(c1+2)nε2n)

Eθ0 (φn) = o(1), sup
θ∈Θn,d(θ0,θ)>Mεn

Eθ(1− φn) = o(e−(c1+2)nε2n)

Roughly speaking the argument follows from the following decomposition : write Bεn(θ0) =

{θ; d(θ, θ0) ≤Mεn} then

Π (Bcεn(θ0)|Y n) =

R
Bcεn

(θ0)
e`n(θ)−`n(θ0)dΠ(θ)R

Θ
e`n(θ)−`n(θ0)dΠ(θ)

:=
Nn
Dn

,

www.annualreviews.org • 7



since Nn/Dn ≤ 1 and 0 ≤ φn ≤ 1, we can write

Eθ0 (Π (Bcεn(θ0)|Y n)) ≤ Eθ0 (φn) + Pθ0

 
Dn <

e−(c1+2)nε2n

2

!
+ 2e(c1+2)nε2nEθ0(Nn(1− φn))

≤ Eθ0 (φn) + Pθ0

 
Dn <

e−(c1+2)nε2n

2

!
+ 2e(c1+2)nε2nEθ0

 Z
Θcn(θ0)

e`n(θ)−`n(θ0)dΠ(θ)

!

+2e(c1+2)nε2nEθ0

 Z
Bcεn

(θ0)∩Θn

(1− φn)e`n(θ)−`n(θ0)dΠ(θ)

!

= Eθ0 (φn) + Pθ0

 
Dn <

e−(c1+2)nε2n

2

!
+ 2e(c1+2)nε2nΠ(Θc

n)

+2e(c1+2)nε2n

Z
Bc
εn(θ0)∩Θn

Eθ (1− φn) dΠ(θ).

The Kullback-Leibler condition allows to control Pθ0

„
Dn <

e−(c1+2)nε2n
2

«
by first bounding

from below

Dn ≥
Z
S̃εn

e`n(θ)−`n(θ0)1l`n(θ)−`n(θ0)≥−2nε2n
dΠ(θ)

≥ e−2nε2nΠ
“
S̃εn ∩ {`n(θ)− `n(θ0) ≥ −2nε2n}

”
and then using Markov inequality twice,

Pθ0

„
Π
“
S̃εn ∩ {`n(θ)− `n(θ0) ≥ −2nε2n}c

”
>

Π(S̃εn)

2

«
≤

2
R
S̃εn

Pθ0
`
`n(θ)− `n(θ0) < −2nε2n

´
dΠ(θ)

Π(S̃εn)
≤ 2

nε2n
.

There exist in the literature variations around this decomposition and the above condi-

tions but the ideas are all along these lines.

Following the frequentist literature, one typically caraterizes the concentration rates in

terms of a few features of the true parameter. For instance, in the case of curve estimation,

it is common practice to either assume some smoothness property of the curve, like Hölder,

Sobolev or Besov regularity or some shape constraints such as monotonicity or convexity.

The obtained rates tend to be uniform over some functional classes or some collections of

functional classes.

There is a growing literature on the field and large classes or prior distri-

butions and models have been studied using the above approach. In the con-

text of density estimation for i.i.d random variables, the reknown Dirichlet pro-

cess mixture models have been studied by (Ghosal and van der Vaart, 2007b,

Kruijer et al., 2010, Scricciolo, 2014, Shen et al., 2013, Canale and de Blasi, 2013)

among others in the case of Gaussian mixtures, by (Ghosal, 2001, Rousseau, 2010)

for Beta mixtures. Log-linear, log-spline, log-Gaussian process priors have

been also considered by (Ghosal et al., 2000, Rivoirard and Rousseau, 2012b,

van der Vaart and van Zanten, 2008b, van der Vaart and van Zanten, 2009) to name

but a few. In (van der Vaart and van Zanten, 2008b, van der Vaart and van Zanten, 2009)
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posterior concentration rates have been derived for general models, when the prior on the

unknown curve is constructed using a Gaussian process prior. Their results have been re-

cently extended to a multivariate setup where both anisotropy and dimension reduction are

incorporated in the prior model by (Bhattacharya et al., 2014a). Various other sampling

models have been studied in the literature, following the above approach, such as inhomo-

geneous and Aalen point processes (Belitser et al., 2012, Donnet et al., 2014a), regression

models (de Jonge and van Zanten, 2010), Gaussian times series (Rousseau et al., 2012) to

name but a few.

In (van der Vaart and van Zanten, 2008b), the authors develop a very elegant strategy

to verify conditions (i) and (ii) and thus determine posterior concentration rates in the

context of Gaussian process priors, whatever the sampling model. Their approach makes

use of the reproducing kernel Hilbert space H (RKHS) associated to a zero-mean Gaussian

process W , viewed as a Borel map in a Banach space (B, ‖.‖). More precisely, when the

losses KL(θ0, θ), Vθ0(θ0, θ) and d(θ0, θ) can be related (locally bounded typically) to the

norm ‖θ − θ0‖ of B, then εn defined in (i) and (ii) can be bounded by the solution to

nε2 = φθ0(ε) := inf
h∈H;‖h−θ0‖≤ε

‖h‖2H − logP (‖W‖ ≤ ε) , (7)

where ‖h‖H is the RKHS norm. They apply their results to the context of density, non linear

regression, classification and white noise model. Other families of prior models have been

studied in a generic way, i.e. somehow irrespective of the sampling model. For instance

(Arbel et al., 2013) propose general conditions for prior distributions on some parameter

θ ∈ `2 = {θ = (θi)i∈N,
P
i θ

2
i < +∞} defined by

Π(dθ) =

∞X
k=1

P (k)π(dθ|k)1lθ∈Rk , (8)

where the conditional distribution of θ given k, π(.|k) has the form

θj
iid∼ g(./τj)τ

−1
j , if j ≤ k, θj = 0, if j > k

In other words, under the prior distribution, θ is truncated according to a distribution P

on N, and given a truncation level k, the k non-null components of θ are independent.

