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SUMMARY

Bayesian inference is attractive for its coherence and good frequentist properties. However,
eliciting a honest prior may be difficult and a common practice is to take an empirical Bayes
approach, using some empirical estimate of the prior hyperparameters. Despite not rigorous, the 15

underlying idea is that, for sufficiently large sample size, empirical Bayes leads to similar in-
ferential answers as a proper Bayesian inference. However, precise mathematical results seem
missing. In this work, we give more rigorous results in terms of merging of Bayesian and empir-
ical Bayesian posterior distributions. We study two notions of merging: Bayesian weak merging
and frequentist merging in total variation. We also show that, under regularity conditions, em- 20

pirical Bayes asymptotically gives an oracle selection of the prior hyperparameters. Examples
include empirical Bayes density estimation with Dirichlet process mixtures.

Some key words: Consistency, Bayesian weak merging, Frequentist strong merging, Maximum marginal likelihood
estimate, Dirichlet process mixtures, g-priors.

1. INTRODUCTION AND MOTIVATION 25

The Bayesian approach to inference is appealing in treating uncertainty probabilistically
through conditional distributions. If (X1, . . . , Xn)|θ have joint density p(n)

θ and θ has prior den-
sity π(θ|λ), then the information on θ, given the data, is expressed through the conditional, or
posterior, density π(θ|λ, x1, . . . , xn) ∝ p(n)

θ (x1, . . . , xn)π(θ|λ). Despite Bayes procedures are
increasingly popular, it is a common experience that expressing honest prior information can be 30

difficult and, in practice, one is often tempted to use some estimate λ̂n ≡ λ̂n(x1, . . . , xn) of the
prior hyperparameter λ and a posterior distribution π(·|λ̂n, x1, . . . , xn). This mixed approach
is usually referred to as empirical Bayes in the literature (see Lehmann and Casella (1998)). The
underlying idea is that, when n is large, empirical Bayes should reasonably lead to inferential
results similar to those of any Bayes procedure. Thus, an empirical Bayesian would achieve the 35

goal of inference without completely specifying a prior.
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From a Bayesian point of view, an empirical Bayes approach is not justified, but it is attractive
as a computationally simple alternative to a more rigorous but usually analytically more com-
plex hierarchical specification of the prior, of the kind θ|λ ∼ π(θ|λ) and λ ∼ h(λ). Thus, for
a Bayesian statistician, empirical Bayes is of interest for two reasons: on one hand, when it is40

difficult to honestly fix λ, it is expected that a data-driven choice of λ leads to better inferen-
tial results; and, empirical Bayes could be a simple approximation of the hierarchical posterior
distribution. This is possibly the reason of the wide use of empirical Bayes in practical appli-
cations of Bayesian methods. However, to be rigorously justified, it is necessary (a) to prove
whether it is true that empirical Bayes and (hierarchical) Bayes will asymptotically agree and45

(b) to study whether empirical Bayes procedures have some optimality property (versus a fixed
choice of λ). To our knowledge, precise general results about such asymptotic agreement and
about general optimality property are missing. The aim of this paper is to provide some results
in both these directions. First, we will give conditions for the asymptotic agreement, or merging,
of empirical Bayes and Bayesian solutions; however, we will also individuate situations where50

empirical Bayes and Bayes diverge and thus, from a Bayesian viewpoint, require particular care.
Then, we show that, in regular parametric cases, the maximum marginal likelihood selection of
λ converges to a limit that is optimal, in the sense that it corresponds to an oracle choice of
the prior that mostly favors the true model. Thus, for sufficiently large samples, empirical Bayes
would give a solution that is close to the oracle Bayes and in this sense exploits information more55

efficiently than a fixed choice of λ.
Despite not rigorously justified, empirical Bayes is quite often used by practitioners and in the

literature, see for instance George and Foster (2000), in the context of variable selection in regres-
sion; Clyde and George (2000), for wavelets shrinkage estimation; Liu (1996) and McAuliffe,
Blei and Jordan (2006) in Bayesian nonparametric mixture models, and Favaro et al. (2009),60

in Bayesian nonparametric inference for species diversity. Systematic comparison of empirical
Bayes and Bayesian procedures appears less explored. A careful comparison of empirical Bayes
and Bayesian variable selection criteria in regression is developed by Cui and George (2008). In
this context, a surprising result has been recently underlined by Scott and Berger (2010), who
prove an asymptotic discrepancy between fully Bayesian and empirical Bayes inferences. Em-65

pirical Bayes and hierarchical Bayes procedures for nonparametric inverse problems are studied
in a recent work by Knapik et al. (2012). In their case, the hyperparameter λ has an interpretation
as a model index and a direct relation to the true parameter exists a priori. However, generally the
hyperparameter merely characterizes some aspects of the prior so that there exists no notion of a
true value of λ; thus, it is not immediately clear what would be a desirable limit of the sequence70

of λ̂n. We will propose a notion of oracle value instead of a true value for λ, in Section 4.
The term empirical Bayes is indeed used with different meanings in the literature. Another

common use refers to problems where a prior is introduced, but some frequentist interpretation
of it is possible, typically in mixture models where Xi|θi ∼ pθi(x) and the θi are a sample from
a latent distribution G(θ|λ). In these problems, maximum likelihood estimation of λ, i.e. of the75

latent distribution, is often referred to as empirical Bayes. A Bayesian approach would assign
a prior distribution on λ. In these cases, a comparison between Bayes and empirical Bayes re-
duces to the interesting, but more standard, comparison between maximum likelihood and Bayes
procedures, and it is not the object of this work.

The first question we address is whether it is true that the empirical Bayes and the Bayesian80

posterior distributions will be asymptotically close. In fact, a relevant counterexample has
been recently pointed out by Scott and Berger (2010), in the special case of variable se-
lection in regression models. They consider a Bayesian approach where variable selection is
based on a vector of inclusion γ ∈ {0, 1}k which selects among k potential regressors, and
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the prior on γ = (γ1, . . . , γk) assumes that the γi are independent Bernoulli with parameter 85

λ, π(γ1, . . . , γk|λ) ∝ λkγ (1− λ)k−kγ , λ ∈ (0, 1), where kγ =
∑
γi is the selected number of

covariates. In this framework, George and Foster (2000) have shown that an empirical Bayes
procedure that estimates the inclusion probability λ from the data, e.g. by maximum marginal
likelihood, may be preferable to a Bayesian procedure that uses a fixed value of the prior hyper-
parameter λ. Scott and Berger (2010) compare this empirical Bayes approach with a hierarchical 90

Bayes procedure that assigns a prior on λ. Surprisingly, they prove an asymptotic discrepancy
between the two procedures. In particular, they show that the empirical Bayes posterior distri-
bution on the set of models that can be degenerate on the null model (γ = (0, . . . , 0)) or on the
full model (γ = (1, . . . , 1)). This might still lead to interesting pointwise estimates of the model
or of the whole parameter, however, in terms of posterior distribution is far from being satis- 95

factory. So we shed light on such phenomena by describing when and why marginal maximum
likelihood empirical Bayes procedures will be pathological or, on the contrary, when and why
they will have some good oracle property. These results have therefore the practical interest of
characterizing, at least in the parametric case, those families of priors to be used with regard to
empirical Bayes procedures and those to be avoided, in particular if one is not merely interested 100

in point estimation, but in some more general characteristics of the posterior distribution.
We formalize the asymptotic comparison in terms of merging of Bayes and empirical Bayes

procedures. We consider two notions of merging. First, we study Bayesian weak merging in the
sense of Diaconis and Freedman (1986).Then, we study frequentist strong merging in the sense
of Ghosh and Ramamoorthi (2003), which compares posterior distributions in terms of total 105

variation distance, P∞0 -almost surely, where P∞0 ≡ P∞θ0 denotes the probability law of (Xi)i≥1

under θ0, the true value, in the frequentist sense, of the parameter θ. It is worth noting that, when
strong merging holds, if Bernstein von-Mises holds in the L1-sense for the Bayes posterior, then
it also holds for the empirical Bayes posterior.

Developing from Diaconis and Freedman (1986), we see (Section 3) that weak merging of 110

Bayes and empirical Bayes posterior distributions holds if and only if the empirical Bayes pos-
terior is weakly consistent, in the frequentist sense, at θ0, for every θ0 in the parameter space
Θ. Thus, conditions for weak consistency of empirical Bayes posteriors are needed. Besides the
Bayesian motivations in terms of merging, consistency is of autonomous interest from a frequen-
tist viewpoint, and we consider it in a general context. Conditions for empirical Bayes consis- 115

tency are generally stronger than those needed for consistency of Bayes posteriors. We provide
sufficient conditions that cover both parametric and nonparametric cases. In fact, an empirical
Bayes approach is even more tempting in nonparametric problems, since frequentist properties
of Bayes procedures are known to crucially depend on fine details of the prior (Diaconis and
Freedman, 1986) and on a careful choice of the prior hyperparameters. We exhibit examples to 120

illustrate empirical Bayes consistency for Dirichlet process mixtures, which is a commonly used
nonparametric prior.

