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Abstract

Language diversi�cation is a stochastic process which presents similarities with

phylogenetic evolution. Recently, there has been interest in modelling this

process to help solve problems which traditional linguistic methods cannot

resolve. The problem of estimating and quantifying the uncertainty in the

age of the most recent common ancestor of the Indo-European languages is an

example.

We model lexical change by a point process on a phylogenetic tree. Our

model is speci�cally tailored to lexical data and in particular treats aspects of

linguistic change which are hitherto unaccounted for and which could have a

strong impact on age estimates: �catastrophic� rate heterogeneity and missing

data. We impose a prior distribution on the tree topology, node ages and other

model parameters, give recursions to compute the likelihood and estimate all

parameters jointly using Markov Chain Monte Carlo.

We validate our methods using an extensive cross-validation procedure,

reconstructing known ages of internal nodes. We make a second validation

using synthetic data and show that model misspeci�cations due to borrowing

of lexicon between languages and the presence of meaning categories in lexical

data do not lead to systematic bias.
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We �t our model to two data sets of Indo-European languages and estimate

the age of Proto-Indo-European. Our main analysis gives a 95% highest

posterior probability density interval of 7110 � 9750 years Before the Present,

in line with the so-called �Anatolian hypothesis� for the expansion of the Indo-

European languages. We discuss why we are not concerned by the famous

criticisms of statistical methods for historical linguistics leveled by Bergsland

and Vogt [1962]. We also apply our methods to the reconstruction of the

spread of Swabian dialects and to the detection of �punctuational bursts� of

language change in the Indo-European family.
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Chapter 1

Introduction and background

1.1 The Indo-European family of languages

Most languages of Europe and several languages of India are members of the

same family, called the Indo-European family.

Parsons [1767] discovered similarities in the words for basic numerals

between Bengali, Persian, and 15 European languages, and noted that on the

other hand, Chinese, Hebrew, Malay and Turkish have very di�erent words for

numerals. He came to the conclusion that those 17 languages are related, and

all stemmed from a common ancestor, the language of Japhet, son of Noah.

Some of these similarities are shown in Table 1.1.

Similarities between these languages can also be found in many other words,

and in syntactical and phonetic features. Furthermore, the di�erences between

languages show clear patterns, making it impossible for these similarities to

be due to a coincidence. It is now accepted that these languages are related;

Fig. 1.1 shows the distribution of the languages in the Indo-European family,
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1 2 3 9
Albanian një dy tre nëntë
Bengali ek dvi tri nay
English one two three nine
Greek hen duo treis ennea
Irish aon do tri naoi
Italian uno due tre nove
Persian yak do se noh
Russian odin dva tri devyat
Swedish en tva tre nio

Tocharian A sas wu tre nu

Chinese yi er san jiu
Hebrew 'ehad s(e)nayim selosa tis'a
Turkish bir iki üc dokuz

Table 1.1: Numerals in some of the languages in Parsons' sample. The �rst ten
show signi�cant similarities; they are all members of the Indo-European family.
For languages which do not use the Latin alphabet, we show an approximate
phonetic transcription.

as it is understood nowadays.

Inside the Indo-European families, several genera can be distinguished,

each grouping a few languages which are even more closely related. A number

of models of those similarities were soon proposed. For example, Schmidt

[1872] proposed a wave-model: each language (or genus) develops a certain

number of innovations, which spread to some, but rarely all, languages in

the family, as shown in Fig. 1.2. He grouped Balto-Slavic (Russian, Polish,

Lithuanian...) with Germanic (English, German, Swedish...) because both

have an /m/ at certain case endings, where other languages have a /bh/.

The hypothesis was therefore that one Germanic or Balto-Slavic language had

developed an /m/ case ending, and that that innovation had spread to its

neighbours, without reaching the other Indo-European languages. On the
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Figure 1.1: Map of 176 Indo-European languages, shown by genus. Made using
the electronic version of Dryer et al. [2003].

other hand, he also grouped Balto-Slavic with Armenian and Indo-Iranian,

because those languages have an /s/ where other languages have a /c/ [Mallory,

1989].

The wave model is appropriate in a small number of cases, but in general,

a more appropriate model is a genetic one. There is a strong tree-like signal

in linguistic data [McMahon and McMahon, 2005], and the observation of

recent language change through written texts (e.g. Latin to Italian, French

and Spanish) shows that modi�cation with descent accounts for most of

the changes. Schleicher [1850] was the �rst to propose such a model, and

he introduced the tree representation. Borrowing vocabulary from biology,

he introduced terms such as genus, species or variety to describe language

groupings, and made the �rst attempt at an evolutionary tree of Indo-European

languages. The similarities between language diversi�cation and biological
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Indo−Iranian

ArmenianBalto−SlavicGermanic

Italic GreekCeltic

Figure 1.2: Schmidt's model of relationships between Indo-European languages.
Each language is part of one or several groupings, which may intersect.

evolution were also noted by Darwin [1871]: �The formation of di�erent

languages and of distinct species, and the proofs that both have been developed

through a gradual process, are curiously parallel. ... We �nd in distinct

languges striking homologies due to community of descent, and analogies due to

a similar process of formation.� Indeed, there are striking similarities between

the processes of biological evolution and linguistic diversi�cation: like genes,

the vocabulary, phonology and morphosyntax of languages are passed on from

parents to children in a process of descent with modi�cation.

With a tree-like model, two questions need answering: What is the topology

of the tree? How old is the root? Traditionally, the topology would be

reconstructed by hand by an expert linguist on the languages under study,

using the comparative method. By comparing words of identical or similar

meanings in di�erent languages, the linguist would try and identify cognates,

i.e. meaning categories for which the languages have related words (see Section

2.1 and Table 2.1 for more details and an example of cognacy classes); at
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the same time, they would identify the systematic phonetic correspondances

through which the languages passed. They would then reconstruct the

topology of the tree, and the sound changes that occured. Comparative

linguists often view their subject more like an art than a science.

There was no direct way of estimating the age of the root, so archaeological

evidence was used for dating issues. In the case of Indo-European, this has

led to a controversy [Diamond and Bellwood, 2003]. The main hypothesis

amongst linguists was postulated by Gimbutas and Hencken [1956] and holds

that the most recent common ancestor of all known Indo-European languages

branched no earlier than about 6000 � 6500 years Before the Present (BP), with

the expansion of the Kurgan horsemen, a people living in steppes north of the

Black Sea. The proponents of the Kurgan hypothesis hold that domestication

of the horse and of the wheel gave the Kurgan a signi�cant military advantage

allowing an enormous expansion [Mallory, 1989]. An alternative hypothesis

suggests that the spread began around 8500 BP when the Anatolians mastered

farming in the early Neolithic [Renfrew, 1987]. Dating the root of the Indo-

European languages would therefore shed light on the events which allowed

the Indo-European family to spread so far. This issue was the main question

behind much of the work presented in this thesis.

The �rst systematic method for estimating the root age, glottochronology,

was developed by Morris Swadesh in the 1950s. Swadesh used a list of about

200 meanings of �core vocabulary� (later re�ned to a list of 100 meanings),

which were assumed to evolve at a constant (slow) rate. Given lists of core

vocabulary for two languages, he would decide whether their words for a

given meaning were cognate. The percentage of cognate words would then
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directly translate into the date t at which the two languages had split, through

the formula t = logC
2 log r

, where C is the proportion of shared cognates, and

r is the �retention constant�, assumed to be a constant across all languages

[Swadesh, 1952]; r could be estimated using any pair of languages for which

the age of the common ancestor was known. Bergsland and Vogt [1962]

gave a deadly blow to glottochronology when they used known dates to show

that the retention constant is in fact not a constant, but takes very di�erent

values in the three groups of languages they selected (Old Norse, Icelandic and

Norwegian; Old and Modern Georgian and Mingrelian; and Old and Modern

Armenian). Glottochronology has now been discredited, despite criticisms

of the issues raised by Bergsland and Vogt [1962] [Sanko�, 1970]. Indeed,

it seems wishful thinking to hope to summarise language change in a single

number. However, there are issues with Bergsland and Vogt [1962]'s work,

and we show in Chapter 6 that modern methods are not subject to the same

criticisms. Several decades later, the linguistic community remains nonetheless

very skeptical about attempts at dating.

1.2 Phylogenetic models for linguistic data

Recent advances in phylogenetics have made it possible to �t models of much

greater complexity and much closer to reality.

The �rst attempts at �tting phylogenetic models to linguistic data were

described in articles by Gray and Jordan [2000] and Gray and Atkinson [2003].

Gray and Jordan [2000] apply maximum parsimony to a dataset of 5,185 lexical

items from 77 Austronesian languages and �nd evidence supporting one of
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the main hypotheses of Austronesian expansion, the so-called �express-train�

hypothesis that Austronesia was colonized rapidly by farming people out of

Taiwan. They do not attempt to date any of the internal nodes. Holden

[2002] also apply maximum parsimony to 75 Bantu and Bantoid languages

(spoken South of the Sahara); they �nd that the most parsimonious tree follows

the expansion of farming in sub-Saharan Africa, indicating that it was the

mastering of farming that allowed the Bantu people to colonize such a large

area.

Gray and Atkinson [2003] apply the phylogenetic method to Indo-European

language data collected by Dyen et al. [1997], using the �nite sites model

implemented in the MrBayes package by Huelsenbeck and Ronquist [2001].

The results obtained, using penalized maximum likelihood, are very close to the

trees given by classical comparative linguistics methods. They impose part of

the topology of the tree; other, unconstrained, genera yielded by their analysis

correspond to those usually accepted by historical linguists. Several of the

subfamilies they �nd also correspond to what was already believed to be true,

such as a subfamily grouping Germanic, Romance and Celtic languages. Other

parts of the tree are unresolved, such as the position of Albanian. While their

results do not show any new groupings, the fact that the results correspond to

what is accepted by linguists gave hope that phylogenetics could be successfully

used in other, less studied, language families. More controversially, they

attempt to date the internal nodes and root of the tree and estimate the

age of Proto-Indo-European to be between 7800 BP and 9800 BP, in line with

the Anatolian hypothesis. However, the �nite sites model they use is not well-

suited to lexical data; in particular, it allows for homoplasy, i.e. for a single
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cognacy class to be born several times at di�erent points of the tree, which

is not appropriate. The same methods were applied with similar results to

another data set of Indo-European languages by Atkinson et al. [2005], but

there is little in terms of validation of the �ndings.

This line of research has spawned a lot of interest, including outside of

scienti�c circles [Wade, 2004]. A number of other groups applied various

methods from biology to linguistic datasets.

Rexova et al. [2003] perform a maximum parsimony analysis of the Dyen

et al. [1997] data of Indo-European lexical items. They reconstruct all the

known major features of the Indo-European family, but there is a lot of

uncertainty about the topology close to the root. They note that the basic

vocabulary of Indo-European is strikingly tree-like. Bryant et al. [2005] come

to the same conclusion in their analysis of the data from Dyen et al. [1997]

using NeighbourNet.