3.3.2. What do the two conditions (i) and (ii) tell us about the impact of the prior

distribution?. In the case of Gaussian process prior models for instance, (7) shows that

posterior concentration rates are caracterized by the smoothness of the true curve θ0 and

the smoothness of the Gaussian process itself, i.e. by its RKHS. Indeed, small ball prob-

abilities logP (‖W‖ ≤ ε) depend on the RKHS and the smoother the RKHS the larger

− logP (‖W‖ ≤ ε), while infh∈H;‖h−θ0‖≤ε ‖h‖
2
H indicates how well θ0 can be approximated

by elements of the RKHS H. Hence, if θ0 is not smooth enough compared to the elements

in the RKHS H the latter term will be large and the posterior distribution will tend to have

a large bias while − logP (‖W‖ ≤ ε) can be viewed as a measure of variance or spread.

Although (7) gives only an upper bound on the posterior concentration rate, some lower

bounds have been derived in the literature showing that it is often a sharp upper bound, see

(Castillo, 2008). These results have shown that Gaussian processes are not as flexible as one

might have hoped and that the behaviour of the posterior distribution is highly dependent

on the covariance kernel K(., .) which in turns determines the RKHS H, since its influence

does not disappear asymptotically to first order.
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This is not only true for Gaussian processes. Generally speaking, the two main condi-

tions (i) and (ii) above shed light on key features in the behaviour of the posterior distri-

butions. First, the prior model needs to be flexible enough to approximate well the true

distribution (in terms of Kullback-Leibler divergence). For instance, consider the problem

of density estimation for i.i.d. data, and take a prior model based on location mixtures

of Gaussian distributions. The posterior concentration rates associated to this type of

prior models have been studied by (Ghosal and van der Vaart, 2007b, Kruijer et al., 2010,

Scricciolo, 2014, Shen et al., 2013). Let x ∈ Rd,

fP,σ(x) =

Z
Rd
ϕσ(x− µ)dP (µ), (9)

where ϕσ denotes the density of a Gaussian random variable in Rd with mean 0 and variance

σ2Id. The prior is constructed by considering a prior on (P, σ) where P varies in the set of

probability distributions on Rd. A popular choice for the prior on P is the Dirichlet process

DP (M,G) with mass M and base measure G, as defined in Section 2.1. Smooth densities

on R can be well approximated by mixtures in the form (9). To understand what it means,

we construct finite mixtures of Gaussian densities which approximate f , with as small a

number of components as possible. Let f be a density which has Hölder (type) smoothness

β, it is possible to construct a probability density fβ close to f such that

KL1(f, fFβ ,σ) = O(σβ | log σ|),

for all β > 0, where Fβ is the distribution associated to fβ , see (Kruijer et al., 2010,

Shen et al., 2013). Then we approximate the continuous mixture by a finite mixture, and

it can be proved that fFβ ,σ can be approximated to the order σκ for any κ > 0 by mix-

tures fPN ,σ where PN has at most N = O(| log σ|σ−1) supporting points. Controlling

N is a crucial step in proving the Kullback- Leibler condition since it provides an upper

bound on the number of constraints on the parameter space that are needed to approxi-

mate a density f with smoothness β by densities in the form (9). It thus leads to a lower

bound on the prior mass of Kullback-Leibler neighbourhoods of f . Choosing σ in the form

σ = n−1/(2β+1)(logn)q, q ∈ R, leads to condition (i) with ε2n � n−2β/(2β+1)(logn)2qβ+1.

Under the L1 or the Hellinger loss functions for d(., .), the tests in condition (ii) are

constructed from the tests of (Schwartz, 1965) or (Birgé, 1983) and are controlled bound-

ing from above the entropy (i.e. the logarithm of the number of small balls needed to

cover the set) of subsets of finite location mixtures of Gaussian distributions with at most

n1/(2β+1)(logn)q+1 components. Finally the posterior concentration rates for densities f

with smoothness β (in a local Hölder sense, as described in (Kruijer et al., 2010) or in

(Shen et al., 2013)) and under some exponential type condition on the tails of f , is bounded

by

εn . n−β/(2β+1)(logn)τ

for some τ ≥ 0, which is the minimax rate of convergence in this functional class, up to a

logn term.

Although deriving conditions (i) and (ii) is quite informative on the way the prior acts,

in the case of these nonparametric mixture models the picture is far from being complete.

In the case of smooth density estimation, one expects the posterior distribution on the scale

σ to concentrate on small values. This would mean that a common variation of prior model
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(9), namely the location - scale mixture written as

fP,σ(x) =

Z
Rd
ϕσ(x− µ)dP (µ, σ), (10)

might not be the best suited prior model for estimating a smooth density. Indeed fol-

lowing the above computations we obtain a much too small lower bound on prior mass

on Kullback-Leibler neighbourhoods of f , and the obtained posterior concentration rate is

suboptimal, see (Canale and de Blasi, 2013). Whether this is an artefact of the proof or a

real suboptimal result remains an open question. To be able to answer such a question, one

needs to characterize fully neighbourhoods of the true density to obtain not only a lower

bound on their mass but also an upper bound. Given the complexity of the geometry of

mixture models, the latter is a much more formidable task than the former. Model (10) is

however more commonly used than the location mixture (9), and it is often considered as

better behaved. This decrepancy between theory and practice has not yet been resolved.