Even when consistency and weak merging hold, simple examples show that the empirical
Bayes posterior can have unexpected and counterintuitive behaviors. Frequentist strong merging
is a way to refine the analysis. Obtaining strong merging of Bayes posteriors in nonparametric 125

contexts is often impossible since pairs of priors are typically singular. Thus, in tackling this
issue, we concentrate on parametric models and on the specific, but important, case of the maxi-
mum marginal likelihood λ̂n. In this setup, we find that the behavior of the empirical Bayes pos-
terior is essentially driven by the behavior of the prior at θ0. Roughly speaking, if supλ π(θ0|λ)
is reached for a value λ0 (here unique for simplicity) in the boundary of Λ and this is such that 130

π(θ|λ0) is degenerate on θ0, then the empirical Bayes posterior will not merge with any (hi-
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erarchical) Bayes posterior distribution. We illustrate this behavior in Bayesian regression with
g-priors. Conversely, if supλ π(θ0|λ) <∞, which is the case if it is reached for λ0 in the inte-
rior of Λ, then λ̂n converges to λ0 and frequentist strong merging holds. The value λ0 can be
understood as the prior oracle as it is the value of the hyperparameters such that the prior mostly135

favors the true θ0. Under this respect, the empirical Bayes posterior achieves some kind of opti-
mality. The asymptotic selection of the oracle value λ0 suggests that empirical Bayes may have
better finite sample properties than a Bayesian solution with a fixed choice of λ. Finite sample
comparisons are beyond the scope of this work, but we have a discussion at the end of the paper.

The paper is organized as follows. In Section 2, we define the context and the notation. In140

Section 3, we study Bayesian merging and consistency of empirical Bayes posteriors. Parametric
and nonparametric examples illustrate these results. In Section 4, we study frequentist strong
merging and obtain, as a by-product, that in regular cases the empirical Bayes procedure leads to
an oracle choice of the prior hyperparameter. Some open issues are discussed in Section 5.

2. GENERAL CONTEXT AND NOTATION145

Let X and Θ denote the observational space and the parameter space, respectively. In order to
cover parametric and nonparametric problems, we allow them to be quite general, only requiring
that they are complete and separable metric spaces, equipped with their Borel σ-fields, B(X )
and B(Θ). Let (Xi)i≥1 be a sequence of random elements, with the Xi’s taking values in X .
Suppose that, given θ, the probability measure of the process (Xi)i≥1 is P∞θ and for n ≥ 1150

denote by P (n)
θ the joint probability law of (X1, . . . , Xn). We assume that P (n)

θ is dominated
by a common σ-finite measure µ and denote by p(n)

θ the density of P (n)
θ w.r.t. µ.

In the sequel, we use the short notation X1:n = (X1, . . . , Xn) and x∞ = (x1, x2 . . . ). Let
{Π(·|λ) : λ ∈ Λ} be a family of prior probability measures on Θ. Given a prior Π(·|λ), we
denote by Π(·|λ, X1:n) the corresponding posterior distribution of θ, given X1:n.155

The empirical Bayes approach consists in estimating the hyperparameter λ by λ̂n ≡ λ̂n(X1:n)
and plugging the estimate into the posterior distribution. In general, λ̂n takes values in the closure
Λ̄ of Λ. For λ0 in the boundary ∂Λ of Λ, we define Π(·|λ0) as the σ-additive weak limit of Π(·|λ)
for λ→ λ0, when it exists. We use the notation Pn ⇒ P to mean that Pn converges weakly to
P , for any probabilities Pn, P , and the notation ‖f‖1 for the L1-norm of a function f . We shall
say that the empirical Bayes posterior is well defined if Π(·|λ̂n, X1:n) is a probability measure
for all large n, P∞θ -almost surely, for all θ. Then, the empirical Bayes posterior is defined, on all
Borel sets B, as

Π(B|λ̂n, X1:n) =

∫
B p

(n)
θ (X1:n) dΠ(θ|λ̂n)∫

Θ p
(n)
θ (X1:n) dΠ(θ|λ̂n)

.

It will also be denoted, with shorter notation, by Πn, λ̂n
. Throughout the paper, the empirical

Bayes posterior is always tacitly assumed to be well defined.
Many types of estimators λ̂n can be considered: in particular, the maximum marginal likeli-

hood, defined as λ̂n ∈ argsupλ m(X1:n|λ), where m(X1:n|λ) =
∫

Θ p
(n)
θ (X1:n) dΠ(θ|λ), is the

most popular. Whenever we consider the maximum marginal likelihood estimator, we assume160

that supλm(X1:n|λ) <∞ for all large n, P∞θ -almost surely, for all θ, and write m̂(X1:n) =
m(X1:n|λ̂n). We shall present general results for the empirical Bayes posterior without specify-
ing the type of estimator λ̂n, as well as specific results for the maximum likelihood.
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3. BAYESIAN WEAK MERGING AND CONSISTENCY

3·1. Bayesian merging of Bayes and empirical Bayes inferences 165

Merging formalizes the idea that two posteriors or, in a predictive setting, two predictive distri-
butions of all future observations, given the past, will eventually be close. A well-known result by
Blackwell and Dubins (1962) establishes that, for P andQ probability laws of a process (Xi)i≥1,
if P and Q are mutually absolutely continuous, then there is strong merging of the predictions of
future events, given the increasing information provided by the data X1:n. For exchangeable P 170

andQ corresponding to priors Π and q, respectively, P andQ are mutually absolutely continuous
if and only if Π and q are such. However, the empirical Bayes approach only gives a sequence of
posterior distributions Πn, λ̂n

, without having a properly defined probability law of the process
(Xi)i≥1. Thus, the above result on strong merging does not apply. Furthermore, Blackwell and
Dubins’ result does not apply when the priors are singular, as it is often the case in nonparametric 175

problems.
Diaconis and Freedman (1986) gave a notion of weak merging that applies even when strong

merging does not. Two sequences of probability measures pn and qn are said to merge weakly
if and only if |

∫
g dpn −

∫
g dqn| → 0 for all continuous and bounded functions g. Diaconis

and Freedman showed that two Bayesians with different priors will merge weakly if and only if 180

one Bayesian has weakly consistent posterior, in the frequentist sense, at θ, for every θ ∈ Θ. We
show that an analogous result holds here: the empirical Bayes merges with any Bayesian if and
only if the empirical Bayes posterior is weakly consistent at θ, for every θ ∈ Θ.

The results are herein restricted to the case of exchangeable sequences, thus, given θ, the Xi’s
are independent and identically distributed with common distribution Pθ. Given a prior Π on Θ, 185

we use Πn(·) to denote the posterior distribution Π(·|X1, . . . , Xn), and PΠ for the exchangeable
probability law of the process (Xn)n≥1 defined through Π. Recall that a posterior distribution
Πn is weakly consistent at θ if, for any weak neighborhoodW of θ, Πn(W c)→ 0, almost surely-
[P∞θ ], for all θ ∈ Θ, where P∞θ here denotes the infinite product measure on X∞.

Let Πn, λ̂n
be the empirical Bayes posterior as described in Section 2. The following result is 190

a straightforward consequence of Theorem A.1 in Diaconis and Freedman (1986).

PROPOSITION 1. Let the map θ 7→ Pθ be one-to-one and Borel. Given a family of priors
{Π(·|λ) : λ ∈ Λ}, the empirical Bayes posterior is consistent at any θ ∈ Θ if and only if, for
any prior probability q on Θ, the empirical Bayes posterior and the Bayes posterior qn weakly
merge with Pq-probability 1. 195

The proof is immediate since it suffices to note that the proof for the equivalences (i)–(iv) in
Theorem A.1 of Diaconis and Freedman (1986), page 18, goes through to the present case: in
fact, it is based on the properties of the Bayesian posterior qn, whereas, for the posterior Πn, λ̂n

,
only consistency is required.

Proposition 1 shows that any Bayesian can be sure that her estimate with respect to quadratic 200

loss of any continuous and bounded function g will asymptotically agree with the empiri-
cal Bayes estimate, if and only if the empirical Bayes posterior is consistent at any θ. If
so, in particular, a Bayesian with hierarchical prior Πh(θ) =

∫
Π(θ|λ)h(λ) dλ is sure that

|
∫
g(θ) dΠ(θ|λ̂n, X1:n)−

∫ ∫
g(θ) dΠ(θ|λ,X1:n)h(λ|X1:n)dλ| → 0, where h(λ|X1:n) is the

posterior density of λ. 205

The above results show that even a minimal requirement such as weak merging is not guar-
antee; in fact, it holds if and only if the empirical Bayes posterior is weakly consistent. Note
that consistency refers to the posterior distribution on θ, and cannot be refereed to the sequence
of estimators λ̂n, since in our context there is generally no notion of true value of λ. Besides
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its Bayesian motivations in terms of merging, from a frequentist viewpoint consistency is a ba-210

sic property of autonomous interest. Thus, we study consistency of empirical Bayes in a more
general case, for dependent sequences beyond the case of exchangeability, and covering both
parametric and nonparametric problems. Clearly, consistency of the empirical Bayes posterior
distributions requires more care than for standard Bayesian procedures, since the prior is data-
dependent through λ̂n and one has to control the behavior of the sequence of estimators λ̂n. We215

give two results, one for procedures where λ̂n is computed by maximum likelihood and one for
the case when λ̂n is a convenient sequence of estimators.

To be more specific, let (Θ, d) be a semi-metric space. For any ε > 0, let Uε ≡ Uε(θ0) =
{θ ∈ Θ : d(θ, θ0) < ε} denote the open ball centered at θ0 with radius ε. The empirical Bayes
posterior is consistent at θ0 if, for any ε > 0, Π(U cε |λ̂n, X1:n)→ 0 almost surely-P∞0 , where220

P∞0 denotes the probability measure of (Xi)i≥1 under θ0.
For θ ∈ Θ, let R(p(n)

θ ) = (p(n)
θ /p

(n)
θ0

)(X1:n) denote the likelihood ratio. We shall use the fol-
lowing assumptions.