McMahon and McMahon [2005] also apply the Neighbour-joining method

to 95 Indo-European languages and 200 lexical items. The unrooted tree they

obtain shows the ten genera generally admitted for Indo-European languages,

but no clear relationship appears between the genera.

Kitchen et al. [2009] use the BEAST software [Drummond and Rambaut,

2007] to estimate the age of the most recent common ancestor to the Semitic

languages, but do not give the uncertainty of their estimates.

Dunn et al. [2005] apply maximum parsimony analysis to the �structural�

(morphosyntactic and phonological) features of a set of Oceanic languages

which are known to be closely related; the same authors later moved on to

a Bayesian phylogenetic analysis using various models from biology [Dunn
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et al., 2008]. Again, their results are similar to those linguists obtain using

the comparative method. They argue that the tree model is better suited

to structural features than to lexical traits, because borrowing of structure

will only happen if lexical borrowing also occurs, whereas the converse is not

true [Moravcsik, 1978] (although Nichols [1999] takes the opposite view that

grammatical features evolve rapidly, and are more subject to regional in�uences

than lexical data). Since the reconstruction of the Oceanic family is good, they

extrapolate their method to a number of Papuan languages whose history is

not well known. They conclude that the Papuan languages must either share

a common ancestor, or that there must have been contact between the Papuan

languages before 3200 BP.

Views diverge as to whether morphosyntactical or lexical items retain

more signal from a language's ancestor. For example, Thomason [2000] notes

that the Ma'a language of Tanzania was apparently originally in the Cushitic

family, and retains much Cushitic basic vocabulary, but that its syntax has

been modi�ed beyond recognition through contact with neighbouring Bantu

languages. The same author claims that this occurs in situations where

speakers of the source language learn the receiving languages imperfectly,

whereas borrowing of lexical but not morphosyntactical items occurs when

speakers of the receiving language adopt new items from the source langage

[Thomason, 2001].

Lansing et al. [2007] compared lexical and genetic data from the Indonesian

island of Sumba. They claim to show that the 29 Sumbanese languages they

sampled form a subclade of the Austronesian family, though their argument is

not clear. More interestingly, they �nd a positive correlation between retention
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of Proto-Austronesian cognates and Austronesian Y chromosome lineages, as

well as a correlation with the distance to the place where it is believed the

ancestors of the modern populations �rst debarked on Sumba.

Although some have understood the large error bars resulting from

statistical analysis of comparative data to be a sign of weakness in these

methodologies, they are actually one of its main strengths: the comparative

method as presently formulated does not give estimates of uncertainty [Pagel,

2000].

Another common criticism is that the tree model is not as well suited

to languages as it is to biological species, even though Mallet [2005] found

hybridization in 10% of animal and 25% of plant species reviewed. In response

to Comrie [2006], who stated that the tree model �necessarily involves a

simpli�cation of the actual historical facts�, Campbell [2006] contends that

�historical linguists would say it is not a simpli�cation; rather, [these methods]

address directly only inherited material, while other methods and techniques

help to complete the picture�. This is all we can hope for: that the quantitative

methods will describe the aspect of language history which they attempt to

describe, rather than the complete picture. In general, the tree model is a

good �t for core vocabulary.

Some linguists have asked for models more speci�cally tailored to linguistic

data [Croft, 2008]. Noting the need for models speci�c to linguistic data, rather

than borrowed from biology, Warnow et al. [2004] developed a model for lexical,

phonological and structural data which includes some of the speci�cities of

language diversi�cation. For phonological and structural data, back-mutation

to a speci�c �default� homoplastic state is allowed. They assume that language
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evolution is mainly treelike, but add some edges between synchronic languages

to model borrowing. They assume complete rate heterogeneity: the rates

are di�erent along di�erent branches, and for di�erent characters. They do

not �t the model, but prove that the topology of the tree is identi�able

(modulo the placement of the root, and the rate parameters). The same group

propose to construct �perfect phylogenetic networks� [Nakhleh et al., 2005] by

transforming a maximum parsimony tree into a network. Ben Hamed et al.

[2005] and Bouchard-Côté et al. [2007] develop models for phonological data

and use them to identify language families.

Nicholls and Gray [2008] �t a model speci�cally tailored to linguistic data,

which is a stochastic extension of the model described by Dollo [1893] and used

in a biological context by Le Quesne [1972] and Farris [1977] . Their results

also support the Anatolian hypothesis, and they study a number of model

misspeci�cations which could have introduced systematic bias. In particular,

they note that rare but strong rate heterogeneity could have a big in�uence

on date estimates, since it would be hard to detect and at the same time have

a large e�ect. Our own analyses also show that the way missing data are

handled by Nicholls and Gray [2008] is crude and it forces them to discard

several languages from their analyses. Chapter 2 of this thesis expands the

model they proposed. We apply it to several linguistic data sets in Chapter 5.

Language trees constructed with phylogenetic methods have been used to

study other aspects of language change. Lieberman et al. [2007] study strong

verbs in Old, Middle and Modern English and evaluate the rate at which strong

verbs are regularized; they �nd that the rate of regularization changes with the

square root of the usage frequency: a verb which is used 4 times more often
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than an other will regularize at half the rate. The research by Lieberman

et al. [2007] was made easier by the fact that they knew the ancestry of the

three languages they were studying. Pagel et al. [2007] wished to estimate

variation in rates for vocabulary. Since these rates are much lower than the

rates of regularization of strong verbs, they needed to study a longer time

period and they therefore chose to infer rates on the entire tree of the Indo-

European family. They use posterior samples using the same �nite sites model

as Gray and Atkinson [2003] and compare the rates for each meaning category

to the frequency of use in four modern Indo-European languages (English,

Spanish, Russian and Greek); they �nd a signi�cant negative correlation

between frequency of use and diversi�cation rate. They are able to explain

50% of the variation in the rates of evolution with two pieces of information:

frequency of word use, and part of speech (verb, noun, number...) Pagel and

Meade [2006] apply similar methods to the Bantu family.

Similarly, Atkinson et al. [2008] used Pagel et al. [2004]'s software

BayesPhylogenies to build trees for the Indo-European, Bantu and Austronesian

languages. They found that more changes occured on paths with more

branching, and concluded that between 10 and 33% of language change

happens in punctuational bursts, when two languages diverge, with the

remainder of language change happening continually through time. We revisit

this issue in Chapter 6.

There have also been some e�orts to detect cognates automatically rather

than by using the judgements of expert linguists [Mackay and Kondrak, 2005],

but this area is still very much under-developed.

As opposed to the sound science in many of the articles cited above, there
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also seems to be a tendency amongst some non-specialist scientists to consider

phylogenetic analyses of linguistic data as an easy and fun problem, leading to

a number of publications with little or no linguistic or statistical grounding.

Serva and Petroni [2008] notice that the comparative method can only be

applied to languages which have been extensively studied by linguists and they

claim that the classi�cation into cognate classes leads to �subjectivity� which

should be avoided. Rather than relying on the judgements of linguists, they

use the spellings of words on the Swadesh list for Indo-European languages,

compute the Levenshtein distance between each pair of words and apply the

UPGMAmethod to the data they collect; they hope to apply the same methods

to less studied language families. The intention is good, but their methodology

is unfortunately �awed. Since they are dealing with languages which use at

least �ve di�erent alphabets, they transcribed these languages into the Latin

alphabet. There are many ways of doing this, so the objectivity they were going

for is under question. Unsurprisingly, the languages in their reconstructed

tree are grouped by alphabet: Albanian is grouped with the other languages

using the Latin alphabet, a position which no linguist could believe to be

correct, whereas Greek and Armenian, which use alphabets of their own, are

the outgroups. The Germanic, Celtic, Italic and Indo-Iranian subgroups are

correctly reconstructed, but the details of these groups is very far from the

known linguistic truth (e.g. the position of English and Polish). Finally, their

formula for dating is simplistic, relies on only two known dates (though many

others were available) and they do not even attempt to measure the uncertainty

of their results. The method could probably be vastly improved by relying on

a phonetic transcription rather than the spelling of the words in their data and
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by de�ning a non-binary distance, so that similar phonemes are deemed closer

than very distinct phonemes, like Ben Hamed et al. [2005].

Forster and Toth [2003] study Celtic and Romance languages but they

are casual with their data collection and in particular with the cognacy

judgements. Rather than use cognacy judgements made by expert linguists,

they group together words which look somewhat similar even if they are known

by linguists to come from di�erent origins, and separate other words which are

known to be cognates; see Evans et al. [2004] for an extensive criticism. Forster

and Toth [2003] date the expansion of Celtic to 5200 ± 1500 BP. By adding

a single language, Greek, to their list of Celtic and Romance languages, they

estimate the age of Proto-Indo-European at 10100 ± 1900 BP. An underlying

assumption of their estimate is that Greek is an outgroup of the Indo-European

family, which is far from certain.

It is worth noting that none of these works, nor ours, attempts to discover

new language families. Rather, given a set of languages already known to be

related, we estimate its internal structure and dates.

1.3 Phylogenetics for cultural history and anthropology

A number of cultural aspects diversify in a way similar to languages [Mace and

Holden, 2005, O'Brien and Lyman, 2002, Mesoudi et al., 2004]; as such, there

have been many recent attempts to apply phylogenetic methods to cultural

data sets, as suggested by Pagel [1992]. In general, software developed for

biological data has been used without questioning the assumptions made by

the models. It is often fair to say that cultural traits are closer to linguistic than
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biological traits, so such research would greatly bene�t from more developed

and better publicized software for linguistic diversi�cation. Examples include

data sets on Paleoindian points [O'Brien et al., 2001], European neolithic

pottery [Collard and Shennan, 2000], Native American baskets [Jordan and

Shennan, 2003] and East African kinship and marriage traditions [Mulder

et al., 2001]. Skelton [2008] examines di�erences in ways of writing Linear

B on pottery to reconstruct the history of the language.

Cultural evolution can be harder to analyse: while it is clear how to split

linguistic data into a list of traits, de�ning such a list of traits in a systematic

and unbiased way for cultural data is not as easy. Another issue is that of

taxon construction: is it easier to decide whether two animals are members of

the same species than to decide whether two people speak two variants of the

same language or two distinct but closely related languages; it is even harder

to de�ne what constitutes a single leaf in a tree of cultural evolution [O'Brien

et al., 2002].

Gray et al. [2007] suggest a three-dimensional space to help choose cultural

datasets which a tree model would suit best. They propose to look for cultural

traits which minimize the rate of change in vertical transmission and the rate

of horizontal transmission, and which maximize �the extent to which di�erent

aspects of culture are coupled together�, but the methods to measure these

characteristics are somewhat unclear.

There has also been interest in comparing evolutionary trees obtained from

genetic data with those that come out of linguistic or cultural data sets [Jones,

2003]. This line of research was initiated by Cavalli-Sforza et al. [1988], who

incorporated genetic data from all populations in the world and linguistic
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data from all language families, and claimed to �nd �considerable parallelism

between genetic and linguistic evolution�. However, the linguistic groupings

they used, which include the superfamilies of Greenberg [1987], are highly

controversial.