A second crucial aspect of conditions (i) and (ii) is the existence of tests with second

type error bounded by e−Cnε
2
n . This condition restricts the choice of loss functions. In

particular, (Hoffman et al., 2013) show that if there exist parameters θ which are close for

some intrinsic loss (for which the tests of condition (ii) can be constructed, such as the L2

loss in the white noise or the Hellinger distance in the density models) to θ0 but not in

terms d(., .), then the testing method above will lead to suboptimal bounds.

Interestingly, the prior based on model (9) does not depend on the true smoothness β

of the density f0, but the posterior adapts to the unknown smoothness β of f0. This is

one of the strengths of the Bayesian methodology, by naturally incorporating hierarchical

structures in the prior it often enables to construct posterior distributions having good

frequentist properties over not only a functional class, but a collection of functional classes.

3.4. Bayesian nonparametrics : a useful tool to derive adaptive optimal methods

Bayesian methods have become popular in particular because they can easily incorporate

hierarchical modelling. In the case of nonparametric models, this is also the case and for

most families of priors studied so far, it has been possible to construct hierarchical versions

of them so as to obtain good frequentist properties over collections of functional classes.

If the posterior concentration rate (6) is uniformly bounded when the true parameter

θ0 is allowed to vary in a class Θβ ⊂ Θ by the frequentist minimax estimation rate over the

same class under the same loss function, for instance n−β/(2β+1) for a β- Hölder ball in the

setup of density estimation under the L1 loss, then we say that the posterior concentrates

at the minimax rate over Θβ . If for a collection of classes, for instance Θβ , β ∈ [β1, β2], the

posterior concentrates at the minimax rate within each class, then we say that it concen-

trates at the minimax adaptive rate. Hierarchical modelling of prior distributions naturally

leads to minimax adaptive posterior concentration rates.

For instance, in the context of Gaussian process priors,

(van der Vaart and van Zanten, 2009) study conditional Gaussian process priors on

curves g defined as:

A ∼ ΠA,

g(t) = W (At), (W (t), t ∈ R+)) ∼ GP (0,K),

where GP (0,K) denotes a Gaussian process prior with mean 0 and covariance kernel

K(s, t) = e−(s−t)2 and ΠA is a probability on R+. The authors then show that for various
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types of sampling models parametrized by the curve g, the posterior distribution concen-

trates around the true curve at a rate which is the minimax optimal estimation rate, up

to a logn term, over a collection of Hölder classes, under a suitable prior ΠA . The prior

does not depend on the supposed smoothness for the true curve and the posterior therefore

leads to minimax adaptive estimators.

This construction has been extended in particular by (Bhattacharya et al., 2014a) to

anisotropic multivariate curves.

There is now a large range of results on posterior concentration rates of hierarchical

nonparametric prior models where adaptive minimax (up to a logn term usually) posterior

concentration rates have been achieved. For instance the hierarchical prior construction

(8) has been proved to lead to adaptive minimax concentration rates over collections of

Sobolev or Besov balls for a variety of models, in (Arbel et al., 2013) and for some linear

inverse problems in (Ray, 2013, Knapik and Salomond, 2015). The nonparametric location

mixture of Gaussian random variables with an inverse Gamma on the scale parameter σ

also leads to adaptive minimax concentration rates over collections of locally Hölder classes,

as described above.

In the last few years, Bayesian nonparametric adaptive methods have been studied

in the literature where adaptation is achieved not only with respect to some smoothness

caracteristic but also with respect to sparsity in high dimensional models. These include

the sequence model where one observes n independent observations

Yi = θi + εi, εi
iid∼ N (0, 1), i ≤ n

which we will consider as an illustrative example of the types of phenomena that occur

in high dimensional frameworks, but recall that it is simpler than other models like high

dimensional regression or high dimensional graphical models. The most natural way to

design a sparsity prior in this context is to first select the set S of non zero coefficients,

and then put a prior on θS = (θi, i ∈ S). In (Castillo and van der Vaart, 2012) posterior

concentration rates around θ in terms of the Lq losses, ‖θ − θ0‖q with 1 < q ≤ 2, are

derived under some conditions on such priors. They show that considering a family of

priors on S defined by first choosing the size |S| = p according to a distribution with

exponential tails and then randomly selecting S given its size p leads to minimax adaptive

posterior concentration rate r2
n = p log(n/p) under the loss ‖θ− θ0‖22 uniformly over the set

`0(p) = {θ, ‖θ‖0 ≤ p} with ‖x‖0 denoting the number of nonzero coefficients in x.

Although the approach described in Section 3.3 for deriving posterior concentration

rates is used, (i) and (ii) are not the only steps in their proof. This is due to the complexity

of the parameter space. Before using the usual testing and Kullback-Leibler arguments,

the authors first prove that the posterior distribution concentrates on sets that have at

most Mp nonzero coefficients, for some large but fixed constant M . Then on this reduced

parameter space they prove posterior concentration rates following steps (i) and (ii). This

is common, if not inevitable, in high dimensional models with sparse parameters, when one

needs to learn also the sparsity of the parameter. Interestingly, if the prior on |S| or on θS |S
have too light tails, then the authors prove that the posterior concentrates at a subotimal

rate for large values of ‖θ0‖2. In many applications this is often not a crucial issue, since

large signals are easily detected and the statistical analysis is typically used to detect small

signals.