(A1) There exist constants c1, c2 > 0 such that, for any ε > 0,

P ∗0

(
sup
θ∈Ucε

R(p(n)
θ ) ≥ e−c1nε2

)
≤ c2(nε2)−(1+t)

for some t > 0, where P ∗0 denotes the outer measure.225

(A2) For each θ0 ∈ Θ, there exists λ0 ∈ Λ such that, for any η > 0, Π(BKL(θ0; η)|λ0) >
0, where, for KL∞(θ0; θ) = − limn→∞ n

−1 logR(p(n)
θ ), the set BKL(θ0; η) = {θ ∈ Θ :

KL∞(θ0; θ) < η}.

When compared to the assumptions usually considered for posterior consistency, (A1) is quite
strong; it is, however, a common assumption in the maximum likelihood estimation literature. It230

is verified in most parametric models, see for instance Schervish (1995), and also in nonpara-
metric models. For instance, Wong and Shen (1995) proved that, for independent and identically
distributed observations with density pθ, if Uε is the Hellinger open ball centered at pθ0 with
radius ε, then a sufficient condition for (A1) to hold true is that there exist constants c3, c4 > 0
such that, for each ε > 0,235 ∫ √2ε

ε2/28

√
H[ ](u/c3, Θ, h) du ≤ c4

√
nε2 for n large enough, (3.1)

where the function H[ ](·, Θ, h) denotes the Hellinger bracketing metric entropy of Θ. In some
cases (A1) can be weakened into

P ∗0

(
sup

θ∈Uε∩Θn

R(p(n)
θ ) ≥ e−c1nε2

)
≤ c2(nε2)−(1+t),

where Θn ⊂ Θ is such that Π(Θc
n|λ̂n, X1:n) = oP0(1). Note that, contrariwise to fully Bayes

approaches, the fact that the prior is data-dependent prevents the use of exponential bounds on
Π(Θc

n) to control the posterior probability of Θc
n. However, in Section 3.2.4 we provide a non-

parametric example where we can prove directly that the empirical Bayes posterior probability
of Θc

n goes to 0.240

In this paper, (A1) is used to handle the numerator of the ratio defining the posterior prob-
ability of any neighborhood Uε in the following way. By the first Borel-Cantelli lemma, (A1)
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implies that supθ∈Ucε R(p(n)
θ ) < e−c1nε

2
for all large n, P∞0 -almost surely . Thus, for all large n,∫

Ucε

R(p(n)
θ ) dΠ(θ|λ̂n) ≤ Π(U cε |λ̂n) sup

θ∈Ucε
R(p(n)

θ ) ≤ sup
θ∈Ucε

R(p(n)
θ ) < e−c1nε

2
(3.2)

P∞0 -almost surely. Note that the bound in (3.2) is valid for any type of estimator λ̂n.
Assumption (A2) is the usual Kullback-Leibler prior support condition, herein required to 245

hold true for some value λ0 ∈ Λ. It is a mild assumption considered in most results on posterior
consistency and has been shown to be satisfied for various models and families of priors. The
rather abstract definition of KL∞(·; ·) is mainly considered to deal with dependent data. In the
case of independent and identically distributed sequences, KL∞(θ0; θ) is simply the Kullback-
Leibler divergence between the densities pθ0 and pθ (per observation). In the present context, it is 250

used when λ̂n is the maximum marginal likelihood to bound from below m̂(X1:n)/p(n)
θ0

(X1:n).
For other types of estimator λ̂n, a variant of (A2) is considered, cf. conditions (ii)-(iii) of
Proposition 3.

We first study consistency of the empirical Bayes posterior when λ̂n is the maximum marginal
likelihood. 255

3·2. Case of the maximum marginal likelihood estimator
Let λ̂n be the maximum marginal likelihood as defined in Section 2. We have the following

result.

PROPOSITION 2. Under assumptions (A1) and (A2), the posterior Π(·|λ̂n, X1:n), where
λ̂n is the maximum marginal likelihood estimator, is consistent at θ0, i.e. for any ε > 0, 260

Π(U cε |λ̂n, X1:n)→ 0, P∞0 -almost surely.

The proof of Proposition 2 is deferred to the Appendix.

Although one could expect that the usual Kullback-Leibler prior support condition, here (A2),
implies weak consistency of the empirical Bayes posterior, as it happens for Bayesian posteriors,
it is, however, not the case and additional assumptions on the behavior of the likelihood ratio 265

and/or on the prior need to be required, as illustrated in the following example. Consider Ba-
hadur (1958)’s example, see also Lehmann and Casella (1998), pages 445–447, and Ghosh and
Ramamoorthi (2003), pages 29–31. Let Θ = N∗. For each θ = k, a density pθ on [0, 1] is de-
fined as follows. Let a0 = 1 and define recursively ak by

∫ ak−1

ak
[h(x)− C] dx = 1− C, where

0 < C < 1 is a given constant and h(x) = e1/x2
. Since

∫ 1
0 e

1/x2
dx =∞, the ak’s are uniquely 270

determined and the sequence ak → 0 as k →∞. For θ ∈ Θ, define

pθ(x) =


h(x), if aθ < x ≤ aθ−1,

C, if x ∈ [0, 1] ∩ (aθ, aθ−1]c,

0, otherwise.

Let X1, . . . , Xn|θ ∼ pθ independently. The maximum likelihood θ̂n exists and tends to ∞ in
probability, regardless of the true value θ0 = k0 of θ. It is, therefore, inconsistent. On the other
hand, Θ being countable, by Doob’s theorem, any proper prior on Θ leads to a consistent pos-
terior at all θ ∈ Θ. Consider a family of priors {Π(·|λ) : λ ∈ Λ} such that, for each θ, there 275

exists λ ∈ Λ̄ for which Π(·|λ) = δθ. It is always possible to construct such a family of priors.
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For λ = (m, σ), let

Π(1|λ) = Φ((1/2−m)/σ)− Φ((−1/2−m)/σ),
Π(θ|λ) = Φ((θ − 1/2−m)/σ)− Φ((θ − 3/2−m)/σ)

+ Φ((−θ − 3/2−m)/σ)− Φ((−θ − 1/2−m)/σ) for θ > 1,

where Φ is the cumulative distribution function of a standard Gaussian random variable. By
taking m = θ − 1 and letting σ → 0, we have as a limit the Dirac mass at θ because Π(1|λ) = 0
and Π(θ|λ)→ 1. Thus, for each k0 ∈ N∗, by taking m = k0 − 1 and letting σ → 0, we have as
a limit the Dirac mass at k0. Then, the posterior is the Dirac mass at the maximum likelihood
estimator θ̂n, which is inconsistent. To see this, note that

∀λ ∈ Λ, m(X1:n|λ) ≤
n∏
i=1

pθ̂n(Xi) and m̂(X1:n) = m(X1:n|(θ̂n − 1, 0)) =
n∏
i=1

pθ̂n(Xi).

Proposition 2 gives a result on consistency, however it can be easily turned into a result
on posterior concentration rates by replacing ε by ε̄n in (A1) and changing the Kullback-
Leibler neighborhood in (A2) with Sn = {θ : KL(p(n)

θ0
; p(n)

θ ) ≤ nε̃2n, V (p(n)
θ0
, p

(n)
θ ) ≤ nε̃2n},280

with V (p, p′) =
∫
p(log(p/p′))2(x)dx as in Ghosal and van der Vaart (2007).

3·3. Case of a convergent λ̂n
In some applications, λ̂n is chosen to be a convenient statistic, such as some moment esti-

mator, so that the prior is centered at a plausible value for the parameter. In such cases, λ̂n has
often a known asymptotic behavior, which however does not guarantee that the empirical Bayes285

posterior has a stable behaviour, too. In the following proposition, we give sufficient conditions
for consistency of the empirical Bayes posterior in such situations. Suppose that the parameter is
split into θ = (τ, ζ), where τ ∈ T and ζ ∈ Z and, given λ ∈ Λ ⊆ R`, τ ∼ Π̃(·|λ) while ζ ∼ Π̃.
In other words, the hyperparameter λ only influences the prior distribution of τ . The overall prior
is Π(·|λ) = Π̃(·|λ)× Π̃(·). Let θ0 = (τ0, ζ0) be the true value of θ = (τ, ζ).290

PROPOSITION 3. Let Π̃(·|λ̂n), n = 1, 2, . . ., and Π̃(·|λ0) be probability measures on B(T).
Assume that (A1) is satisfied and

(i) Π̃(·|λ̂n)⇒ Π̃(·|λ0) P∞0 -almost surely,
(ii) for each η > 0, there exists a set Kη ⊆ BKL(θ0; η) such that Π(Kη|λ0) > 0,

(iii) defined, for each x∞ ∈ X∞ and any η > 0, the set295

E
(η)
x∞ =

(τ, ζ) ∈ Kη :
1
n

log
p

(n)
(τ0, ζ0)

p
(n)
(τn, ζ)

(x1:n) 9 KL∞((τ0, ζ0); (τ, ζ)) for some τn → τ

 ,

E
(η)
x∞ ∈ B(T)⊗ B(Z) and, for P∞0 -almost every x∞ ∈ X∞,

Π(E(η)
x∞ |λ0) = 0. (3.3)

Then, for any ε > 0, Π(U cε |λ̂n, X1:n)→ 0 a.s. [P∞0 ].