Holden and Mace [2003] assume that language trees are a good model of

cultural evolution as well: in order to test whether spread of cattle is correlated

with matriliny1 in Bantu populations, they plot traits coding for matriliny

or patriliny, and for possession of cattle, on a phylogenetic tree of language

diversi�cation. Assuming that the cultural traits had evolved along the same

tree, they show that matrilineal societies became patrilineal after they acquired

domestic cattle. Similarly, Fortunato et al. [2006] use a phylogenetic tree of 51

Indo-European languages (a subset of the Dyen et al. [1997] data set which we

analyse in later chapters) to estimate that dowry was likely to already exist in

the Proto-Indo-European society.

Spencer et al. [2004] perform a simulation study where the true tree is

known: they simulate copying of manuscripts by asking 20 modern �scribes�

to copy a poem, each from a previous copy. They use Neighbour joining

and maximum parsimony to reconstruct the evolutionary tree. Both methods

yield results which are close to the true tree. These positive results were

seen as a validation of the work by Barbrook et al. [1998], who apply an

undisclosed phylogenetic method (presumably maximum parsimony) to various

manuscripts of �The Wife of Bath's Prologue� from The Canterbury Tales, and

show that some manuscripts which have been ignored by scholars are actually

1In a matrilineal society, group membership is inherited from an individual's mother
rather than from their father.
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the closest to Chaucer's original. Spencer et al. [2003] also build a maximum

parsimony tree using the order in which the Canterbury Tales are written in

a subset of the manuscripts.

While there is a lot of interest for applying phylogenetic methods to

linguistic and cultural data, there are surprisingly few models speci�cally

tailored to these, meaning that most of the research is conducted using models

borrowed from biology. These certainly give a rough idea, but estimates using

models which include speci�cities of language change would be more reliable

and less prone to resistance by linguists.

In this thesis, we focus on a tree model for lexical data, which we call a

stochastic Dollo model, after Dollo [1893], who �rst proposed a model where

the loss of a trait is irreversible: once a species has lost a trait, it cannot

reevolve that same trait. This principle, later called �Dollo's law�, is thought

to be almost universal for complex morphological traits in biology, although

exceptions have been found [Pagel, 2004]. In the model we describe in Chapter

2, a trait can only be born once on a tree: in other words, if a trait is displayed

at two leaves of the tree, these two instances of the trait must be homologous;

this corresponds to how we expect lexical change to occur. This model is

similar to models developed for biological trait data by Huson and Steel [2004]

and Alekseyenko et al. [2008], and with minor adjustments, our model could

probably be applied to certain biological data sets.

Recent improvements in computational power have allowed Bayesian

inference to become preeminent in phylogenetics, following Yang and Rannala

[1997]. In particular, many techniques for estimation via Markov Chain

Monte Carlo have been developed [Larget and Simon, 1999]. In our context,
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Bayesian inference presents two main advantages. First, it allows us to estimate

uncertainties in a natural way. Second, it allows us to explicit our prior beliefs

on key parameters. Since we are mostly interested in dating the root of the

Indo-European family, we describe in Chapter 2 how to impose a uniform prior

on this statistic.

Issues of dating on phylogenetic trees have been researched extensively for

molecular phylogenetics. Thorne et al. [1998] study a model of evolution of

the rate of molecular evolution and propose methods to estimate dates on a

phylogenetic tree when the hypothesis of a constant molecular clock does not

hold; Thorne and Kishino [2002] study the detection of correlations in the

evolution of rates. Yang and Rannala [2006] examine issues with calibration

data, especially the in�uence of "soft bounds", which allow (but discourage)

known ancestral nodes to lie outside of a constraint. Rannala and Yang [2007]

and Inoue et al. [2010] discuss the impact of the prior and of the size of the data

on the uncertainty in posterior estimates. Much of this research is relevant to

phylogenetic dating questions in Linguistics.

Some linguists have already embraced the idea of applying phylogenetic

methods to linguistic data [Fitch, 2007], but others are �ercely opposed to

the concept [Holm, 2007, Marris, 2008]. The doubts that have been expressed

have not been alleviated by articles which ignore linguistic fact: for example,

[Evans et al., 2004] criticize Forster and Toth [2003] quite sternly, but also

indicate that this �awed methodology has led them to be wary of many other

phylogenetic analyses of linguistic data, including analyses which do not have

such obvious �aws. Because of the glottochronology �asco, dating methods

are met with even more skepticism [McMahon and McMahon, 2006]. As such,
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particular attention must be given to the validation of the methods (what

Gelman and Hill [2007] call �con�dence-building�). Large parts of this thesis

focus on such con�dence-building.

In Chapter 2, we present a model tailored to lexical change. We give details

on how we implemented the �t of the model in Chapter 3. We provide a number

of validation checks in Chapter 4 and analyse two data sets of Indo-European

languages in Chapter 5. In Chapter 6, we discuss other possible applications

of our methods.
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Chapter 2

Description of the data and of the

model

2.1 Description of the data

Our initial focus is on two data sets of vocabulary for Indo-European languages,

one collected by Ringe et al. [2002] and the other by Dyen et al. [1997]. Ringe

et al. [2002] collected data from 328 meaning categories for 24 mostly ancient

languages and coded the data in 3174 homology classes. Dyen et al. [1997]

collected data for 84 modern languages in 207 meaning categories; Gray and

Atkinson [2003] added 3 ancient languages (Hittite, Tocharian A and Tocharian

B) to the list, bringing it up to 87 languages and 2449 homology classes. There

is little overlap between the lists of languages in the two data sets.

Both datasets cover the �core� vocabulary: meanings such as all, animal,

ashes... (A complete list is given in Appendix A.) These meaning categories

are de�ned in advance and are expected to exist in all languages. Expert
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linguists established which words share a common ancestor. Two words in the

same meaning category which can be shown to be descended from a common

ancestor through systematic phonological changes are called cognates. This

equivalence relationship classi�es words into cognacy classes. For example,

for the meaning �head�, the Italian testa and the French tête belong to the

same cognacy class, while the English head and the Swedish huvud belong

to another cognacy class. An element of a cognacy class is thus a word in a

particular language. The vocabulary of a single language is represented as a

set of distinct cognates. In some cases, cognacy classes can be very hard to

detect, due to the amount of phonetic changes1.

If there are N distinct cognacy classes in data for L languages, then the

a'th classMa ⊆ {1, 2, ..., L} is a list of the indices of languages which possess a

cognate in that class. The data are often coded as a binary matrix D. A row

corresponds to a language and a column to a cognacy class, so that Di,a = 1

if the a'th cognacy class has an instance in the i'th language, and Di,a = 0

otherwise. See Table 2.1 for an example. This coding allows a language to

have several words for one meaning (such as Old High German stirbit and

touwit for �he dies�, an instance of polymorphism), or no word at all (see

Section 4.2.2 for a discussion of issues this raises). Missing matrix elements

mostly arise because the reconstructed vocabularies of some ancient languages

are incomplete. For some modern languages, small amounts of data are also

missing; this may be because the linguists are unsure as to whether a word

belongs to a cognate class. If we are unable to answer the question �does

1For instance, the English wheel and the Greek κύκλoς (whence cycle) are cognate: both
come from the Proto-Indo-European word reconstructed as *kwekwlos, but this is certainly
not obvious to the untrained observer.
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Old English stierfþ
Old High German stirbit, touwit

Avestan miriiete
Old Church Slavonic um��ret�u

Latin moritur
Oscan ?

Old English 1 0 0
Old High German 1 1 0

Avestan 0 0 1
Old Church Slavonic 0 0 1

Latin 0 0 1
Oscan ? ? ?

(a) (b)

Table 2.1: An example of data coding: (a), the word �he dies� in six
ancient Indo-European languages; (b), the coding of this data as a binary
matrix with ?'s for missing data. The �rst cognacy class isM1 ∈ Ω1 with Ω1 =
{{Old English, Old High German}, {Old English, Old High German, Oscan}}

language i possess a cognate in cognacy class a?� then we set Di,a =?.

We need notation for both matrix and set representations with missing

data. Denote by Ba column a of L × N matrix B. For a = 1, 2, ..., N let Da

be the set of all column vectors d∗ allowed by the data Da in column a of D,

Da =
{
d∗ ∈ {0, 1}L : Di,a ∈ {0, 1} ⇒ d∗a = Di,a, i = 1, 2, ..., L

}
.

For d∗ ∈ Da let m(d∗) = {i : d∗i = 1}. Denote by Ωa the set of cognacy classes

consistent with the data Da, so that

Ωa = {ω ⊆ {1, 2, . . . , N} : ω = m(d∗), d∗ ∈ Da}.

The data D are then equivalently Ω = (Ω1,Ω2, ...,ΩN). The Ωa-notation

generalizes the Ma-notation to handle missing data.

Ringe et al. [2002] list 24 mostly ancient languages. For 11 of these

languages (Latin, Modern Latvian, Old Norse...), all the data are known. For
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the others, the proportion of missing entries varies between 1% (for Old Irish)

and 91% (for Lycian, an ancient language of Anatolia). Of the 87 languages

listed by Dyen et al. [1997], 27 have no missing data. Most other languages

have very few missing data points; the proportion of missing entries varies

between 0.2% (for Slovenian) and 25% (for Tocharian A).

Note that data are usually missing in small blocks corresponding to the

cognacy classes for a given meaning category, as in Table 2.1. We do not model

this aspect of the missing data. This is related to the model-error Nicholls and

Gray [2008] call `the empty-�eld approximation', under which cognacy classes

in the same meaning category are assumed to evolve independently. See Section

4.2.2 for an analysis of possible systematic bias this could entail.

Figure 2.1 gives a visualisation of the data by Ringe et al. [2002] restricted

to 100 meaning categories, which lists data for 24 languages across 872 cognacy

classes. There are 8 blocks (large rows) in Figure 2.1, each corresponding to 109

cognacy classes. In each block, a row corresponds to language and a column to

a cognacy class. A small black square corresponds to a 1 in the data; a white

square corresponds to a 0 in the data, and a gray square corresponds to a ?.

This �gure shows a few of the features of the data: most of the data are 0's;

most cognacy classes are only displayed at a very small number of languages

(1 or 2), but a few appear at almost all languages; and data are missing in

blocks.

It is also worth noting that we are the �rst to propose a model tailored

to language diversi�cation which correctly handles missing data. In previous

research, missing data were generally assumed to be absent (?'s were replaced

with 0's); Nicholls and Gray [2008] also had to discard 7 languages from their
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Figure 2.1: Visualization of the Ringe et al. [2002] data. For a given language
(row), a cognacy class (column) can be present (black), absent (white), or the
data point can be missing (gray). 29



study because they contained too many missing data, whereas we are able to

include all languages in our analyses. Several linguists have expressed regret

at the lack of correct handling of missing data, including Skelton [2008] and

Michael Dunn (pers. comm.).