The above family of sparse priors is appealing in a high dimensional but sparse context

but it is difficult to implement and so far has only be implemented for moderately large
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dimensional models. Alternative priors have been proposed in the literature with posterior

distributions easier to sample from but their asymptotic properties have not been studied.

Recently (Bhattacharya et al., 2014b) have proposed a continuous type of shrinkage, closer

in spirit to the Lasso, which also achieves optimal minimax adative posterior concentration

rate, under the constraint that the true signal is not too large: ‖θ0‖22 ≤ p(logn)4 where

p = ‖θ0‖0, the number of nonzero components of θ0.

(Castillo et al., 2015) have extended the results of (Castillo and van der Vaart, 2012)

to the case of high dimensional linear regression, with a prior distribution on the sparsity

inducing very sparse models.

Other families of high dimensional models have been considered, in particular

sparse matrix and graphical models have been studied by (Banerjee and Ghosal, 2015,

Bhattacharya and Dunson, 2011, Pati et al., 2014).

3.5. On frequentist coverage of credible regions in large dimensional models

As mentioned above posterior concentration rates are usefull to assess the size of posterior

credible bands and their frequentist coverages verifyZ
Θ

Pθ(θ ∈ Cα)dΠ(θ) = 1− α (11)

if 1−α is the Bayesian coverage of the credible band Cα. This does not imply however that

Cα is a honest confidence region in a frequentist sense, i.e.

inf
θ∈Θ

Pθ (θ ∈ Cα) ≥ 1− α (12)

In parametric regular models, thanks to the Bernstein - von Mise theorem, (12) is valid on

compact subsets of Θ and for standard credible regions like highest posterior density regions,

or ellipses around the posterior mean or mode. In nonparametric models, it is expected

not to be satisfied and the first results on frequentist coverage of credible regions in infinite

dimensional models were negative. (Cox, 1993) and (Freedman, 1999) exhibited negative

results in the context of Gaussian models with Gaussian priors, where almost surely under

the prior the frequentist coverage of an `2 credible ball could be arbitrarily close to 0.

Despite these results, the picture is not all negative. As said previously, an attractive

feature of Bayesian (hierarchical) approaches is that they - when properly tuned - are

adaptive procedures, and up to logn terms are often minimax adaptive over collections of

functional classes, say Θβ , β ∈ A (in terms of their posterior concentration rate). Consider,

for the sake of simplicity the white noise model and Θβ a Hölder ball with regularity β.

If Cα is a `2 credible band for the parameter θ constructed under a minimax adaptive

posterior distribution then it satisfies

sup
β∈A

εn(β)−1 sup
θ∈Θβ

Eθ[|Cα|] = O(1),

where εn(β) is the minimax estimation rate over the class Θβ . In other words its size

is adaptive minimax. It is known, see for instance (Cai and Low, 2006) that there does

not exist honest confidence regions (i.e. satisfying (12)) which have adaptive size, unless

A ⊂ [β1, 2β1] for some β1. Hence Cα cannot be an honest confidence region.

Can we find a subset Θ0 of Θ over which Cα could be considered an honest confidence

region ?
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Recently, in (Szabó et al., 2013), the authors have answered this question in the special

case of the white noise model and under the empirical Bayes posterior described in Section

4.0.1 and based on (Szabò et al., 2013). They find a set of well behaved parameters Θ0 ⊂ `2,

called the polished tail parameter set, over which (12) is verified. Their results rely heavily

on the precise structure of the prior and sampling model, but they give some insight on

what can be expected in other types of models.

In (Castillo and Nickl, 2013), conditions for deriving a weak nonparametric Bernstein

von Mises theorem are derived in the white noise and density models, which leads to the

construction of credible bands with correct asymptotic frequentist coverage. The types

of priors considered in (Castillo and Nickl, 2013) are based on expansions of the curve on

wavelet bases. The drawback of this approach is that the credible bands are constructed

in terms of weighted L2 norms which are difficult to interpret in practice. An advantage

however is that from this result it is possible to derive Bernstein von Mises theorems for

smooth functionals of either the signal in the white noise model or the density in the density

model. Obtaining refined results such as Berntein von Mises theorems for finite dimensional

functionals of the parameter is typically easier than for the whole parameter, it is however

not a simple task and positive general results have been obtained only recently and in still

a rather restricted framework. This is presented briefly in Section 5.

SUMMARY POINTS

1. Many common Bayesian nonparametric prior models lead to posterior distribution

with minimax concentration rates

2. Using hierarchical priors, it is possible and relatively easy to obtain adaptive pro-

cedures. Adaptation may be with respect to some smoothness or some sparsity

aspects of the parameter.

3. Posterior contraction rates are related to the size of credible balls or regions but not

so much on their frequentist coverage. Understanding the frequentist coverage of a

credible ball (or band) is more involved and only a few results have been obtained

until now. It is becoming however an active area of research.

Empirical Bayes is an alternative to hierarchical Bayes; we describe in the following

section some recent advances that have been obtained on the properties of empirical Bayes

methods.