The proof of Proposition 3 is postponed to the Appendix.
Condition (i) is a natural condition when λ̂n is an explicit estimator (as opposed to the maxi-

mum marginal likelihood). Condition (ii) is the usual Kullback-Leibler prior support condition,300
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except for the fact that here it concerns the support of the limiting prior. Condition (iii) is more
unusual. If, in the definition of E(η)

x∞ , the τn’s were fixed at τ , then (iii) would be a basic ergodic
condition on the support of Π(·|λ0), so the difficulty comes from obtaining an ergodic theo-
rem uniformly over neighborhoods of τ . In the case of independent and identically distributed
observations, the following condition implies (iii). If 305

∀ η, ε > 0, ∀ θ ∈ Kη, ∃ δ ≡ δ(θ, ε) > 0 : E0

[
sup

θ′∈Θ: d(θ′, θ)<δ

∣∣∣∣log
pθ
pθ′

(X1)
∣∣∣∣
]
<
ε

2
,

then standard strong law of large numbers arguments imply that there exists a set X∞0 ⊆ X∞,
with P∞0 (X∞0 ) = 1, such that, for each x∞ ∈ X∞0 , condition (3.3) is satisfied.

We now show two examples that illustrate the above consistency results. The examples refer
to nonparametric problems, where the asymptotic behavior of the empirical Bayes procedure is
more delicate. 310

Example 1. Dirichlet process mixtures of Gaussians are popular Bayesian nonparametric pri-
ors, commonly used for density estimation and in a wide range of problems. A univariate Dirich-
let process scale-location mixture of Gaussians assumes that Xi|G are independently distributed
according to pG(·) =

∫
φ(·|µ, σ2) dG(µ, σ), where φ(·|µ, σ2) denotes the Gaussian density

with parameters µ and σ2. The mixing distribution G is given a Dirichlet process prior with 315

parameter λᾱ(·), G ∼ DP(λᾱ), where λ is a positive scalar and ᾱ is a probability measure on
R× R+∗ with R+∗ = {x ∈ R : x > 0}. The choice of the scale parameter λ has a crucial impact
on inference and this has suggested to treat it as random, assigning it a hyperprior in a hierar-
chical Bayes approach, or to fix it by empirical Bayes (Liu (1996); McAuliffe, Blei and Jordan
(2006)), which has computational advantages. In particular, Liu (1996) considers the marginal 320

maximum likelihood estimator of λ for Dirichlet process mixtures of Binomial distributions, but
his argument remains valid for more general kernels (Petrone and Raftery, 1997). Liu shows that
the marginal maximum likelihood λ̂n is the solution of

n∑
j=1

λ

λ+ j − 1
= E[Kn|λ, X1:n], (3.4)

where E[Kn|λ, X1:n] is the expected number of occupied clusters under the conditional posterior
distribution, given λ. Note that, even if the model is parametrized in the mixing distribution G, 325

Dirichlet Process mixtures of Gaussians are usually thought as priors on the space of densities
p on X . Let Uε = {p : h(p, p0) < ε} where h is the Hellinger metric and p0 the true density.
If we assume that ᾱ has support A× [σ, σ̄], with A a compact interval of R, 0 < σ < σ̄ <∞
and Θ = {G : supp(G) ⊆ A× [σ, σ̄]}, then, from Theorem 3.2 of Ghosal and van der Vaart
(2001), page 1244, {pG : G ∈ Θ} has bracketing Hellinger metric entropy satisfying condition 330

(3.1), so that assumption (A1) is fulfilled. Moreover, if the true density is a mixture of Gaussian
distributions, p0 = pG0 , with support(G0) ⊆ A× [σ, σ̄], then also condition (A2) is satisfied.
The existence of a solution of (3.4) implies that the empirical Bayes posterior for the unknown
density is well defined, and, using Proposition 2, we get consistency.

Example 2. Let us now consider a Dirichlet Process location mixture of Gaussians: 335

Xi|(F, σ) independently distributed according to pF, σ(·) =
∫
φ(·|µ, σ2) dF (µ), with F ∼

DP(αR N(λ, τ2)), where αR is a positive constant and N(λ, τ2) denotes the Gaussian distri-
bution with mean λ and variance τ2, and σ having prior distribution H with support [σ, σ̄], 0 <
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σ < σ̄ <∞. We consider empirical Bayes selection of λ and a natural candidate is λ̂n = X̄n.
The prior on F is then a DP(αR N(X̄n, τ

2)).340

We prove consistency of the empirical Bayes posterior for the unknown density of the data
with respect to the Hellinger or the L1-distance. Let the true density be a mixture pF0, σ0 , with
σ0 ∈ [σ, σ̄] and F0 satisfying F0([−a, a]c) . e−c0a

2
for all large a and a constant c0 > 0, and

let m0 = E0[X1] be the mean of X1 under pF0, σ0 . For fixed ε > 0, choose 0 < δ < ε2 small
enough and an = nq, with 1/4 < q < 1. Consider the sieve set Θn = {(F, σ) : F ([−an, an]) >345

1− δ, σ ∈ [σ, σ̄]}. From Theorem 6 in Ghosal and van der Vaart (2007b), combined with the
proof of Theorem 7 in Ghosal and van der Vaart (2007b), if Θ̃n = {(F, σ) : F ([−an, an]) =
1, σ ∈ [σ, σ̄]}, for all ε2/28 < u <

√
2ε, H[ ](u/c3, Θn, h) . an(log an + log(1/ε))2. Thus,

for n large enough,
∫ √2ε
ε/28 (H[ ](u/c3, Θn, h))1/2 du . ε

√
an(log an) < ε2

√
n, since an = nq

with 1/4 < q < 1. By (3.2), P∞0 -almost surely,
∫
Hc
ε∩Θn

R(p(n)
F, σ) dΠ(F, σ|λ̂n) < e−c1nε

2
for all350

large n.
We now show that E0[

∫
Θcn
R(p(n)

F, σ) dΠ(F, σ|λ̂n)] = o(1). Since X̄n
a.s.−→ m0, we have

N(X̄n, τ
2) a.s.=⇒ N(m0, τ

2). By Theorem 3.2.6 in Ghosh and Ramamoorthi (2003), pages 105–
106, DP(αR N(X̄n, τ

2)) a.s.=⇒ DP(αR N(m0, τ
2)) and condition (i) of Proposition 3 is ful-

filled with λ0 = m0. Denote by Π(·|λ0) the overall limiting prior DP(αR N(m0, τ
2))×H .355

When F ∼ DP(αR N(X̄n, τ
2)), using the stick-breaking representation, we have pF, σ(·) a.s.=∑∞

j=1 pjφ(·|ξj , σ2), with ξj ∼ N(X̄n, τ
2) and independent. As φ(·|ξj , σ2) = φ(·|(X̄n −

m0) + ξ′j , σ
2), with ξ′j ∼ N(m0, τ

2), we have pF, σ(·) = pF ′, σ(· − (X̄n −m0)), with F ′ ∼
DP(αR N(m0, τ

2)). Let An be the set wherein the inequality |X̄n −m0| ≤ L/
√
n holds for

some constant L > 0. Note that P (n)
θ0

(Acn) can be made as small as needed by choosing L large360

enough. Using the above representation of the Dirichlet prior,

p
(n)
F ′, σ(X1:n − (X̄n −m0)) ≤

n∏
i=1

∫
φ(Xi|ξ, σ2)e

L|Xi−ξ|√
nσ2 dF ′(ξ) = cnn, σ

n∏
i=1

∫
gσ(Xi − ξ) dF ′(ξ),

where gσ is the probability density proportional to φ(y|0, σ2)eL|y|/(
√
nσ2) and

cn, σ =
∫
φ(y|0, σ2)eL|y|/(

√
nσ2) dy ≤ eL2/(2nσ2)

(
1 +

2L
σ
√
n

)
,

which implies that

E0

[
IAn(X1:n)

∫
Θcn

R(p(n)
F, σ) dΠ(F, σ|λ̂n)

]
.

(
1 +

2L
σ
√
n

)n
Π(Θc

n|λ0) . e−c1a
2
n+c2

√
n ≤ e−c1a2

n/2,

for n large enough, by definition of an.
Next, we bound from below the denominator of the ratio defining the empirical Bayes posterior

probability of the set Hc
ε . Using similar computations to those above, on An,∫

Θ
R(p(n)

F, σ) dΠ(F, σ|λ̂n) & e
− L2

2σ2 cnn, σ

∫
Θ
R(g̃(n)

F ′, σ) dΠ(F ′, σ|λ0),

with g̃F ′, σ(·) = c−1
n, σ

∫
φ(·|ξ, σ2)e−L

|·−ξ|√
nσ2 dF ′(ξ), where, with abuse of notation, we still denote365

by cn, σ the normalizing constant. Using computations similar to those in the proof of (5.21) in
Ghosal and van der Vaart (2001), we obtain that, for any η > 0,

∫
ΘR(g̃(n)

F ′, σ) dΠ(F ′, σ|λ0) ≥
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e−nη for n large enough. Consistency of the empirical Bayes posterior for the unknown density
follows.