For these Indo-European phylogenies, some subtrees are known. For

example, the Italic languages are known to form a subtree, and they are known

to have diverged after the fall of Dacia in 112 AD [Gray et al., 2007]. Similarly,

we have some knowledge of the dates at which ancestral languages were spoken;

these take the form of a lower and an upper bound on the subtree root age. We

also have constraints on the age of all non-contemporary leaves, since we know

when these extinct languages were in use. The bounds are used to calibrate

model parameters and to infer dates for other nodes. Table 2.2 lists the 15

constraints we use in our analyses of the Dyen et al. [1997] data. Jumping

ahead to our results, Figure 2.2 is a sample from the posterior distribution we

�nd for phylogenies in our analysis of the Ringe et al. [2002] data. Calibration

constraints are represented by the black bars across nodes in this tree.

2.2 Model description

We specify a subjective prior for phylogenies, representing a state of knowledge

of interest to us. We model vocabulary diversi�cation down an evolutionary

tree, where each leaf represents a language in our data.

The material in this subsection follows Nicholls and Gray [2008], with

several extensions: we add catastrophic rate heterogeneity, a correct handling

of missing data, and more registration processes.
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Clade Min age Max age
Celtic 1700 ∞

Brythonic 1450 1600
Italic 1700 1850

Iberian-French 1200 1550
Germanic 1750 1950
Balto-Slavic 1900 3400

Slavic 1300 ∞
Indic 2200 ∞

Indo-Iranian 3000 ∞
Iranian 2500 ∞
Greek 3500 ∞

Tocharic 1650 2140
Hittite 3200 3700

Tocharian A 1250 1500
Tocharian B 1250 1500

Table 2.2: Clade constraints for the Dyen et al. [1997] data set, �rst used by
Gray and Atkinson [2003]. The �rst twelve rows are clades for which we have
knowledge about the age of the root; the last three are ancient languages for
which we know when they existed.
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Figure 2.2: A sample close to the maximum of the posterior for the analysis of
the Ringe et al. [2002] data. All the constraints on the node ages are shown.
The age constraints for the Italic, Indo-Iranian and Iranian groups do not
have an upper bound; this is denoted by the absence of a tick on left side of the
bound.
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2.2.1 Prior distribution on trees

Let g be a rooted tree with 2L nodes: L leaves, L−2 internal nodes, a root node

r = 2L−1 and an Adam node A = 2L, which is linked to r by a edge of in�nite

length. Each node i = 1, 2, . . . , 2L is assigned an age ti and t = (t1, t2, ..., tA);

the units of age are years before the present; for the Adam node, tA = +∞.

The edge between parent node j and child node i is a directed branch 〈i, j〉

of the phylogeny, with the ordering ti < tj. Let E be the set of all edges,

including the edge 〈r, A〉, let V be the set of all nodes and let VL = {1, 2, ..., L}

be the set of all leaf nodes.

We are initially interested in the set Γ of all rooted directed binary trees

g = (E, V, t) with distinguishable leaves i = 1, 2, . . . , L. With this notation,

(E, V ) is the topology of a rooted directed binary tree. Let σ(t) be the order

of the internal ages ti for i = L+ 1, . . . , 2L− 2. Then the triplet (E, V, σ(t)) is

the labeled history of the tree. In general, several labeled histories correspond

to one topology.

We restrict the set of allowable trees Γ by imposing C calibration

constraints on the topology and on certain node ages. These are described

at the end of Section 2.1. Each constraint c restricts Γ to the set of trees Γ(c)

in which a certain set of leaves form a sub-tree, or clade. Some constraints

also impose a lower and/or upper bound of the root of the clade. In some

cases, the imposed clade contains only one leaf, so that the constraint is only

imposing a range on the age of the leaf; this is used for ancient languages. We

add to these constraints an upper bound on the root time at some age T > 0.

In most of our analyses of Indo-European data, we use T = 16, 000, which is
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much greater than any possible root age considered plausible by linguists. Let

Γ(0) = {(E, V, t) ∈ Γ : tr ≤ T}. The space of calibrated phylogenies is then

ΓC =
C⋂
c=0

Γ(c).

Since we are interested in the root age, we choose a prior on trees for which

the marginal prior on the root age tr is uniform over an interval tL ≤ tr ≤ T .

The uniform prior on Γ puts more weight on greater values of tr. If all leaves

i are isochronous with ti = 0 and there are no calibration constraints, then

Nicholls and Gray [2008] show that the prior f(g|T ) ∝ t2−Lr Itr≤T has the desired

uniform marginal prior on tr. However, the inclusion of calibration constraints

complicates matters.

For node i ∈ V , let t+i = supg∈ΓC ti and t
−
i = infg∈ΓC ti be the greatest and

least admissible ages for node i, and let S = {i ∈ V : t+i = T}, so that S is

the set of nodes having ages not bounded above by a calibration (there are 12

such nodes in Figure (2.2), for example the most recent common ancestor to

Latin, Umbrian and Oscan). Nicholls and Gray [2008] show with simulation

studies that the prior probability distribution with density

fG(g|T ) ∝
∏
i∈S

(tr − t−i )−1

gives a marginal density for tr which is approximately uniform in tL < tr <

T if in addition T � maxi∈V \S t
+
i . This is the prior we use. Nicholls and

Gray [2008] do not comment on the distribution determined by fG over tree
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topologies. We consider two priors on topologies: a uniform distribution on

labeled histories (corresponding to the distribution for the Yule [1925] model),

which favours balanced topologies [Velasco, 2008] and a uniform distribution on

topologies, which favours small and large clades against medium-sized clades

[Golobo� and Pol, 2005]. In both cases, the marginal prior is de�ned over Γ

rather than ΓC . The addition of constraints modi�es this prior in two ways:

topological constraints rule out certain topologies, setting the prior probability

to 0; age constraints modify the volume available to each topology, so that

our priors are in fact not exactly uniform over labeled histories or topologies

over ΓC . For the validation analyses presented in Chapter 4, we use only the

uniform prior on labeled histories; we used both priors for our analyses of real

data presented in Chapter 5.

The addition of catastrophes described in Section 2.2.2 has no impact on

the marginal prior density for tr, nor on the marginal prior distribution on

topologies. Figure 2.3 shows a sample from the prior of the root age with the

constraints from the Ringe et al. [2002] data. The prior is roughly uniform

between 5000 and 16000 BP, which covers our region of interest; the prior does

not correspond to any reasonable a priori belief before 4500 BP, but this does

not matter since this region is ruled out by the likelihood.

The prior on the ages of internal nodes and leaves depends on the

constraints. Take for example the Tocharian B leaf: it is constrained to

lie between 1250 and 1500 BP, and its parent (the common ancestor with

Tocharian A) is constrained to lie between 1650 and 2140 BP. The rest of

the tree exerts little in�uence on the prior on the age of Tocharian B, and so

that prior is approximately uniform over the allowed range (as shown by the
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Figure 2.3: Sample from the prior distribution on the root age. The prior is
approximately �at over the region of interest (between 5000 and 16000 BP).

sample from the prior in Figure 2.4). For other nodes which are constrained

to lie between an upper and a lower bound, the prior is not necessarily exactly

uniform, but simulations from the prior show that it is always very close to

uniform, presumably because the authorized range is always quite small. This

is not true, however, of nodes which have no upper bound on the age: Figure

2.5 shows a sample from the prior for the most recent common ancestor to the

Italic languages, which is only constrained to be older than 3000 BP. The prior

is strongly biased towards younger ages, which is unsurprising since younger

ages leave more volume available for the nodes above the Italic clade. In

general, we are not interested in dating internal nodes, so this is not an issue.

The marginal prior on the age of this node is in fact comparable to priors

obtained using "soft bounds" in molecular phylogenetics Yang and Rannala

[2006]. We have no further information on the prior belief linguists have on

the distribution of plausible ages for ancient nodes, bur it would be interesting
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Figure 2.4: Sample from the prior distribution on a leaf age (Tocharian B).

to include it if such information became available.

2.2.2 Diversi�cation of cognacy classes

In this subsection we extend the stochastic Dollo model of Nicholls and Gray

[2008] to incorporate rate heterogeneity in time and space, via a catastrophe

process.

Although this model was developed with languages in mind, it can also be

applied to other kinds of trait data, such as some of the data sets mentioned in

Section 1.3, or the morphological data sets of Glenner et al. [2004]. Alekseyenko

et al. [2008] extended other aspects of the model to applications in genetics.

Cognacy classes are born and die along the tree, as shown in Figure 2.6. A

cognacy class is born when a new word appears in a language, which is cognate

with no other word in the process. A birth event occurs when a completely

new word appears, but also when a word is borrowed from a language outside

the study or when an existing word changes meaning. A cognate dies in a
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Figure 2.5: Sample from the prior distribution on the age of the most recent
common ancestor to the Italic languages.

given language when it is no longer used for the meaning it was assigned to:

it may completely cease to be used, or it may change meaning.

Cognates evolving in a single language (i.e. down a single branch of a

language phylogeny) are born independently at rate λ, die independently

at per capita rate µ, and are subject to point-like catastrophes, which they

encounter at rate ρ along a branch. At a catastrophe, each cognate dies

independently with probability κ, and a Poisson number of cognates with

mean ν are born. A catastrophe corresponds to a brutal event, which might

for example be a migration, an epidemic, or a large variation in population as

those described by Shennan and Edinborough [2007] and Turney and Brown

[2007]. At a branching event of the phylogeny, the set of cognates representing

the branching vocabulary is copied into each of the daughter languages. See

Figure 2.6.

The process we have described is not reversible, and this greatly complicates

the analysis. We show in Section 2.5 that a necessary and su�cient condition
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Figure 2.6: Description of the model: births and deaths of cognacy classes are
marked. The dots correspond to catastrophes, at which multiple births and
deaths may occur simultaneously. The cognate sets this generates at leaves are
shown on the right. Calendar time �ows from left to right and the age variables
ti in the text increase from right to left. The root is represented by the square
on the left.

for the process to be time-reversible is ν = κλ/µ. This is a reasonable

modelling assumption: the anagenic process (without catastrophes) leads to

a number of cognacy classes at any given point which is Poisson-Distributed

with mean λ/µ. If we take ν = κλ/µ, then at equilibrium2, the distribution

of the number of cognacy classes is unchanged by adding the catastrophe

process. Under this condition, adding a catastrophe to an edge is equivalent

2Equilibrium has been reached since an in�nite amount of time lapses on the Adam-root
edge.
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to lengthening that edge by TC(κ, µ) = − log(1 − κ)/µ years. This follows

because the number of cognates generated by the anagenic part of the process

in an interval of length TC is Poisson distributed with mean λ
µ
(1−e−µTC ) equal

to κλ/µ, and the probability that a cognate entering an interval of length TC

dies during that interval is 1− e−µTC , which equals κ.