4. Empirical Bayes procedures

Traditionnally, empirical Bayes designates frequentist methods, in the context of multiple

experiments where each experiment is associated to a specific parameter and where these

parameters have a common distribution Π which is estimated using a frequentist estimator

such as the maximum likelihood estimator. This was initiated by Robbins, see for instance

(Robbins, 1964). However the term empirical Bayes is also used for any Bayesian approaches

where the prior is data - dependent. In this section we are going to focus on the latter, which

is widely used in practice, since more often than not, at some stage of the construction of the

prior, some information coming from the data is used, in a more or less formalized way. It is

typically believed that it should be better than an arbitrary choice of the hyperparameters

of the prior.
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The setup is the following. Consider a family of prior distributions on a parameter θ ∈ Θ

indexed by a hyperparameter γ, (Π(·|γ), γ ∈ Γ). A hierarchical approach would consist in

constructing a prior on γ ∈ Γ, while the empirical Bayes approach selects γ = γ̂ based on

the data Y n. There are many ways to choose γ̂ and the two main categories are: (a) using

moment conditions or similar considerations (b) using the maximum marginal likelihood

estimator. There are other methods that do not quite enter into these categrories such as

cross-validation or other frequentist methods used to select hyperparameters, but they have

not been studied in the Bayesian setup so far.

The most common of the two is (a) although it is the less formalized. For instance, in

the case of mixtures of Gaussian random variables,

fP,σ(y) =

Z
R
φσ(y − µ)dP (µ), P ∼ DP (MN (m0, τ

2
0 )), σ ∼ πσ

as discussed in Section 3.3, in (Green and Richardson, 2001) and

(Richardson and Green, 1997) the authors advocate, based on invariance considera-

tions, the choice of m̂0 as the midrange of the data and τ̂2
0 as the range of the data.

Another possibility would be to use the relation E(Y ) = m0 and V(Y ) = Eπσ (σ2) + τ2
0 and

choose m̂0 = Ȳn = 1
n

Pn
i=1 Yi and τ̂2

0 = S2
n = 1

n

P
i(Yi − Ȳn)2.

The maximum marginal likelihood estimator γ̂ML of γ is defined, when it exists, as

γ̂ML = argmaxγmn(γ), mn(γ) =

Z
Θ

fθ(Y
n)dΠ(θ|γ).

This approach has been used for instance by (George and Foster, 2000,

Cui and George, 2008, Scott and Berger, 2010) in the context of variable selection in re-

gression models, by (Belitser and Levit, 2002, Clyde and George, 2000, Szabò et al., 2013,

Knapik et al., 2012) for sequence or white noise models, by (Liu, 1996) for the mass

parameter M in a Dirichlet Process mixture prior.

What are the asymptotic properties of such empirical Bayes properties? Can we de-

rive general methods to study these properties, as is done in Section 3.3 for fully Bayes

procedures?

The approach presented in Section 3.3 to prove posterior concentration rates for

fully Bayesian posteriors uses repeatedly Fubini’s argument, which cannot be applied

in a context of data dependent prior. Moreover, in infinite dimensional models the

prior distributions Π(·|γ), γ ∈ Γ, are often singular with respect to one - another,

see for instance (Ghosh and Ramamoorthi, 2003) in the case of Dirichlet processes, or

(van der Vaart and van Zanten, 2008b), in the case of Gaussian process priors. However,

recently in (Donnet et al., 2014b) the authors derive a general theory to study posterior

concentration rates in the context of data dependent priors. Also, building on some this

theory, together with the results of (Petrone et al., 2014) in the finite dimensional case and

of (Knapik et al., 2012, Szabò et al., 2013) in the Gaussian white noise model with Gaus-

sian process priors, we now have a better understanding of the behaviour the marginal

maximum likelihood estimator in infinite dimensional models.

4.0.1. Dealing with data dependence on the prior . Consider a family of prior distributions

(Π(·|γ), γ ∈ Γ) and a data dependent value γ̂ and denote the empirical Bayes posterior by

Π(·|Y n, γ̂). In this section we assume that there exists a compact set Γ0 ⊂ Γ ⊂ Rd for some

d < +∞, such that with probability going to 1,

γ̂ ∈ Γ0.
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The aim is to find the smallest possible sequence εn, such that Π(Bcεn(θ0)|Y n, γ̂) → 0 in

probability under Pθ0 . To do so, we in fact prove that

sup
γ∈Γ0

Π(Bcεn(θ0)|Y n, γ)→ 0,

so that the pre-selection of Γ0 is important.

For instance, if γ̂ = Ȳn or some other moment estimator, then under simple ergodicity

conditions on Pθ0 , Γ0 can be choosen in the form Γ0 = [µ0− ε, µ0 + ε] where µ0 is the limite

of Ȳn under Pθ0 , either in probability or almost surely.

The second key step in dealing with data dependent prior is to transfer the data-

dependence from the prior to the likelihood. To do so, we consider changes of measure

ψγ,γ′ : Θ → Θ such that if θ ∼ Π(·|γ) then ψγ,γ′(θ) ∼ Π(·|γ′). For instance in the case of

the Dirichlet process mixture of Gaussian densities (9), using the stick-breaking represen-

tation of the Dirichlet process, we can write θ = fP,σ as

fP,σ(x) =

∞X
j=1

pjφσ(x− µj), µj
iid∼ N (m0, τ

2
0 ), pj = Vj

Y
i<j

(1− Vi), Vj
iid∼ B(1,M).

and if γ = (m0, τ
2
0 ), then for all τ ′0 > 0 and m′0 ∈ R, defining γ′ = (m′0, τ

′
0) and

µ
′
j = µj

τ
′
0

τ0
−m0

τ
′
0

τ0
+m′0, ∀j ∈ N, P ′ =

∞X
j=1

pjδ(µ′j)

we have fP ′,σ ∼ Π(·|γ′), see (Donnet et al., 2014b) for more examples.