We conclude this section with a parametric example which, while very simple, is illuminating 370

in showing that, even when consistency and weak merging hold, the empirical Bayes posterior
distribution may exhibit very different behaviour and in fact can diverge from any Bayesian
posterior and underestimate the uncertainty on θ.

Example 3. Consider Xi | θ ∼ N(θ, σ2) independently, with σ2 known; this model satisfies
condition (A1). Let θ ∼ N(m, τ2). 375

Case 1. If τ2 is fixed, andm = λ is estimated by maximum marginal likelihood, then λ̂n = X̄n

and the resulting empirical Bayes posterior distribution is N(X̄n, (1/τ2 + n/σ2)−1), a com-
pletely regular density. This sequence of posteriors can be seen to be consistent by direct com-
putations, thus it merges weakly with any Bayesian posterior distribution.

Case 2. Let us now consider empirical Bayes inference when the prior variance λ = 380

τ2 is estimated by maximum marginal likelihood, while m is fixed. Then (see e.g.
Lehmann and Casella (1998), page 263) σ2 + nτ̂2

n = max{σ2, n(X̄n −m)2}, so that τ̂2
n =

σ2n−1 max
{
n(X̄n −m)2/σ2 − 1, 0

}
. The resulting posterior Π(·|τ̂2

n, X1:n) is Gaussian with
meanmn = (σ2/n)/(τ̂n + σ2/n)m+ τ̂2

n/(τ̂n + σ2/n)x̄n and variance (1/τ̂n + n/σ2)−1. A hi-
erarchical Bayes approach would assign a prior on τ2 such as 1/τ2 ∼ Gamma(a, b). This leads 385

to a Student’s-t prior distribution for θ, with flatter tails, that may give better frequentist proper-
ties, see, for example, Berger and Robert (1990), Berger and Strawderman (1996). However, the
Student’s-t prior is no longer conjugate and the empirical Bayes posterior is simpler to compute.
Yet, in this example, the empirical Bayes posterior is only partially regular, in the sense that τ̂2

n

can be equal to zero so that Π(·|τ̂2
n, X1:n) can be degenerate at m. Simple computations show 390

that the probability that τ̂n = 0 goes to zero if the true θ0 6= m, but it remains strictly positive
if θ0 = m. This suggests that if θ0 6= m, the hierarchical and the empirical Bayes posterior den-
sities can be asymptotically close; however, if θ0 = m, there is a positive probability that the
empirical Bayes and the Bayesian posterior distributions are singular. From a Bayesian perspec-
tive, the possible degeneracy of the empirical Bayes posterior is a pathological behaviour. 395

Case 3. One could object that, despite unsatisfactory from a Bayesian viewpoint, the empirical
Bayes posterior would be degenerate on the true value of θ. However, the case where λ = (m, τ2)
shows that empirical Bayes may dramatically underestimate the posterior uncertainty. In this
case, the maximum marginal likelihood for λ is λ̂n = (X̄n, 0). The posterior is then completely
irregular in the sense that it is always degenerate at X̄n. This is clearly an extreme example, 400

but it is more general than the Gaussian case and applies, in particular, to any location-scale
family of priors. Indeed, if the model p(n)

θ admits a maximum likelihood θ̂n and π(·|λ) is of the
form σ−1g((· − µ)/σ), with λ = (µ, σ), for some unimodal density g which is maximum at 0,
then λ̂n = (θ̂n, 0) and the empirical Bayes posterior is the point mass at θ̂n. This shows that
such families of priors should not be used in combination with maximum marginal likelihood 405

empirical Bayes procedures.

4. FREQUENTIST STRONG MERGING AND ASYMPTOTIC BEHAVIOR OF λ̂n

As illustrated in the simple Gaussian example above, stronger forms of merging are needed
to capture and explain possible divergent behavior. In this section we study frequentist strong
merging (Ghosh and Ramamoorthi, 2003) of empirical Bayes and Bayesian posterior distribu- 410
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tions. We recall that two sequences Πn and qn of probability measures on Θ are said to merge
strongly if their total variation distance converges to zero P∞0 -almost surely.

We limit here our attention to the parametric case, thus Θ ⊆ Rk for finite k, and we suppose
that the prior probability measure Π(θ|λ) has density π(θ|λ) with respect to Lebesgue measure
for all λ ∈ Λ ⊆ R`. Before formally stating a general result which describes the asymptotic be-
haviour of empirical Bayes posteriors, we present an informal argument to explain the heuristics
behind it. Under usual regularity conditions on the model, the marginal likelihood, given λ, can
be approximated as

m(X1:n|λ) = π(θ0|λ)
p

(n)

θ̂n
(X1:n)

nk/2
×OPθ0 (1)

If we could interchange the maximization and the limit, we would have

argsup
λ

m(X1:n|λ) = argsup
λ

π(θ0|λ) + op(1).

An interesting phenomenon occurs: assuming the above argument is correct, the maximum
marginal likelihood estimate is asymptotically maximizing the value π(θ0|λ) of the prior den-
sity at true value θ0 of the parameter. In other words, it selects the most interesting value of415

the hyperparameter λ in the prior. We call the set of values of λ maximizing π(θ0|λ) the prior
oracle set of hyperparameters and denote it by Λ0. In terms of (strong) merging, however, Λ0

may correspond to unpleasant values, typically if the supremum is reached for values of λ on
the boundary of Λ and these correspond to a prior Dirac mass at θ0; for continuous θ, this may
happen if supλ∈Λ π(θ0|λ) =∞. Then, the empirical Bayes posterior is degenerate. This is what420

happens in case 2 of Example 3 or, more generally, when π(·|λ) is a location-scale family and λ
contains the scale parameter. Obviously, in such cases, we cannot interchange the limit and the
maximization. We now present these ideas more rigorously.

The map g : θ 7→ supλ∈Λ π(θ|λ) from Θ to R+ induces a partition {Θ0, Θc
0} of Θ, with

Θ0 = {θ ∈ Θ : g(θ) <∞} and Θc
0 = {θ ∈ Θ : g(θ) =∞}. As illustrated in the above heuris-425

tic discussion and proved in Sections 4·1 and 4·2 below, if θ0 ∈ Θ0, then the empirical Bayes
posterior is regular; thus we refer to the case θ0 ∈ Θ0 as the non-degenerate case. Instead, if
θ0 ∈ Θc

0, referred as the degenerate case, the empirical Bayes posterior may be degenerate and
fail to merge strongly with any regular Bayes posterior.

4·1. Non-degenerate case430

In the non-degenerate case, we give sufficient conditions for the EB posterior Π(·|λ̂n, X1:n),
where λ̂n is the maximum marginal likelihood, to merge strongly with any posterior
Π(·|λ, X1:n), λ ∈ Λ. In fact, the ultimate goal is to establish strong merging with hierarchi-
cal Bayes, as empirical Bayes is commonly used as an approximation of a hierarchical Bayes
posterior. We make the comparison with a Bayesian posterior corresponding to a fixed choice435

of λ only for technical reasons, but note that, if both the prior π(·|λ) and the hierarchical prior∫
π(θ|λ)h(λ)dλ are positive and continuous at θ0, and the corresponding posteriors are consis-

tent, then, by Theorem 1.3.1 of Ghosh and Ramamoorthi (2003), pages 18–20, the latter merge
strongly. Thus, strong merging of Π(·|λ̂n, X1:n) and Π(θ|λ, X1:n) implies strong merging of the
EB posterior with any hierarchical Bayes posterior satisfying the above conditions. Let θ0 ∈ Θ0,440

and define the set Λ0 = {λ0 ∈ Λ : π(θ0|λ0) = g(θ0)}.

THEOREM 1. Suppose that θ0 ∈ Θ0. Assume that (A1) is satisfied and

(i) the map g : θ 7→ supλ∈Λ π(θ|λ) is positive and continuous at θ0;
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(ii) there exists a non-empty subset Λ̃ of Λ0 such that, for any λ0 ∈ Λ̃, Π(Uε ∩BKL(θ0; η)|λ0) >
0 for all ε, η > 0. 445

Then, for each λ0 ∈ Λ̃0,

m̂(X1:n)
m(X1:n|λ0)

→ 1 a.s. [P∞0 ]. (4.1)

If, in addition to (i) and (ii), the following assumption is satisfied

(iii) Λ̃0 = Λ0 is included in the interior of Λ and, for any δ > 0, there exist ε, η > 0 so that

sup
θ∈Uε

sup
λ∈Λ: d(λ,Λ0)>δ

π(θ|λ)
g(θ)

≤ 1− η,

where d(λ, Λ0) = infλ0∈Λ0 d(λ, λ0),

then 450

d(λ̂n, Λ0)→ 0 and ‖π(·|λ̂n, X1:n)− π(·|λ0, X1:n)‖1 → 0 a.s. [P∞0 ]. (4.2)

The proof of Theorem 1 is presented in the Appendix.
Equation (4.2) shows that, if θ0 ∈ Θ0, the maximum marginal likelihood λ̂n converges to the
oracle sets of hyperameters Λ0, almost surely-P∞0 ; thus, asymptotically it gives the best selection
of the prior hyperparameter. Furthermore, strong merging holds. Roughly speaking, this means
that, in the limit, the differences between the empirical Bayes and the Bayesian posterior densities 455

tend to disappear; yet, the asymptotic oracle selection of λ is still of interest, suggesting more
efficient finite sample properties of empirical Bayes with respect to a fixed choice of λ.