Because a catastrophe simply extends its edge by a block of virtual time,

the likelihood depends only on the number of catastrophes on an edge, and not

their location in time. Let ki be the number of catastrophes on edge 〈i, j〉, and

k = (k1, . . . , k2L−2) be the catastrophe state vector. We record no catastrophes

on the 〈r, A〉 edge (its length is already in�nite). The tree g = (V,E, t, k) is

speci�ed by its topology, node ages and catastrophe state. Calibrated tree

space extended for catastrophes is

ΓCK = {(V,E, t, k) : (V,E, t) ∈ ΓC , k ∈ N2L−2
0 }.

We drop the catastrophe process from the calculation in Section 2.3. It is

straightforward to restore it, and we do this in the expression for the posterior

distribution in Section 2.4.

2.2.3 The registration process

When linguists collect lexical data, some data are missing or are otherwise

discarded through the registration process described in this section.

At leaf i, each data point is missing with probability ξi; we assume this

probability depends only on the language i and not on the cognacy class. Data

are usually missing in ancient languages which are only partially reconstructed,
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[ D* ] [ I* ] [ D~ ] [ I ] [ D ]

10000000000000 11111111111111 10000000000000 1 111 1 11 1 000 0 00

10100000000001 01011111111111 ?0?00000000001 0 111 1 11 ? 000 0 01

00000000011000 10111001110110 0?000??001?00? 1 100 1 10 0 0?? 1 0?

00001000000000 11111111111111 00001000000000 1 111 1 11 0 100 0 00

00001000000000 11110111111111 0000?000000000 1 011 1 11 0 ?00 0 00

10000110000010 10111111111111 1?000110000010 1 111 1 11 1 011 0 10

10000100000010 11111111111111 10000100000010 1 111 1 11 1 010 0 10

10000000000010 11111111111100 100000000000?? 1 111 1 00 1 000 0 ??

Figure 2.7: Registration of the vocabulary realized in Figure 2.6 supposing a
masking matrix I∗, as above. D∗ is the unobserved full data with a column for
each cognacy class and a row for each language of Figure 2.6 (thus cognate 1 is
present in rows 1,2,6,7 and 8); zeros in the masking matrix I∗ indicate missing
matrix elements. Some cognacy classes are then thinned (in this example, the
registration rule keeps cognacy classes with instances displayed in one or more
language) to give the registered data D.

but we also observe small amounts of missing data in some modern languages.

Let D∗ denote a notional full random binary data matrix, representing the

outcome of the diversi�cation process of Section 2.2.2. The number of columns

in D∗ is random, and equal to N∗. For the realization depicted in Figure 2.6,

D∗ = D∗ with D∗ displayed in Figure 2.7.

A column of D∗ corresponds to a cognacy class which was either present

at the root or was born below it, including some cognacy classes which died

out completely. The number of columns N∗ follows a Poisson(|g| + kT · TC)

distribution, where |g| is the total length of the tree, kT is the total number

of catastrophes on the tree, and TC is the amount of time equivalent to one

catastrophe.

The observed data D are a ternary matrix of 1's, 0's and ?'s with N

columns, N ≤ N∗. We call the mapping of the unknown complete data D∗
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to the observed data D the registration process. This process occurs in two

steps: �rst, some data go missing; second, some cognacy classes are removed

from the data.

Let I∗ be a random L × N∗ indicator matrix of independent Bernoulli

random variables for observed elements, such that for i = 1 . . . , L and a =

1, . . . , N∗, P [I∗i,a = 1] = ξi, so that ξi is the probability that we can answer

the question �Does language i display an instance of cognacy class a?�. If we

get an answer, it is assumed correct, and I∗i,a = 1; if we do not get an answer,

then I∗i,a = 0: the zeros of I∗ indicate which data points are missing. Let

ξ = (ξ1, . . . , ξL) and denote by I∗ a realization of I∗.

Now let D̃ = D̃(D∗, I∗) be the masked version of the full random data

matrix: if I∗i,a = 1 then D̃i,a = D∗i,a and if I∗i,a = 0 then D̃i,a =?. The mapping

of D∗ to D̃ corresponds to the �rst step of the registration process.

In the second step, some columns are removed from D̃. For example, the

second and third columns of D̃ consist entirely of 0's and ?'s: the corresponding

cognacy classes were never observed at any leaf. Such cognacy classes are

not included in the registered data. Other types of columns may also be

removed from the data because they are deemed unreliable. Denote by R the

registration rule D = R(D̃) mapping the full data to registered data. Let Y

and Q be functions of the columns of D∗ and I∗ counting the visible 1's and

?'s respectively,

Y (D∗a, I
∗
a) =

L∑
i=1

I∗i,aD
∗
i,a,

Q(I∗a) =
L∑
i=1

(1− I∗i,a).
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Given a = 1, 2, ..., N∗, let Ya = Y (D∗a, I
∗
a) and Qa = Q(I∗a).

We give an e�cient algorithm for computing the likelihood for rules formed

by compounding the following elementary thinning operations:

(1) R1(D̃) = (D̃a : Ya > 0) (discard classes with no instances at the leaves);

(2) R2(D̃) = (D̃a : Ya > 1) (discard classes - singletons - observed at a single

leaf);

(3) R3(D̃) = (D̃a : Ya < L) (discard classes which are observed at all leaves);

(4) R4(D̃) = (D̃a : Ya < L − 1) (discard classes which are observed at all

leaves or at all leaves but one);

(5) R5(D̃) = (D̃a : Ya + Qa < L) (discard classes which are potentially

present at all leaves);

(6) R6(D̃) = (D̃a : Ya + Qa < L − 1) (discard classes which are potentially

present at all leaves or at all leaves but one).

We assume the chosen rule includes Condition (1). The rule D = R(D̃) with

R(D̃) = R6◦R2(D̃) collects �parsimony informative� cognacy classes. Ronquist

et al. [2005] give the likelihood for the �nite-sites trait evolution model of Lewis

[2001] for registration rules like (1-6). The selection of columns is something

we have in general no control over: the column selection rule simply describes

what happened at registration, as de�ned in advance by the linguist collecting

the data. In the example in Figure 2.7, and in our analysis of the Ringe et al.

[2002] data, we �t data registered with R(D̃) = R1(D̃), and also use rule
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R2 to validate our results. The Dyen et al. [1997] data use registration rule

R(D̃) = R2(D̃).

Many other registration rules could be thought of, and the likelihood

calculations below are correct for a wide variety of rules: our only requirement

is that the event that a class is registered is independent of all events in all

other cognacy classes. We give recursions for rules (1-6) since these are likely

to be the most frequently used.

The thinning D = R(D̃) corresponds to the second step of the registration

process and gives rise to the observed data. Let I be a L×N matrix containing

those columns of I∗ which survived the thinning. We observe the realization I

of I.

Column indices a = 1, 2, ..., N∗ are exchangeable. It is convenient to

renumber the columns of D∗, I∗ and D̃ after registration, so that D̃a = Da

and I∗a = Ia for a = 1, 2, ..., N . The information needed to evaluate Ya

and Qa is available in the column Da and set Ωa representations. We write

Y (Da) = Y (Ωa) = Ya and Q(Da) = Q(Ωa) = Qa.

2.2.4 Point process of births for registered cognacy classes

Fix a catastrophe-free phylogeny g ∈ ΓCK , with k = (0, 0, ..., 0), and let an edge

〈i, j〉 and a time τ ∈ [ti, tj) be given. Denote by [g] the set of all points (τ, i)

on the phylogeny, including points (τ, r) with τ ≥ tr in the edge 〈r, A〉. The

locations zD = {z1, z2, ..., zN} of the birth events of the N registered cognacy

classes are a realization of an inhomogeneous Poisson point process ZD on [g].

Let Z ∈ [g] be the birth location of a generic cognacy class M ⊆ {1, 2, ..., L},
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corresponding to a column of D̃ with Y observed 1's and Q ?'s, and let EZ be

the event that this class generates a column of the registered data.

The point process ZD of birth locations of registered cognacy classes has

intensity

λ̃(z) = λPr(EZ |g, µ, λ, ξ, Z = z)

at z ∈ [g] and probability density

fZD(zD) =
1

N !
e−Λ([g])

N∏
a=1

λ̃(za)

with respect to the element of volume dzD = dz1dz2...dzN in [g]N , where

Λ([g]) =

∫
[g]

λ̃(z)dz

=
∑
〈i,j〉∈E

∫ tj

ti

λ̃((τ, i))dτ.

The number N of registered cognacy classes is N ∼ Poisson(Λ([g])).

2.3 Likelihood calculations

We give the likelihood for g, µ, λ, κ, ρ and ξ given the data, along with an

e�cient algorithm to compute the sum over all missing data.

We need to compute P [D|g, µ, λ, ξ, R(D)], the likelihood of the observed

data given the tree g, the birth and death rates and λ and µ, the observation

model parameters ξ, and the event that the traits we consider have been

registered. We restore the birth locations (and so omit λ from the conditioning),
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and factorize using the joint independence of Da, a = 1, 2, ..., N , under the

given conditions.

P [D=D|g, µ, λ, ξ,D=R(D̃)]

=

∫
fZD(zD)P [D=D|g, µ, ξ, ZD=zD,D=R(D̃)] dzD

=
e−Λ([g])

N !

N∏
a=1

∫
[g]

λ̃(za)P [Da=Da|g, µ, ξ, Za=za, EZa ] dza

=
e−Λ([g])

N !

N∏
a=1

∫
[g]

λP [EZa |g, µ, ξ, Za=za]P [Da=Da|g, µ, ξ, Za=za, EZa ] dza

=
e−Λ([g])

N !

N∏
a=1

λ

∫
[g]

P [Da=Da, EZa |g, µ, ξ, Za=za] dza.

=
e−Λ([g])

N !

N∏
a=1

λ

∫
[g]

P [Da=Da|g, µ, ξ, Za=za] dza.

The last line follows because all traits in the data have been registered, hence

the event {Da =Da} is a subset of the event EZa . The likelihood depends on

the awkward condition D = R(D̃) only through the mean number λ([g]) of

registered cognacy classes. The calculation has so far extended Nicholls and

Gray [2008] to give the likelihood for a greater variety of column thinning rules.

We now add the missing element component of the registration process.

We sum over possible values of the missing matrix elements in the registered

data, i.e. other all elements in D, the set of possible values for D̃ given D.

Since P [Da = Da|g, µ, λ, ξ, Za = za] is not conditioned on the requirement that

the column Da gets registered, the entries of the corresponding column Ia are
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determined by the unconditioned Bernoulli process, and we have

P [Da = Da|g, µ, ξ, Za = za] =
∑
d∗∈Da

P [I∗a,D
∗
a = d∗|g, µ, ξ, Za = za]

=
L∏
i=1

ξ
Ia,i
i (1− ξi)1−Ia,i

∑
d∗∈Da

P [D∗a = d∗|g, µ, ξ, Za = za].

The likelihood is

P [D = D|g, µ, λ, ξ,D = R(D̃)] =

e−Λ([g])

N !