The third step is a chaining argument which consists in partitioning of Γ0 into Nn bins

of size un small enough and choosing points in each bin (γi)i≤Nn so that

sup
γ∈Γ0

Π(Bcεn(θ0)|Y n, γ) ≤ max
i

Π(Bcεn(θ0)|Y n, γi) + max
i

sup
|γ−γi|≤un

Π(Bcεn(θ0)|Y n, γ).

The first term can be handled straightforwardly using the approach described in Section

3.3, while the second needs to be slightly adapted by replacing the Kullback-Leibler neigh-

bourhoods by the sets of θ such that

inf
|γ−γi|≤un

(`n(ψγi,γ(θ))− `n(θ0)) > −2nε2n

with large enough probability in condition (i) and by replacing the control of the second

type error of condition (ii) with respect to Pθ by a second type error with respect to the

measure with density qθγi(y
n) = sup|γ−γi|<un fψγi,γ(θ)(y

n). These arguments lead to a set

of conditions to derive posterior concentration rates for empirical Bayes procedure which

resemble conditions (i) and (ii) of Section 3.3, see Theorem 1 of (Donnet et al., 2014b). This

is applied to Dirichlet process mixtures of Gaussian distributions, log-spline and log-linear

prior models for density estimation and to Dirichlet process mixtures of uniforms in the

context of Aalen point processes.

The pre-selection of Γ0, i.e. the asymptotic behaviour of γ̂ is important. However, Γ0

need not necessarily be small, specially if the posterior concentration rate associated to a

prior Π(.|γ) does not depend on γ. For instance in the case of the Dirichlet process mixture

of Gaussian distributions with γ = (m0, τ
2
0 ) with m̂0 = Ȳn and τ̂2

0 = R, with R the range of

the data, the posterior concentration around a density f0 which has β - Hölder smoothness
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as described in Section 3.3 is still of the form n−β/(2β+1) up to a logn term, although

Γ0 = [µ0 − ε, µ0 + ε]× [a, (logn)κ] for some positive constants ε, a, κ. If on the contrary the

posterior concentration rate depends on γ, then it is crucial to have Γ0 shrink fast enough

around the best possible value.

4.0.2. Maximum marginal likelihood estimators. Maximum marginal likelihood empirical

Bayes procedures are typically used in such context with the hope that the data dependent

γ̂ML will be close enough to optimal values for γ. This is not always the case and subtil

phenomena can occur, as has been shown in (Knapik et al., 2012, Szabò et al., 2013). In

both papers the authors consider the white noise model, with inverse operator but for the

sake of simplicity we pretend it is equal the identity,

Yi = θi + n−1/2εi, εi
iid∼ N (0, 1), θ = (θi)i

and a Gaussian process prior on θ :

θi
ind∼ N (0, τ2

i ), i ∈ N.

To model smooth curves under the prior distribution, it is common practice to consider τi
going to infinity with i. The question is how . In (Szabò et al., 2013) the authors consider

τ2
i = τ2

0 i
−2α−1, with γ = τ0 and using an explicit expression on the marginal likelihood

mn(γ) show that if the true parameter θ0 has smoothness β , i.e. θ2
0,i ≤ Li−2β−1, then the

empirical Bayes posterior has suboptimal posterior concentration rate for all β > α + 1/2

while it achieves the minimax adaptive posterior concentration rate over β < α + 1/2.

Interestingly in (Knapik et al., 2012) the authors consider γ = α and they show that the

empirical Bayes posterior concentration rate achieves minimax concentration rates for all

β in this case. So why is there such a discrepancy between the two types of maximum

marginal likelihood estimators?

In (Rousseau and Szabò, 2015), we describe the asymptotic behaviour of the maximum

marginal likelihood estimator γ̂ for a model

Y n ∼ fθ, θ ∼ Π(.|γ), θ ∈ Θ

where (Θ, ‖.‖) is a Banach space, under some conditions on the model and the prior. In

particular it shown that with probability going to 1,

γ̂ ∈ Γ0 = {γ; εn(γ) ≤ mnεn,0}

where mn is any sequence going to infinity and εn(γ) is defined by

e−nε
2
n(γ) = Π (‖θ − θ0‖ ≤ εn(γ)|γ) , εn,0 = inf

γ∈Γ
εn(γ). (13)

Hence the maximum marginal likelihood estimator is minimizing the rate εn(γ) and it

can be checked that in the setup of (Knapik et al., 2012) the minimizer is optimal and leads

to n−β/(2β+1) up to a logn term while in the case of (Szabò et al., 2013) the minimizer can

be suboptimal when β > α+ 1/2. Interestingly the asymptotic behaviour of the maximum

marginal likelihood estimator γ̂ is driven by the behaviour of Π (‖θ − θ0‖ ≤ εn(γ)|γ) and not

so much by the sampling model. A similar result was obtained in the parametric framework

by (Petrone et al., 2014).
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SUMMARY POINTS

1. A methodology has been developped to derive posterior concentration rates for

data dependent priors. The approach is similar to the theory developped by

(Ghosal and van der Vaart, 2007a) in the case of regular priors.