4·2. Degenerate case and extension to the model choice framework
Example 3 in Section 3 suggests that strong merging may fail when g(θ0) =∞. We gen-

eralize this finding and show that such pathological behaviours are not so much related to 460

strange behaviours of the sampling model p(n)
θ , but rather to the choice of the family of priors

{Π(·|λ), λ ∈ Λ}.

THEOREM 2. Suppose that θ0 ∈ Θc
0. Assume that (A1) is satisfied and

(i) there exists λ0 ∈ ∂Λ0 such that Π(·|λ0) = δθ0 ,
(ii) with P (n)

θ0
-probability going to 1, m̂(X1:n) ≥ p(n)

θ0
(X1:n), 465

(iii) the model admits a local asymptotic normality expansion in the following form: for each
ε > 0, there exists a set, with P (n)

θ0
-probability going to 1, wherein, uniformly in θ ∈ Uε,

ln(θ)− ln(θ̂n) ∈ −n(θ − θ̂n)′I(θ0)(θ − θ̂n)
2

(1± ε),

θ̂n denoting the maximum likelihood estimator and ln(θ) = log(p(n)
θ (X1:n)).

(iv) ln(θ̂n)− ln(θ0) converges in distribution to a χ2-distribution with k degrees of freedom.

Then, the empirical Bayes posterior cannot merge strongly with any Bayes posterior
Π(·|λ, X1:n), with λ ∈ Λ such that the prior density π(·|λ) is positive and continuous at θ0.
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Thus, under regularity assumptions, if θ0 ∈ Θc
0 and there exists λ0 ∈ ∂Λ such that Π(·|λ0) =470

δθ0 , the empirical Bayes posterior cannot merge strongly with Π(·|λ, X1:n), neither, by Theorem
1.3.1 of Ghosh and Ramamoorthi (2003), with any consistent posterior Π(·|X1:n) associated to a
prior Π which is positive and continuous at θ0. This includes in particular any smooth hierarchical
prior.

Interestingly, Scott and Berger (2010) also encounter an analogous phenomenon in their com-
parison between fully Bayes and empirical Bayes approaches for variable selection in regres-
sion models. We believe this is due to the same reasons as described above, although it does
not completely fit our setup because we have restricted ourselves to priors that are absolutely
continuous with respect to Lebesgue measure. However, this is not a crucial difference. We de-
scribe in an informal way the link between our explanation above and their findings. First, we
briefly recall their setup. They consider a regression model Yi = xTi β + εi, with εi ∼ N(0, φ−1)
and independent, where xi is the k × 1 vector of possible regressors; their aim is to select the
best set of covariates among the k candidates. Variable selection is based on an inclusion vector
γ = (γ1, . . . , γk) ∈ {0, 1}k, where γj = 1 means that jth covariate has to be included. The prior
on θ = (β, φ, γ) is defined as π(θ|λ) = π(β, φ|γ)π(γ|λ), where π(β, φ|γ) is degenerate on a
space determined by γ, say of values (βγ , φ) where βγ has dimension kγ =

∑k
j=1 γj . Given λ,

the γj are independent Bernoulli, π(γ|λ) = λkγ (1− λ)k−kγ . A crucial issue is how to fix the
probability of inclusion λ. An empirical Bayes selection of λ based on the maximum marginal
likelihood estimator considers

λ̂n = argsup m(Y1:n|λ) = argsup
∑
γ

m(Y1:n|γ)λkγ (1− λ)k−kγ .

Here m(Y1:n|γ) acts as the likelihood. Each model is regular so that, under P (n)
θ0

, with θ0 =
(β0, φ0, γ0), β0 denoting the true k-dimensional vector of regression coefficient, with some
elements possibly equal to zero, which also gives the indicators γ0 associated to the true model,
and writing β0,γ the restriction of the β0 to the coefficients present in model γ:

m(Y1:n|γ)

p
(n)
θ0

≈ cγπ(φ0, β0,γ |γ) eln(θ̂γ)−ln(θ0)

n(kγ+1)/2
, cγ = OPθ0 (1)

Hence the marginal likelihood m(Y1:n|γ) concentrates asymptotically at γ = γ0, in the sense475

that m(Y1:n|γ0)/m(Y1:n|γ) goes to infinity under Pθ0 for any γ 6= γ0 and

m(Y1:n|λ) ≈ m(Y1:n|γ0)π(γ0|λ) (4.3)

as n goes to infinity. We can thus apply our notion of oracle value for λ, which is λ0 =
argsupπ(γ0|λ) = kγ0/k. If γ0 = (0, . . . , 0), then λ0 = 0, and if γ0 = (1, . . . , 1), λ0 = 1, which
correspond to degenerate distributions on γ. Note that in the case of model selection, the discrete
nature of problem does not prevent the merging of the empirical Bayes posterior with a posterior480

associated to a fixed λ or with a hierarchical prior.
This is not merely specific of the linear regression example, and, in a general model

choice framework with competing models Mj , j = 1, . . . , J , where θ = (βj , Mj) is decom-
posed into a model indicator Mj and the parameter βj within the model Mj , with prior of
the kind P (Mj |λ)πj(βj |Mj), the behaviour of marginal maximum likelihood estimator λ̂n485

is driven by the asymptotic behaviour of m(Y1:n|Mj). In many model selections procedures
m(Y1:n|M0)/m(Y1:n|Mj) converges to infinity for allMj 6= M0 under P (n)

θ0
, withM0 denoting
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the true model so that (4.3) remains valid and λ̂n asymptotically maximizes P (M0|λ). Depend-
ing on the form of P (M0|λ), the empirical Bayes prior distribution can be degenerate or not.

4·3. Example: Regression with g-priors 490

As a final example, we consider the canonical Gaussian regression model Y = 1α+Xβ + ε,
with ε ∼ N(0, σ2I), where Y = (Y1, . . . , Yn)T is the response vector, X is the (n× k) fixed
design matrix of full rank and I denotes the n-dimensional identity matrix. With abuse of no-
tation, we denote by X also the design matrix whose columns have been re-centered so that
1TX = 0T , in which case β can be estimated separately from α using OLS estimators. We as- 495

sume that the matrix n−1(XTX) is positive definite and converges to a positive definite matrix
V as n→∞. A popular prior for θ = (α, β, σ2), especially in the variable selection literature,
see for instance Clyde and George (2000), George and Foster (2000), Liang et al. (2008), is

π(α, σ2) ∝ σ−2, β|σ2 ∼ N(0, gσ2(XTX)−1), g > 0, (4.4)

which is a modified version of the original Zellner (1986)’s g-prior. Since the choice of g
has a crucial impact on the shrinking effect in estimation, data-driven choices of g have 500

been suggested. An empirical Bayes selection of g based on the maximum marginal likeli-
hood estimate gives (see Liang et al. (2008), equation (9) page 413), ĝn = max{Fn − 1, 0},
Fn = R2(n− 1− k)/[k(1−R2)], R2 being the ordinary coefficient of determination. Thus,
ĝn = 0 if Fn ≤ 1. Suppose that Y is generated by the model with parameter values α0, β0, σ

2
0 .

It turns out that 505{
limn→∞ P(ĝn = 0) = limn→∞ P(Fn ≤ 1) ≥ γ > 0, if β0 = 0,

limn→∞ P(ĝn > 0) = limn→∞ P(Fn > 1) = 1, if β0 6= 0.
(4.5)

Interestingly, when β0 = 0, the probability that the ĝn takes the value zero in the boundary does
not asymptotically vanish. Conversely, when β0 6= 0, the probability that the empirical Bayes
posterior is non-degenerate tends to 1, as n→∞. To prove (4.5), let β̂ be the ordinary least
squares estimators and

F̃n =
(β̂ − β0)T (XTX)(β̂ − β0)/k

SSE/(n− 1− k)
.

If β0 = 0, then Fn ≡ F̃n
a.s.−→ χ2

k/k, because SSE/(n− k − 1) a.s.−→ σ2
0 , and limn→∞ P(ĝn = 510

0) ≥ P(χ2
k/k ≤ 1) =: γ > 0.

If β0 6= 0, from consistency of β̂,

Rn =
n−1[(β0 − 2β̂)T (XTX)β0]/k

SSE/(n− 1− k)
a.s.−→ − (βT0 V β0)/k

σ2
0

< 0,

which implies that 1 + nRn → −∞. Consequently,

P(ĝn > 0) = P(Fn > 1) = P

(
F̃n > 1 +

[(β0 − 2β̂)T (XTX)β0]/k
SSE/(n− 1− k)

)
= P(F̃n > 1 + nRn)→ 1.