N∏
a=1

(
L∏
i=1

ξ
Ia,i
i (1− ξi)1−Ia,i)λ

∫
[g]

∑
ω∈Ωa

P [M = ω|g, µ, ξ, Z = za]dza, (2.1)

where we have switched from summing d∗ ∈ Da to the equivalent set

representation ω ∈ Ωa.

For the two integrated quantities in Equation (2.1) we have tractable

recursive formulae. We are using a pruning procedure akin to Felsenstein

[1981]. We begin with Λ([g]).

We make the reasonable assumption that the registration rule includes at

least Condition R1 from Section 2.2.3. It follows that a cognacy class born at

Z = (τ, i) in [g] must survive down to the node below, at Z = (ti, i), in order

to be registered, and so

P [EZ |Z = (τ, i), g, µ, ξ] = P [EZ |Z = (ti, i), g, µ, ξ]e
−µ(τ−ti).
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We can substitute this into the expression for Λ([g]), and integrate, to get

Λ([g]) =
λ

µ

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), g, µ, ξ]
(
1− e−µ(tj−ti)

)
. (2.2)

Given a node i, let V
(i)
L be the set of leaf nodes descended from i, including

i itself if i is a leaf. Let si = card(V
(i)
L ). Denote by u

(n)
i = P [Y = n|Z =

(ti, i), g, µ, ξ] and v
(n)
i = P [Y + Q = n|Z = (ti, i), g, µ, ξ]. We can compute

Λ([g]) for rules made up of combinations of Condition R1 with any combination

of Conditions (R2-R6), from u
(0)
i , u

(1)
i , u

(si−1)
i , u

(si)
i , v

(si−1)
i and v

(si)
i . For

example,

P [EZ |Z = (ti, i), g, µ, ξ] =


1− u(0)

i R = R1,

1− u(0)
i − u

(1)
i R = R2,

1− u(0)
i − u

(1)
i − u

(L−1)
i − u(L)

i R = R4 ◦R2.

(2.3)

Notice that u
(n)
i = 0 unless si ≥ n, so for example u

(L)
i is non-zero at i = r the

root node only.

For nodes i and j, let δi,j = e−µ(tj−ti) be the probability for a cognate class

present at (tj, j) to survive down to (ti, i). Consider a pair of edges 〈c1, i〉,
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〈c2, i〉 in E. Then

u
(0)
i =

(
(1− δi,c1) + δi,c1u

(0)
c1

) (
(1− δi,c2) + δi,c2u

(0)
c2

)
u

(1)
i = δi,c1(1− δi,c2)u(1)

c1
+ δi,c2(1− δi,c1)u(1)

c2
+ δi,c1δi,c2(u

(1)
c1
u(0)
c2

+ u(0)
c1
u(1)
c2

)

u
(si)
i = δi,c1u

(sc1 )
c1 δi,c2u

(sc2 )
c2

u
(si−1)
i =

(
δi,c1u

(sc1−1)
c1 + I{sc1=1}(1− δi,c1)

)
δi,c2u

(sc2 )
c2

+δi,c1u
(sc1 )
c1

(
δi,c2u

sc2−1
c2 + I{sc2=1}(1− δi,c2)

)
v

(0)
i =

δi,c1v(0)
c1

+ (1− δi,c1)
∏
j∈V c1L

ξj

δi,c2v(0)
c2

+ (1− δi,c2)
∏
j∈V c2L

ξj


v

(si)
i =

δi,c1v(sc1 )
c1 + (1− δi,c1)

∏
j∈V c1L

(1− ξj)

δi,c2v(sc2 )
c2 + (1− δi,c2)

∏
j∈V c2L

(1− ξj)


v

(si−1)
i =

δi,c1v(sc1−1)
c1 + (1− δi,c1)

∑
j∈V c1L

ξj
∏
k 6=j

(1− ξk)

δi,c2v(sc2 )
c2 + (1− δi,c2)

∏
j∈V c2L

(1− ξj)


+

δi,c1v(sc1 )
c1 + (1− δi,c1)

∏
j∈V c1L

(1− ξj)

δi,c2v(sc2−1)
c2 + (1− δi,c2)

∑
j∈V c2L

ξj
∏
k 6=j

(1− ξk)


The recursion is evaluated from the leaves i ∈ VL, at which

u
(0)
i = u

(si−1)
i = 1− ξi

u
(1)
i = u

(si)
i = ξi

v
(0)
i = v

(si−1)
i = 0

v
(si)
i = 1

We now give the equivalent recursions for λ
∫

[g]

∑
ω∈Ωa

P [M = ωa|Z =

za, g, µ] dza. Consider the set ma =
⋂
ω∈Ωa

ω of leaves known to have a cognate
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in the a'th registered cognacy class (ma is the set of leaves i such thatDi,a = 1).

Let Ea be the set of branches on the path from the most recent common

ancestor of the leaves in ma up to the Adam-node A above the root. Cognacy

class a must have been born on an edge in Ea. For a = 1, 2, ..., N , class Ma

is non-empty, so a must have survived from its birth point down to the node

below. We can shift the birth location to the node below and convert the

integral to a sum,

λ

∫
[g]

∑
ω∈Ωa

P [M = ω|Z = za, g, µ] dza =
λ

µ

∑
〈i,j〉∈Ea

∑
ω∈Ωa

P [M = ω|Z = (ti, i), g, µ](1−δi,j).

For each a = 1, 2, ..., N and ω ∈ Ωa, let ω
(i) = ω ∩ V (i)

L and

Ω(i)
a = {ω(i) : ω(i) = ω ∩ V (i)

L , ω ∈ Ωa}

denote the set of all subsets ω(i) of the leaves V
(i)
L which are cognacy classes

consistent with the data available for those leaves. Consider two child branches

〈c1, i〉 and 〈c2, i〉 at node i. Since Ωa = Ω
(c1)
a ×Ω

(c2)
a , and we have assumed that

events are independent along the two branches,

∑
ω∈Ωa

P [M = ω|Z = (ti, i), g, µ, ξ] =
∑

ω(c1)∈Ω
(c1)
a

P [M = ω(c1)|Z = (ti, c1), g, µ]

×
∑

ω(c2)∈Ω
(c2)
a

P [M = ω(c2)|Z = (ti, c2), g, µ].

Having moved the birth event at (ti, i) to (ti, c1) and (ti, c2) (o� the node and

onto its child edges) we now move the birth event at (ti, c) to (tc, c) for c = c1, c2
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(down an edge) as follows:

∑
ω∈Ω

(c)
a

P [M = ω|Z = (ti, c), g, µ] =



δi,c ×
∑
ω∈Ω

(c)
a

P [M = ω|Z = (tc, c), g, µ] if Y (Ω
(c)
a ) ≥ 1

(1− δi,c) + δi,c ×
∑
ω∈Ω

(c)
a

P [M = ω|Z = (tc, c), g, µ] if Y (Ω
(c)
a ) = 0 and Q(Ω

(c)
a ) ≥ 1

(1− δi,c) + δi,cv
(0)
c if Y (Ω

(c)
a ) +Q(Ω

(c)
a ) = 0

(i.e. Ω
(c)
a = {∅})

The recursion is evaluated from the leaves. If c is a leaf, then

∑
ω∈Ω

(c)
a

P [M = ω|Z = (tc, c), g, µ] =


1 if Ω

(c)
a = {{c}, ∅} or {{c}} (i.e. Dc,a ∈ {?, 1})

0 if Ω
(c)
a = {∅} (i.e. Dc,a = 0).

In order to restore catastrophes to this calculation, and given g ∈ ΓK , with

ki catastrophes on edge 〈i, j〉 ∈ E, replace tj − ti with tj − ti + kiTC(κ, µ) and

all conditions on µ with conditions on µ, κ throughout.

2.4 Posterior distribution

Our prior distribution on the catastrophe death probability κ and on each of

the missing data parameters ξi, i = 1 . . . L is a uniform distribution on the

interval [0, 1]. For the rate parameters µ, λ and ρ, we impose an improper

prior distribution p(µ, λ, ρ) ∝ 1
µλρ

. This prior is scale-invariant. If we scale all

the times t by a factor η (t′ = ηt), then the scaling (µ′, λ′, ρ′) = (µ/η, λ/η, ρ/η)
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leaves the likelihood unchanged. It is therefore reasonable to put the same prior

weight for each rate parameter on an interval [a, b] as on the interval [a/η, b/η].

In some analyses, we used a Γ(1.5, 0.0002) prior on ρ. The 95% highest

probability density interval for this distribution corresponds to catastrophes

occuring between every 1,300 years and every 28,000 years; changing the prior

did not a�ect our results. Our prior on the tree g is described in Section 2.2.1.

We take a uniform prior over [0, 1] for the death probability at a catastrophe

κ and each missing data parameter ξi.

Substituting using equations (2.2)-(2.3) into equation (2.1) and multiplying

by the prior fG(g|T )p(λ, µ, ρ), we obtain the posterior distribution

p(g, µ, λ, κ, ρ, ξ|D = D)

=
1

N !

(
λ

µ

)N
exp

−λ
µ

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), g, µ, κ, ξ](1− e−µ(tj−ti+kiTC))


×

N∏
a=1

 ∑
〈i,j〉∈Ea

∑
ω∈Ωa

P [M = ω|Z = (ti, i), g, µ](1− e−µ(tj−ti+kiTC))


× 1

µλ
p(ρ)fG(g|T )

e−ρ|g|(ρ|g|)kT
kT !

L∏
i=1

(1− ξi)QiξN−Qii (2.4)

for parameters µ, λ, ρ > 0, 0 ≤ κ, ξi ≤ 1 and trees g ∈ Γ
(C)
K .

With the prior p(ρ) ∝ 1/ρ, the posterior is improper without bounds on

ρ since kT = 0 is allowed. We place very conservative bounds on ρ. Results

are not sensitive to this choice. We discuss the propriety of the posterior in

Section 3.1.

52



2.5 Time reversibility

In this section, we show that the process is time-reversible if and only if ν =

κλ/µ, as claimed in section 2.2. For this, we look at the transition rates ri,j

from the state with i cognacy classes in a language to the state with j cognacy

classes. These transition rates are the sum of the transition rates for the

anagenic process, which allows transitions from i to i + 1 and i − 1, and the

transition rates for the catastrophe process, which allows transitions from any

i to any j.

- for |i− j| 6= 1, the transition from i to j has to go through a catastrophe

(these occur at rate ρ). For a catastrophe occurring at time τ , say that the

deaths happen at τ and the births happen shortly after, at τ − ε; let k be the

number of cognacy classes existing after the deaths have occurred, but before

the births. Only deaths occurred to go from i to k, so k ≤ i, and only births

occur to go from k to j, so k ≤ j; k can take any value between 0 and min(i, j).