2. This approach can be quite easily applied to moment - type estimators and good

frequentist properties of the empirical Bayes posterior have been obtained n this

case.

3. Maximum marginal likelihood estimators have subtil behaviours and they can be

apprehended by minimizing the set of candidate rates εn(γ) defined in (13).

5. Semi-parametric models and the Bernstein von Mises Theorem

In this section, I will describe some of the latest developpments that have been obtained

so far in semi-parametric Bayesian inference, i.e. when the parameter of interest ψ is a

finite dimensional functional of an infinite dimensional parameter, i.e. ψ = ψ(θ). Semi

- parametric models are often consider in a context where θ = (ψ, η) with ψ ∈ S ⊂ Rd

and η ∈ E an infinite dimensional model. For instance in the non linear regression model

η is the regression function and ψ the variance of the noise, although the parameter of

interest is typically η in such models. In partially linear models the regression function of

a response variable Y on a covariate vector X = (X1, X2) is written f(X) = X1β + g(X2)

where g is non linear and some redundancies may exist between X1 and X2. In survival

analysis, the Cox regression model is also a very common semi-parametric model. They

are not however the only cases of semi-parametric problems and one might be interested in

some mode general functionals of an infinite dimensional parameter, such as the cumulative

distribution function at a given point, the mean of a distribution, the L2 norm of a square

- integrable curve, etc.

There are many semi-parametric models for which it is possible to estimate ψ at the rate√
n, see for instance (van der Vaart, 1998) for a general theory on regular semi-parametric

models. What would be the Bayesian counter-part of this theory? How can we prove

that the marginal posterior distribution of ψ concentrates at the rate
√
n? Can we obtain

a more precise description of the marginal posterior distribution of ψ? These questions

can be answered by studying if the posterior distribution on ψ verifies the Bernstein - von

Mises theorem (BvM). It says that asymptotically the marginal posterior distribution of√
n(ψ − ψ̂) converges (weakly or strongly) to a N (0, V0), under Pθ0 , where

√
n(ψ̂ − ψ(θ0))

converges in distribution to N (0, V0) under Pθ0 and ψ̂ is some estimator of ψ.

Such properties have many interesting implications. In particular they allow to construct

credible regions for ψ which have correct asymptotic frequentist coverage.

In (Castillo, 2010) and (Bickel and Kleijn, 2012) sufficient conditions are proposed to

derive BvM in separated models in the form θ = (ψ, η). In (Rivoirard and Rousseau, 2012a)

and in (Castillo and Rousseau, 2013) sufficient conditions to BvM are provided for linear

functional of the density and for smooth functionals of the parameter in general models

respectively. To explain the main features of these results I will present the arguments as

in (Castillo and Rousseau, 2013).

The conditions are based on the following three ingredients:
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• (1) Concentration of the posterior : There exists some shrinking neighbourhood An
of θ0 such that

π(An|Y n) = 1 + oPθ0 (1).

• (2) Local asymptotic normality of the likelihood (LAN): locally around θ0 the log-

likelihood can be approximated by a quadratic form. Assuming that a neighbourhood

of θ0 can be embedded into a Hilbert space H, this local approximation takes the form

`n(θ)− `n(θ0) = −n‖θ − θ0‖2L
2

+
√
nWn(θ − θ0) +Rn(θ − θ0),

where ‖.‖L is the norm of the Hilbert space and Wn(.) is a linear operator on H, such

that Wn(h) ∼ N (0, ‖h‖2L) when h ∈ H.

• (3) Smoothness of the functional : On An, the functional can be linearly approxi-

mated: There exists ψ1 ∈ H such that

ψ(θ)− ψ(θ0) =< ψ1, θ − θ0 >L +o(1)

Then under some mild additional conditions BvM is valid if for t ∈ R with |t| small enough,R
An

fθ−tψ1/
√
n(Y n)dΠ(θ)R

An
fθ(Y n)dΠ(θ)

→ 1, Pθ0 . (14)

Condition (14) is the key condition and roughly speaking means that it is possible to

construct a change of variable

θ → θ − tψ1/
√
n

or close enough to it, leaving the prior and An almost unchanged. In the cited papers,

some examples are studied where BvM is valid for families of smooth functionals, however

examples are also provided where it is shown that BvM does not hold. To illustrate this

and explain the meaning of (14), let θ ∈ `2 and a prior on θ constructed as in (8): with

k ∼ πk and conditionnally on k, θi
iid∼ g for i ≤ k and θi = 0 otherwise. Assume, for the

sake of simplicity that the functional ψ(θ) is linear and that the LAN norm ‖.‖L is the L2

norm, as in the white noise model. Thus ψ(θ) =< ψ1, θ > for some ψ1 ∈ `2. To prove (14),

we need to construct a change of variable θ → θ − tψ1/
√
n which makes sense under the

prior distribution. If θ ∈ Rk, since ψ1 /∈ Rk, θ − tψ1/
√
n /∈ Rk and the best approximation

of θ − tψ1/
√
n in Rk is θ

′
k = θ − tψ1[k]/

√
n where ψ1[k] is the vector made of the first k

components of ψ1. The transform θ → θ
′
k is a feasible change of variable for the conditional

prior distribution given k, whereas θ − tψ1/
√
n is not. We have

`n(θ − tψ1/
√
n)− `n(θ − tψ1[k]/

√
n) = −

n‖ψ1 − ψ1[k]‖2

2
+
√
n < θ0 − θ0[k], ψ1 − ψ1[k] >

− tWn(ψ1 − ψ1[k]) + op(1)

Hence even if under the posterior distribution k → +∞, the term
√
n < θ0 − θ0[k], ψ1 −

ψ1[k] > may not be negligible, so that `n(θ − tψ1/
√
n)− `n(θ − tψ1[k]/

√
n) 6= o(1).