The consequences of (4.5) on strong merging are clear. By direct computations, whatever
β0 ∈ Rk, for each g > 0, the Bayesian posterior Π(·|g, Y ) is consistent: Π(·|g, Y ) a.s.=⇒ δβ0 . 515

Let Ωn = {ĝn = 0}. Clearly, Ωn ⊆ {Π(·|ĝn, Y ) = δ0}. Then, if β0 = 0, for each g > 0,
limn→∞ P(dTV(Π(·|g, Y ), Π(·|ĝn, Y )) = 1) > 0, where dTV denotes the total variation dis-
tance. Therefore, there is a set of positive probability wherein strong merging cannot take place. If
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β0 6= 0, for each g > 0, by direct computations, P(‖π(·|g, Y )− π(·|ĝn, Y )‖1 → 0)→ 1. Thus,
in this case strong merging takes place on a set with probability tending to 1.520

5. FINAL REMARKS

In this paper, we formalized some common knowledge about the asymptotic equivalence of
Bayes and empirical Bayes methods. Our aim was not to encourage the use of empirical Bayes;
of course, when honest prior information is available, the Bayesian approach is the natural way
of incorporating it in the analysis. Yet empirical Bayes is commonly used when a data-driven525

choice of the prior hyperparameters is desirable, as a computationally simpler alternative to a
Bayesian hierarchical specification of the prior. We gave a more rigorous justification of this
common practice. Further finite sample comparison of empirical and hierarchical Bayes is a nat-
ural development. Our results about the empirical Bayes asymptotic oracle selection of the prior
hyperparameters suggest more efficient use of the information than a Bayesian solution based530

on a fixed choice of λ, when honest information for a subjective selection of λ is not available.
Similar asymptotic oracle selection of λ can be envisaged for hierarchical Bayes procedures.
These issues are beyond the scope of this work, but our results underline some key aspects that
we believe provide the ground for further general finite sample comparisons.

Acknowledgements. This work originated from a question by Persi Diaconis. We are grateful to535

him and Jim Berger for stimulating discussions. S.P. has been partially supported by the Italian
Ministry of University and Research, grant 2008MK3AFZ and by the ANR grant Bandhits ANR-
2010-BLAN-0113-01

6. APPENDIX

6·1. Proof of Proposition 2540

Fix ε > 0. The posterior probability Π(U cε |λ̂n, X1:n) can be written as

Π(U cε |λ̂n, X1:n) =

∫
Ucε
R(p(n)

θ ) dΠ(θ|λ̂n)∫
ΘR(p(n)

θ ) dΠ(θ|λ̂n)
=
Nn

Dn
.

By definition of m̂(X1:n), with P∞0 -probability 1,Dn ≥ m(X1:n|λ0)/p(n)
θ0

(X1:n) ≡ Dn(λ0) for
all large n, where λ0 is as required in (A2). Thus, Π(U cε |λ̂n, X1:n) ≤ Nn/Dn(λ0). Under (A1),
by (3.2), Nn < e−c1nε

2
for all large n, P∞0 -almost surely. Reasoning as in Lemma 10 of Barron

(1988), page 23, for any η > 0,Dn(λ0) > e−nη for all large n, P∞0 -almost surely. Choosing 0 <
η < c1ε

2, for δ = (c1ε
2 − η) > 0, we have Π(U cε |λ̂n, X1:n) = Nn/Dn ≤ Nn/Dn(λ0) < e−nδ545

for all large n, P∞0 -almost surely. The assertion follows.

6·2. Proof of Proposition 3

Fix ε > 0. Set Nn =
∫
Ucε
R(p(n)

θ ) dΠ(θ|λ̂n), under (A1), Nn < e−c1nε
2

for all large n, P∞0 -

almost surely. Let Dn =
∫

ΘR(p(n)
θ ) dΠ(θ|λ̂n). In order to bound from below Dn, it is con-

venient to refer to the probability space, say (Ω, F , P), wherein the Xi’s are defined. Let550

µ
(ω)
n (·) = Π̃(·|λ̂n(ω)), n = 1, 2, . . . , and µ0(·) = Π̃(·|λ0). Let Ω0 = {ω ∈ Ω : µ(ω)

n ⇒ µ0}.
By assumption (i), P(Ω0) = 1. For any ω ∈ Ω0, by Skorohod’s theorem (cf. Theorem 1.8 in
Ethier and Kurtz (1986), pages 102–103), there exists a probability space (Ω′, F ′, ρ) on which
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T-valued random elements Y (ω)
n , n = 1, 2, . . ., and Y0 are defined such that Y (ω)

n ∼ µ(ω)
n ,

n = 1, 2, . . ., Y0 ∼ µ0 and d(Y (ω)
n (ω′), Y0(ω′))→ 0 for ρ-almost every ω′ ∈ Ω′. Let Ω1 = 555

{ω ∈ Ω : (3.3) holds true}. Clearly, P(Ω0 ∩ Ω1) = 1. Fix ω ∈ (Ω0 ∩ Ω1). For any η > 0, let

S
(ω)
η/2 =

(τ, ζ) ∈ Kη/2 : lim
n→∞

1
n

log
p

(n)
(τ0, ζ0)

p
(n)
(τn, ζ)

(X1:n(ω)) = KL∞((τ0, ζ0); (τ, ζ)) for all τn → τ

 .

By assumptions (ii)-(iii), Π(S(ω)
η/2|λ0) > 0. Defined D(ω)

η/2 = {(ω′, ζ) : (Y0(ω′), ζ) ∈ S(ω)
η/2},∫

Z

∫
Ω′

I
D

(ω)

η/2

(ω′, ζ) dρ(ω′) dΠ̃(ζ) = Π(S(ω)
η/2|λ0) > 0. (6.1)

By Fubini’s theorem, a change of measure and Fatou’s lemma,

lim
n→∞

enηDn ≥
∫

Z

∫
Ω′

lim
n→∞

exp

n
η − 1

n
log

p
(n)
(τ0, ζ0)

p
(n)

(Y
(ω)
n (ω′), ζ)

(X1:n(ω))


 dρ(ω′) dΠ̃(ζ)

≥
∫

Z

∫
Ω′

I
D

(ω)

η/2

(ω′, ζ)

× lim
n→∞

exp

n
η − 1

n
log

p
(n)
(τ0, ζ0)

p
(n)

(Y
(ω)
n (ω′), ζ)

(X1:n(ω))


 dρ(ω′) dΠ̃(ζ) =∞,

because the integrand is equal to∞ over a set of positive probability, see (6.1). Thus,Dn > e−nη

for all large n, P∞0 -almost surely. Choosing 0 < η < c1ε
2, for δ = (c1ε

2 − η) > 0, we have 560

Π(U cε |λ̂n, X1:n) = Nn/Dn < e−nδ for all large n, P∞0 -almost surely. The assertion follows.

6·3. Proof of Theorem 1
We begin by proving (4.1). From (ii), for each λ0 ∈ Λ̃0, P∞0 -almost surely, m(X1:n|λ0) > 0

for all large n. By definition of λ̂n, 0 < m(X1:n|λ0) ≤ m̂(X1:n) <∞ for all large n, whence
for all large n 565

m̂(X1:n)
m(X1:n|λ0)

≥ 1, (6.2)

P∞0 -almost surely. We prove the reverse inequality. Using (A1), (i) and (ii), for any δ > 0,
there exists ε > 0 (depending on δ, θ0 and g(θ0)) so that, with probability greater than or equal
to 1− c2(nε2)−(1+t), ∀λ ∈ Λ

m(X1:n|λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
+
∫
Uε

R(p(n)
θ )π(θ|λ) dν(θ) ≤ e−c1nε2 +

∫
Uε

R(p(n)
θ )g(θ) dν(θ)

< e−c1nε
2

+ (1 + δ/3)
∫
Uε

R(p(n)
θ )g(θ0) dν(θ)

< e−c1nε
2

+ (1 + 2δ/3)
∫
Uε

R(p(n)
θ )π(θ|λ0) dν(θ),

where the second inequality descends from the definition of g, because π(θ|λ) ≤ g(θ) for
all θ ∈ Uε, the third one from the positivity and continuity of g at θ0 and the last one from 570
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the fact that g(θ0) = π(θ0|λ0), together with the continuity of π(θ|λ0) at θ0. By the first
Borel-Cantelli lemma, for any δ > 0, there exists ε > 0 so that for all large n, ∀λ ∈ Λ,
m(X1:n|λ)/p(n)

θ0
(X1:n) < e−c1nε

2
+ (1 + 2δ/3)

∫
Uε
R(p(n)

θ )π(θ|λ0) dν(θ), P∞0 -almost surely.
The Kullback-Leibler condition on Π(·|λ0) implies that, on a set of P∞0 -probability 1, for all
large n575

∀ a > 0,
∫
Uε

R(p(n)
θ )π(θ|λ0) dν(θ) > e−an. (6.3)

Therefore, for any δ > 0, on a set of P∞0 -probability 1, for each λ ∈ Λ, m(X1:n|λ) ≤ (1 +
δ)m(X1:n|λ0) for all large n, which, combined with (6.2), proves (4.1).

We now prove the convergence of λ̂n. Recall that, by assumption (A1), for any ε > 0,
on a set of P∞0 -probability 1, ∀λ ∈ Λ, for all large n, m(X1:n|λ)/p(n)

θ0
(X1:n) < e−c1nε

2
+∫

Uε
R(p(n)

θ )π(θ|λ) dν(θ). For δ > 0, defineNδ = {λ ∈ Λ : d(λ, Λ0) ≤ δ}. For any fixed δ > 0,580

by assumption (iii), there exist ε1, η > 0 so that, on a set of P∞0 -probability 1,

sup
λ∈Nc

δ

m(X1:n|λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
1 + (1− η)

∫
Uε1

R(p(n)
θ )g(θ) dν(θ),

whence, using (i) and (ii) on the continuity of g and π(·|λ0), λ0 ∈ Λ̃0, at θ0,

sup
λ∈Nc

δ

m(X1:n|λ)

p
(n)
θ0

(X1:n)
< e−c1nε

2
1 + (1− η/2)

m(X1:n|λ0)

p
(n)
θ0

(X1:n)
.