Summing over all these values, we get:

ri,j = ρ

k=min(i,j)∑
k=0

Bin(k; i, 1− κ)× Poi(j − k; ν) (2.5)

(starting with i cognacy classes, k cognacy classes have to survive the thinning

process with survival probability 1−κ; then the remaining j−k cognacy classes

are born through the Poi(ν) process). This becomes

ri,j = ρκie−ννji! 2F0

(
−i,−j; 1− κ

νκ

)
(2.6)
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where

2F0(−i,−j; θ) =

k=min(i,j)∑
k=0

θk
1

k!(i− k)!(j − k)!

is a generalized hypergeometric function [Abramowitz and Stegun, 1964]. Note

that 2F0(−i,−j; θ) = 2F0(−j,−i; θ).

- for j = i+ 1, the transition rates are

ri,j = λ+ ρe−ν
νjκj−1

j!
2F0

(
−i,−j; 1− κ

νκ

)
(2.7)

rj,i = µj + ρe−ν
νj−1κj

(j − 1)!
2F0

(
−j,−i; 1− κ

νκ

)
. (2.8)

First, assume that ν = κλ/µ. We have proven in Section 2.2.2 that at

equilibrium, the probability for any point on the tree to display exactly i

cognate classes is πi = e−
ν
κνi/(i!κi). If |i − j| 6= 1, it is straightforward to

check that πiri,j = πjrj,i. If j = i+ 1, then

πjrj,i
πiri,j

=
λ

µ

1

j
×
µj + ρe−ν ν

j−1κj

(j−1)! 2F0

(
−j,−i; 1−κ

νκ

)
λ+ ρe−ν ν

jκj−1

j! 2F0

(
−i,−j; 1−κ

νκ

)
=

λ

µ
×
µ+ ρe−ν ν

j−1κj

j! 2F0

(
−j,−i; 1−κ

νκ

)
λ+ ρe−ν ν

jκj−1

j! 2F0

(
−i,−j; 1−κ

νκ

)
=

λ
µ
µ+ ν

κ
ρe−ν ν

j−1κj

j! 2F0

(
−j,−i; 1−κ

νκ

)
λ+ ρe−ν ν

jκj−1

j! 2F0

(
−i,−j; 1−κ

νκ

)
= 1.

For all i and j, πiri,j = πjrj,i and so the process is time-reversible.

Suppose conversely that the process is time-reversible. Take i ≥ 2 and let
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j = i+ 1. Then

πi =
π0r0,i

ri,0
(by time-reversibility)

=
νi

κi
π0

i!
(by equation (2.6)) (2.9)

πj =
νj

κj
π0

j!
(2.10)

Hence πi/πj = (i+ 1)κ/ν. Equations (2.7) and (2.8) give

rj,i
ri,j

=
µ(i+ 1) + ρe−ννiκi+1

i! 2F0

(
−i,−j; 1−κ

νκ

)
λ+ ρe−ννi+1κi

(i+1)! 2F0

(
−j,−i; 1−κ

νκ

) (2.11)

Since the process is time reversible, we have πi
πj

=
rj,i
ri,j

, i.e.

(i+ 1)
κ

ν
=
µ(i+ 1) + ρe−ννiκi+1

i! 2F0

(
−i,−j; 1−κ

νκ

)
λ+ ρe−ννi+1κi

(i+1)! 2F0

(
−i,−j; 1−κ

νκ

) (2.12)

Dividing the numerator of both sides by (i+ 1)κ and the denominator of both

sides by ν gives

1 =

µ
κ

+ ρe−ννiκi

(i+1)! 2F0

(
−i,−j; 1−κ

νκ

)
λ
ν

+ ρe−ννiκi

(i+1)! 2F0

(
−i,−j; 1−κ

νκ

) . (2.13)

It follows that µ/κ = λ/ν.

This shows that the process is time reversible if and only if ν = λκ/µ.
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Chapter 3

Implementation

This chapter checks the posterior probability distribution is proper, sets out

the Markov Chain Monte Carlo algorithm, explains how it is implemented,

describes debugging checks and brie�y lists other aspects of the software

TraitLab in which Geo� Nicholls, DavidWelch and this author have implemented

the stochastic Dollo model described in Chapter 2.

3.1 Propriety of the posterior

Recall that our prior on the birth parameter λ and the death parameter µ is

p(λ, µ) ∝ 1
λµ
, which is improper. It is therefore possible that the posterior

distribution is improper. Equation 2.4 gives the posterior distribution of the
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tree and parameters given the data as

p(g, µ, λ, κ, ρ, ξ|D = D)

=
1

N !

(
λ

µ

)N
exp

−λ
µ

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), g, µ, κ, ξ](1− e−µ(tj−ti+kiTC))


×

N∏
a=1

 ∑
〈i,j〉∈Ea

∑
ω∈Ωa

P [M = ω|Z = (ti, i), g, µ](1− e−µ(tj−ti+kiTC))


× 1

µλ
p(ρ)fG(g|T )

e−ρ|g|(ρ|g|)kT
kT !

L∏
i=1

(1− ξi)QiξN−Qii

for parameters µ, λ, ρ > 0, 0 ≤ κ, ξi ≤ 1 and trees g ∈ Γ
(C)
K .

We give conditions under which the posterior can be shown to be proper.

Our strategy is to �rst integrate out λ, and then �nd an upper bound on

the integral of the posterior when µ → ∞ and µ → 0. More speci�cally, we

shall �nd µ0 and µ1 such that there is a bound for the integral on [µ0,∞)

and a bound on the integral on [0, µ1]. (The integral on [µ1, µ0] is the integral

of a bounded function over a compact set and is therefore �nite.) For ease

of readability, we let θ = (g, κ, ρ, ξ) and dθ = dκdρdξ
∏

i dti (with counting

measure on topologies).

The marginal for λ is Gamma-distributed: λ|µ, θ,D ∼ Γ(N, β), where

β =
µ∑

〈i,j〉∈E P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

and the probability density function of a Γ(α, β) is f(x) = xα−1e−βxβα

Γ(α)
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When we integrate out λ we pick up the factors normalizing this distribution:

p(µ, θ|D) ∝

 ∑
〈i,j〉∈E

P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

−N

×
N∏
a=1

 ∑
〈i,j〉∈Ea

∑
ω∈Ωa

P [M = ω|Z = (ti, i), g, µ](1− e−µ(tj−ti+kiTC))


× 1

N !

1

µ
p(ρ)fG(g|T )

e−ρ|g|(ρ|g|)kT
kT !

L∏
i=1

(1− ξi)QiξN−Qii (3.1)

(and this is in fact the form we used in the implementation described later

in this chapter).

We �rst examine the asymptotic behaviour when µ → +∞. In order to

prove that the posterior is proper, we will assume the data includes a trait

displayed in two leaves in di�erent clades. Such a trait must survive for a

�nite time, and t his is impossible at µ→∞.

We rewrite Equation 3.1

p(µ, θ|D) ∝ C

µ

N∏
a=1

∑
〈i,j〉∈Ea

∑
ω∈Ωa

P [M = ω|Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))∑
〈i,j〉∈E P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

(3.2)

where C =
QL
i=1(1−ξi)Qiξ

N−Qi
i

N !
p(ρ)fG(g|T ) e

−ρ|g|(ρ|g|)kT
kT !

.

The numerator is bounded, so we get a bound for the Right Hand Side

if we can �nd a lower bound for the denominator. Since for all ω ∈ Ωa, the

event {Ma = ω|Z = (ti, i)} is contained in the event {EZ |Z = (ti, i)}, and since

Ea ⊆ E, all the terms in this product are less than 1, but this upper bound is

not quite enough to show that the integral over µ is proper.

Let us now consider the case where the registration condition is Y (a) > 0
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i2

i1

i0

{a0,...}

{a0,...}

Figure 3.1: An example tree for Eq. 3.3, where cognate class a0 is displayed
only at leaves i1 and i2, with respectively k1 = 1 and k2 = 3 catastrophes above
them.

(discard cognacy classes which are never observed; we call this Condition R1

in Section 2.2.3). Suppose there is a cognacy class a0 such that a0 is displayed

at exactly two leaves, i1 and i2.
1 For now, assume that i1 and i2 are siblings,

as in Figure 3.1, let i0 be their common parent node and let k1 and k2 be

the number of catastrophes on the branches 〈i1, i0〉 and 〈i2, i0〉 respectively

(see Figure 3.1). We can then obtain a lower bound on the denominator of

Equation (3.2):

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

=
∑
〈i,j〉∈E

P [Y (a) > 0|Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

≥ P [Y (a) > 0|Z = (ti1 , i1), θ, µ](1− e−µ(ti0−ti1+k1TC))

≥ ξ1 × (1− e−µ(ti0−ti1+k1TC))

≥ ξ1(1− e−µ(ti0−ti1 )) (3.3)

We now need an upper bound on the numerator of Equation (3.2). The

double sum
∑
〈i,j〉∈Ea0

∑
ω∈Ωa0

P [M = ω|Z = (ti, i), θ, µ](1 − e−µ(tj−ti+kiTC))

1In other words, Ωa0 = {{i1, i2}}. In this case, the double sum over Ea and Ωa will
therefore only be a sum over Ea, since there are no missing data for this cognacy class.
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contains at most L − 2 terms. Since 1 − e−µ(tj−ti+kiTC) ≤ 1 and since

the maximal value (over i) of the terms P [M = ω|Z = (ti, i), θ, µ] clearly

corresponds to a birth at the most recent common ancestor, i0,

∑
〈i,j〉∈Ea0

∑
ω∈Ωa0

P [M = ω|Z = (ti, i), θ, µ](1− e−µ(tj−ti+kiTC))

≤ (L− 2)P [M = {i1, i2}|Z = (ti0 , i0), θ, µ]

≤ (L− 2)ξi1ξi2e
−µ(ti0−ti1+k1TC)e−µ(ti0−ti2+k2TC).

By using this upper bound for the term a0, and the fact that all the terms

in the product (3.2) for a 6= a0 are each less than 1, we get that

p(µ, θ|D) ≤ C(L− 2)ξi1ξi2
e−µ(2ti0−ti1−ti2+(k1+k2)TC)

µ(1− e−µ(ti0−ti1 ))
(3.4)

A similar result can be obtained if i1 and i2 are not siblings.

We can now use that, for µ ≥ 1,

e−µ(2ti0−ti1−ti2+(k1+k2)TC)

µ
≤ e−µ(2ti0−ti1−ti2+(k1+k2)TC) ≤ e−µ(2ti0−ti1−ti2 ).

Therefore,

p(µ, θ|D) ≤ C(L− 2)ξi1ξi2
e−µ(2ti0−ti1−ti2 )eµ(ti0−ti1 )

eµ(ti0−ti1 ) − 1
(3.5)

≤ C(L− 2)ξi1ξi2
e−µ(ti0−ti2 )

eti0−ti1 − 1
(3.6)
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We can integrate µ out of [1,∞), and obtain

p(θ|D)dθ ≤ C(L− 2)ξi1ξi2
e−(ti0−ti2 )

(ti0 − ti2)e(ti0−ti1 ) − 1
dθ (3.7)

As long as we can put a lower bound on ti0 − ti1 and ti0 − ti2 , this will

be proper. Assuming that i1 and i2 are modern leaves (so that their age is

constrained to be 0), such a lower bound can be obtained if there is a lower

bound on ti0 , i.e. if we have a constraint on the root of a clade containing

i1 but not i2. The integral is therefore proper for µ ∈ [1,∞[ if at least one

cognacy class is displayed in exactly two languages in two di�erent clades. For

example, in Figure 2.2, a cognacy class displayed in Latvian and Welsh would

satisfy this condition.