It thus appears that to be able to prove (14), we need Π(|
√
n < θ0 − θ0[k], ψ1 −

ψ1[k] > | > ε|Y n) → 0 for all ε > 0 under Pθ0 . If ‖ψ1 − ψ1[k]‖ decreases slowly to

0 with k the above condition may fail and BvM would thus not be valid. This is in

essence what drives the counter-examples considered in (Rivoirard and Rousseau, 2012a,

Castillo and Rousseau, 2013, Castillo, 2012).
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On the other hand under a prior with a deterministic and increasing k = kn with kn
large enough, the BvM will hold for a wider range of linear functionals at the expense of a

bad posterior concentration rate on the whole parameter.

This example indicates that one cannot expect a posterior distribution on a high di-

mensional parameter space to be well behaved for all aspects of the parameter, it is thus

important to understand which parameters of interest will be well recovered and which will

not. Adding higher levels of hierarchy in the prior, here considering a distribution on the

truncation level k for instance, intuitively induces greater flexibility and indeed it induces

adaptive posterior concentration rates. In the same time it prevents the BvM theorem to

be valid for some functionals of the parameter. Therefore, this notion of flexibility should

be taken with some care.

Although there have been significant advances in understanding the asymptotic be-

haviour of semi-parametric models, a lot of open questions remain un-answered. So far

BvM or precise statements on the posterior distribution in semi-parametric models have

been obtained mainly for parameterizations based on bases expansions. More complex ge-

ometries, as in mixture models, have not yet been studied since the task is more formidable

in these prior models; they are however models that are commonly used in practice.

SUMMARY POINTS

1. Some general tools have been developped to derive precise description of the pos-

terior distribution in large and infinite dimensional models, such as BvMs or more

generally frequentist coverage of Bayesian credible regions.

2. There are now some positive and negative results on coverage of credible regions

and on BvM properties of the posterior distributions.

3. In large dimensional models, the prior has a strong impact and not every aspects

of the parameter can be well recovered by the posterior distribution. It is there-

fore important to understand which parts or functionals of the parameter can be

correctly estimated, given a specific prior distribution.

FUTURE ISSUES

1. Mixture prior models or more generally non linear models (as opposed to priors on

parameters θ ∈ `2 for instance) are not well understood yet, at least asymptotically.

They are however extensively used in practice and seem to behave well in many

cases.

2. Extension of the results on frequentist coverage of credible regions to more general

models than the Gaussian white noise models with Gaussian priors.

3. Develop further the theory on Bayesian nonparametric tests. This has not been

mentioned in the paper, but it is also an important aspect of Bayesian inference

and there have been only a few theoretical results on Bayesian nonparametric tests.

20 Judith Rousseau



ACKNOWLEDGMENTS

I would like to thank Julyan Arbel, Sophie Donnet, Pierre Jacob, Vincent Rivoirard, Sylvia

Richardson and Jean-Bernard Salomond for helpful comments on earlier versions of the

manuscript, This work is partially funded by the ANR CALIBRATION.

LITERATURE CITED

Arbel et al., 2013.Arbel, J., Gayraud, G., and Rousseau, J. (2013). Bayesian adaptive optimal

estimation using a sieve prior. Scand. J. Statist., to appear.

Banerjee and Ghosal, 2015.Banerjee, S. and Ghosal, S. (2015). Bayesian structure learning in graph-

ical models. Journal of Multivariate Analysis, 136:14–162.

Barron, 1988.Barron, A. (1988). The exponential convergence of posterior probabilities with im-

plications for bayes estimators of density functions. Technical report, University of Illinois at

Urbana-Campaign.

Barron et al., 1999.Barron, A., Schervish, M., and Wasserman, L. (1999). The consistency of pos-

terior distributions in nonparametric problems. Ann. Statist., 27:536–561.

Belitser and Levit, 2002.Belitser, E. and Levit, B. (2002). On the empirical Bayes approach to

adaptive filtering in the Gaussian model. Interfaces and Free Boundaries.

Belitser et al., 2012.Belitser, E., Serra, P., and van Zanten, J. H. (2012). Estimating the period of

a cyclic non-homogeneous Poisson process. Scand. J. Stat., page to appear.

Bhattacharya and Dunson, 2011.Bhattacharya, A. and Dunson, D. B. (2011). Sparse bayesian infi-

nite factor models. Biometrika, 98:291–306.

Bhattacharya et al., 2014a.Bhattacharya, A., Pati, D., and Dunson, D. (2014a). Anisotropic func-

tion estimation using multi-bandwidth gaussian processes. Ann. Statist., 42:352–381.

Bhattacharya et al., 2014b.Bhattacharya, A., Pati, D., Pillai, N., and Dunson, D. (2014b).

Dirichlet-Laplace priors for optimal shrinkage. Technical report.

Bickel and Kleijn, 2012.Bickel, P. J. and Kleijn, B. J. K. (2012). The semiparametric bernsteinvon

mises theorem. Ann. Statist., 40:206–237.
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