Using (6.3), we finally get that supλ∈Nc
δ
m(X1:n|λ) < (1− η/4)m(X1:n|λ0) for all large n,

P∞0 -almost surely. The fact that η is fixed implies that, for n large enough, λ̂n ∈ Nδ, a.s. [P∞0 ].
Since Λ0 is included in the interior of Λ, with P∞0 -probability 1, λ̂n belongs to the interior of585

Λ and Π(·|λ̂n)� ν for all large n. This fact, combined with consistency of both the empirical
Bayes posterior and Π(·|λ0, X1:n), and the convergence in (4.1), yields that, P∞0 -almost surely,
for any ε > 0,

‖π(·|λ̂n, X1:n)− π(·|λ0, X1:n)‖1 ≤ ε+
∫
Uε

p
(n)
θ (X1:n)

∣∣∣∣∣ π(θ|λ̂n)
m̂(X1:n)

− π(θ|λ0)
m(X1:n|λ0)

∣∣∣∣∣dν(θ)

≤ ε+
∣∣∣∣ m̂(X1:n)
m(X1:n|λ0)

− 1
∣∣∣∣

+
∫
Uε

p
(n)
θ (X1:n)
m̂(X1:n)

|π(θ|λ̂n)− π(θ|λ0)|dν(θ)

≤ 2ε+
∫
Uε

p
(n)
θ (X1:n)
m̂(X1:n)

|π(θ|λ̂n)− π(θ|λ0)|dν(θ)

for n large enough. We split Uε into Dε = {θ ∈ Uε : π(θ|λ̂n) ≥ π(θ|λ0)} and Dc
ε = {θ ∈ Uε :

π(θ|λ̂n) < π(θ|λ0)}. Since, for any δ > 0, if ε is small enough, π(θ|λ̂n) ≤ π(θ|λ0)(1 + δ/3),590 ∫
Dε

p
(n)
θ (X1:n)[π(θ|λ̂n)− π(θ|λ0)] dν(θ) ≤ δ

3

∫
Dε

p
(n)
θ (X1:n)π(θ|λ0) dν(θ) ≤ δ

3
m̂(X1:n).

(6.4)
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From consistency of the empirical Bayes posterior,∫
Uε

p
(n)
θ (X1:n)π(θ|λ0) dν(θ) ≤ m̂(X1:n) <

∫
Uε

p
(n)
θ (X1:n)π(θ|λ̂n) dν(θ) + (ε+ δ/3)m̂(X1:n),

whence∫
Dcε

p
(n)
θ (X1:n)[π(θ|λ0)− π(θ|λ̂n)] dν(θ) ≤

∫
Dε

p
(n)
θ (X1:n)[π(θ|λ̂n)− π(θ|λ0)] dν(θ) + (ε+ δ/3)m̂(X1:n)

and, using (6.4),
∫
Dcε
p

(n)
θ (X1:n)[π(θ|λ0)− π(θ|λ̂n)] dν(θ) ≤ (ε+ 2δ/3)m̂(X1:n), which im-

plies that for all large n∫
Uε

p
(n)
θ (X1:n)
m̂(X1:n)

|π(θ|λ̂n)− π(θ|λ0)| dν(θ) ≤ (ε+ δ).

Thus, (4.2) is proved and the proof is complete. 595

6·4. Proof of Theorem 2

Define, for any δ > 0, the set Ωn, δ of x1:n’s such that eln(θ̂n)−ln(θ0) ≤ 1 + δ. From assumption
(iv), for every δ > 0, limn→∞ P

(n)
θ0

(Ωn, δ) > 0. From assumption (ii), m̂(X1:n)/p(n)
θ0

(X1:n) ≥
1. We now study the reverse inequality. Using (A1), for any ε > 0, on a set An with P (n)

θ0
-

probability going to 1, m̂(X1:n)/p(n)
θ0

(X1:n) =
∫
Uε
eln(θ)−ln(θ0)dΠ(θ|λ̂n) +O(e−nδ). More-

over, using the LAN condition (iii), for every θ ∈ Uε,

ln(θ)− ln(θ0) = ln(θ̂n)− ln(θ0) +
−n(θ − θ̂n)′I(θ0)(θ − θ̂n)

2
(1 + op(1)),

so that, if Mn = M
√

(log n)/n, with M > 0, on a set of P (n)
θ0

-probability going to 1, for all
H > 0, ∫

‖θ−θ̂n‖>Mn

eln(θ)−ln(θ̂n) dΠ(θ|λ̂n) = O(n−H)

provided M is large enough. This leads to

m̂(X1:n)

p
(n)
θ0

(X1:n)
= eln(θ̂n)−ln(θ0)

∫
UMn

e−n(θ−θ̂n)′I(θ0)(θ−θ̂n)/2 dΠ(θ|λ̂n) +O(n−H),

where UMn = {θ : ‖θ − θ̂n‖ ≤Mn}. With abuse of notation, we still denote by An the set hav- 600

ing P (n)
θ0

-probability going to 1 wherein the above computations are valid, so that, onAn ∩ Ωn, δ,

n large enough. m̂(X1:n)/p(n)
θ0

(X1:n) ≤ 1 + 2δ Let λ ∈ Λ be such that the prior density π(·|λ)
is positive and continuous at θ0. Under assumptions (iii) and (A1), usual Laplace expansion of
the marginal distribution of X1:n yields

m(X1:n|λ)

p
(n)
θ0

(X1:n)
=
π(θ0|λ)eln(θ̂n)−ln(θ0)(2π)k/2

nk/2|I(θ0)|1/2
(1 + op(1)),

so thatm(X1:n|λ)/m̂(X1:n) = op(1). We now study the L1-distance between the two posteriors. 605

If Π(·|λ̂n) is degenerate, that is it is not absolutely continuous w.r.t. Lebesgue measure, which
plays here the role of ν), then the L1-distance between the empirical Bayes posterior and the
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posterior corresponding to Π(·|λ) is 1. Thus, we only need to consider the case where Π(·|λ̂n)
is absolutely continuous w.r.t. Lebesgue measure. On a set of P (n)

θ0
-probability going to 1, which

we still denote by An, intersected with Ωn, δ, for each θ ∈ UMn ,610

π(θ|λ̂n, X1:n)− π(θ|λ, X1:n) = eln(θ)−ln(θ̂n)

[
eln(θ̂n)−ln(θ0)π(θ|λ̂n)− nk/2|I(θ0)|1/2

(2π)k/2
+ op(1)

]

= e−n(θ−θ̂n)′I(θ0)(θ−θ̂n)/2n
k/2|I(θ0)|1/2

(2π)k/2
(1 + op(1))

×

[
eln(θ̂n)−ln(θ0)π(θ|λ̂n)

(2π)k/2

nk/2|I(θ0)|1/2
− 1

]
.

Set u =
√
nI(θ0)1/2(θ − θ̂n) and define Vn = {u : gn(u) ≥ 1− 2δ}, where gn(u) =

π(θ̂n + I(θ0)−1/2u/
√
n|λ̂n)(2π)k/2/(nk/2|I(θ0)|1/2). To simplify the notation, we

also denote by Vn = {θ = θ̂n + I(θ0)−1/2u/
√
n : u ∈ Vn}. Then, for all c > 0,∫

Vn∩{‖u‖≤cMn
√
n} gn(u) du = (2π)k/2

∫
Vn∩{‖θ−θ̂n‖≤cMn

√
n} π(θ|λ̂n) dθ ≤ (2π)k/2 and, by

definition of Vn,
∫
Vn∩{‖u‖≤cMn

√
n} gn(u) du ≥ (1− 2δ)

∫
Vn∩{‖u‖≤cMn

√
n} du. Hence615 ∫

Vn∩{‖u‖≤cMn
√
n}

du ≤ (2π)−k/2(1− 2δ)−1. (6.5)

Note that, on V c
n , π(θ|λ̂n)(2π)k/2/(nk/2|I(θ0)|1/2) < 1− 2δ, so that

π(θ|λ̂n)(1 + δ)
(2π)k/2

nk/2|I(θ0)|1/2
− 1 < −δ

and we can bound from below the L1-distance between the two posteriors: on An ∩ Ωn, δ,∫
Θ
|π(θ|λ̂n, X1:n)− π(θ|λ, X1:n)| dθ ≥

∫
V cn∩UMn

|π(θ|λ̂n, X1:n)− π(θ|λ, X1:n)| dθ

≥ δ
∫
V cn∩UMn

e−n(θ−θ̂n)′I(θ0)(θ−θ̂n)/2n
k/2|I(θ0)|1/2

(2π)k/2
dθ

≥ δ
∫
V cn∩{‖u‖≤cM

√
logn}

φ(u) du,

for some c > 0, since I(θ0) is positive definite and where φ(·) is the density of a standard Gaus-
sian distribution on Rk. By choosing L > 0 large enough and using (6.5),∫

V cn∩{‖u‖≤cM
√

logn}
φ(u) du ≥

∫
V cn∩{‖u‖≤L}

φ(u) du ≥ φ(L)
∫
V cn∩{‖u‖≤L}

du

= φ(L)

(
πk/2Lk

Γ(k/2 + 1)
−
∫
Vn∩{‖u‖≤L}

du

)

≥ φ(L)

(
πk/2Lk

Γ(k/2 + 1)
−
∫
Vn∩{‖u‖≤cM

√
logn}

du

)

≥ φ(L)
πk/2Lk

2Γ(k/2 + 1)
> 0,
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which completes the proof.
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