This result can be extended to the case where a0 is displayed at more than

2 leaves and where the data are missing at some leaves. In general, if the

registration condition takes the form Y (a) > d for some value of d, it can be

extended to the case where there exists a cognacy class a0 displayed at at least

d + 2 leaves in two di�erent clades. We suspect that this condition could be

made less stringent, but it is already satis�ed by our data. If the registration

condition includes one of conditions R3-R6 of section 2.3 (e.g. Y (a) < L,

discard any cognacy class displayed at every leaf), the calculation still holds,

as long as i0 has less than L descendants (or L−1, depending on the condition

used). The case µ→∞ is covered.

It is straightforward to show that, under registration condition R1, the

posterior distribution for data in which all cognacy classes are displayed at

just one leaf is improper. We do not know what the propriety of the integral
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is when cognacy classes are displayed at more than d + 1 leaves, but with all

the leaves in the same clade; we suspect it is improper.

We now consider the case µ→ 0. With catastrophes included, the posterior

is improper. Indeed, for a tree with one catastrophe on each branch and with

�xed κ, the likelihood does not go to 0 when µ → 0, since such a tree is

equivalent to a tree in which all branches have equal length TC = − log(1 −

κ)/µ. We show that for a tree without catastrophes, and under reasonable

conditions on the data, the posterior is proper when µ → 0. This time, the

key is to assume a cognacy class which must have at least one death on the

tree. Any cognacy class which is not monophylitic ful�lls this criterion. We

now de�ne θ = (g, ξ) and look only at catastrophe-free trees.

Assume that the registration condition is of the form Y (a) > d for some d.

We shall use two properties of the exponential function:

∀x ∈ R, 1− e−x ≤ x (3.8)

∀x ∈ [0, 1], 1− e−x ≥ x

2
(3.9)

These translate into

∀µ ∈ R+,∀〈i, j〉 ∈ E, 1− e−µ(tj−ti) ≤ µ(tj − ti) (3.10)

∀µ ≤ 1/T,∀〈i, j〉 6= 〈r, A〉, 1− e−µ(tj−ti) ≥ µ(tj − ti)
2

(3.11)

(Recall that 〈r, A〉 is the Root-Adam branch, and T is the upper bound on

the root age. The second equation holds because ∀〈i, j〉 6= 〈r, A〉, tj − ti ≤ T ,

hence µ(tj − ti) ≤ 1.)

62



Also, note that

∀〈i, j〉 ∈ E, 1 ≥ P [EZ |Z = (ti, i), θ, µ] ≥ e−µ[(d+1)T ] (3.12)

(the last term corresponds to a cognacy class present at the root, and surviving

along d+ 1 paths of length T , which is one way of having the event EZ occur).

Equations (3.11) and (3.12) give a lower bound on the denominator of (3.2):

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti)) ≥ e−µ[(d+1)T ] · µ
2

∑
〈i,j〉6=〈r,A〉

(tj − ti)

≥ e−µ[(d+1)T ]µ

2
tr (3.13)

where tr is the root age.

Given a tree g and a cognacy class a, we say that the cognacy class a is

monophylitic if and only if there is a subtree h of g such that a is potentially

displayed at all the leaves of h and nowhere else 2. Now suppose that at least

one cognacy class, am say, born at (ti, i) is not monophylitic. Then at least

one death must have occurred in the subtree below (ti, i). The length of that

subtree is at most tr · L, so for any ω ∈ Ωam

P [M = ω|Z = (ti, i), θ, µ] ≤ 1− e−µtrL ≤ µtrL (3.14)

This is true for all possible values of i for 〈i, j〉 ∈ Eam , of which there are at

most L− 1, and for all possible values of ω ∈ Ωam , of which there are at most

2For leaves in the subtree, the data can be 1 or ?; for leaves outside the subtree, the data
can be 0 or ?.
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2L−3. Hence, using equation (3.10),

∑
〈i,j〉∈Eam

∑
ω∈Ωam

P [M = ω|Z = (ti, i), θ, µ](1− e−µ(tj−ti))

≤
∑

〈i,j〉∈Eam

∑
ω∈Ωam

P [M = ω|Z = (ti, i), θ, µ]µ(tj − ti)

≤ µ(trL) · µT · (L− 1) · 2L−3 (3.15)

Coming back to the product in the Left Hand Side of Equation 3.2, the

term for am in the product can be bounded:

∑
〈i,j〉∈Eam

∑
ω∈Ωam

P [M = ω|Z = (ti, i), θ, µ](1− e−µ(tj−ti))∑
〈i,j〉∈E P [EZ |Z = (ti, i), θ, µ](1− e−µ(tj−ti))

≤ µ(trL) · µT · (L− 1) · 2L−3

e−µ[(d+1)T ] µ
2
tr

(3.16)

As previously, every other term of this product is bounded by 1, hence

Equation 3.2 becomes, for some constant C ′,

p(θ, µ|D) ≤ C ′
µ(L) · T · (L− 1) · 2L−3

e−µ[(d+1)T ] 1
2

1

µ
t2−Lr fG(g|T ) (3.17)

which is proper for µ ∈ [0, 1/T ].

Suppose now that there are two registration conditions: Y (a) > d and

Y (a) < L − d′ (for example, and using the notation from Section 2.2.3, R =

R3 ◦ R2). Let B be the set of edges which have at least L − d′ descendants

(these are edges close to the root of the tree). Inequality (3.12) does not hold

anymore for the edges in B.

Suppose that there is a clade g′ such that:

• There are less than L− d′ leaves in g′
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• We can put a lower bound T ′ on the root age of g′ (this can be done

through the age constraints we know for certain ancestral nodes)

Let E ′ be the set of edges in g′. Inequality (3.12) still holds for the elements

of E ′. Inequality (3.13) becomes

∑
〈i,j〉∈E

P [EZ |Z = (ti, i), g, µ](1− e−µ(tj−ti)) ≥
∑
〈i,j〉∈E′

P [EZ |Z = (ti, i), g, µ](1− e−µ(tj−ti))

≥ e−µ[(d+1)T ] · µ
2

∑
〈i,j〉∈E′

(tj − ti)

≥ e−µ[(d+1)T ]µ

2
T ′ (3.18)

A slightly modi�ed version of inequality (3.17) shows that the integral is

still proper.

A very similar argument holds for the case where the registration condition

is of the form Y (a) +Q(a) < L− d′. The case µ→ 0 is covered.

On the other hand, if all the cognacy classes are monophylitic, it is clear

that the posterior distribution is improper when µ→ 0.

To sum up: under the prior p(µ, λ) ∝ 1
µλ
, with catastrophes excluded, and

with the registration condition d < Y (a) < L−d′, the following conditions are

su�cient for the posterior to be proper:

1. there exists a cognacy class a0 such that a0 is displayed at at least d+ 2

di�erent leaves in 2 di�erent clades;

2. there exists a non-monophylitic cognacy class am;
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3. there exists a clade g′ such that there are less than L − d′ leaves in g,

and we can put a lower bound T ′ on the root age of g′

These conditions are met by any realistic data. For example, in the Ringe

et al. [2002] data, for which R = R1 (i.e. 0 < Y (a), corresponding to d = 0),

1. The Latin moritur and the Old Church Slavonic um��ret�u (both meaning

�he dies�) are cognate and in di�erent clades.

2. This cognacy class is not monophylitic, since Old Prussian is constrained

to be in the Balto-Slav clade with Old Church Slavonic but without

Latin, and there is no instance of this class in Old Prussian (the only

Old Prussian term for �he dies� is aula	ut, which is in a di�erent cognacy

class).

3. There are 8 clades which satisfy the last condition, for example the

Germanic clade.

With catastrophes included, the posterior is improper when µ→ 0, because

then TC → ∞: the e�ective length can go to in�nity, with all changes

happening on catastrophes and no change occurring through the anagenic

process. This is most easily resolved by imposing a lower bound on µ, but

could also be resolved by imposing conditions on the catastrophes. However,

this is not necessary in practice since we never observe µ→ 0 in our analyses.

3.2 Implementation in MatLab

The stochastic Dollo model described in Chapter 2 was implemented in MatLab

by Geo� Nicholls, David Welch, and this author, resulting in a piece of
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public-domain software named TraitLab. The tree, catastrophes and model

parameters are estimated jointly via Markov Chain Monte Carlo, as described

in Section 3.3.

TraitLab takes �les in Nexus format. It analyses the data under the

stochastic Dollo model, with options to include some or all the clade constraints

in the Nexus �le, as well as to exclude speci�c traits or languages. The inclusion

of catastrophes is optional, and the user may choose to handle missing data

correctly or to treat missing data as absent (replacing all ?'s with 0's).

Data may be synthetized from the model directly from the Graphical User

Interface (GUI). Most of the types of out-of-model data described in Chapter 4

may also be synthetized directly from the GUI, including data with borrowing

and data missing in blocks.

The Analysis part of the GUI gives tools to check convergence and mixing

of the MCMC, with autocorrelations plots for six statistics: the root age tr, the

death rate µ, the catastrophe parameters ρ and κ, the log-likelihood and the

prior. Several tools for analysis of the data are included, including the ability

to construct consensus trees for catastrophe models as described in Chapter 4.

An option allows to save all results to HTML format for ease of sharing.

3.3 Markov Chain Monte Carlo

We use Markov Chain Monte Carlo (MCMC) to sample the posterior

distribution and estimate summary statistics. We do not estimate λ, which

we integrate out following Equation 3.1. The MCMC state is then x =

((E, V, t, k), µ, κ, ρ, ξ).
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Given a prior distribution p and a likelihood function L(·|D), the strategy

in Markov Chain Monte Carlo is to build a Markov chain whose stationary

distribution is the posterior distribution we wish to sample from. Let xn be

the state of the Markov chain at step n; the state xn+1 is constructed as follows:

1. Propose to move from xn to x′, where x′ is drawn from a proposal

distribution q(x′|xn).

2. Compute

α = min

(
1,
p(x′)L(x′|D)q(xn|x′)
p(xn)L(xn|D)q(x′|xn)

)
.

3. Set xn+1 = x′ with probability α and xn+1 = xn with probability 1− α.

Under weak conditions, this Markov chain converges to the posterior distribution.

For the proposal distribution, we use the MCMC moves described by

Drummond et al. [2002] and Nicholls and Gray [2008], to which we add moves

to take into account our additional parameters. Our complete list of MCMC

moves is as follows (a star denotes moves added by the present author):

• Moves on the topology:

� Exchange the positions of two close nodes (a node and its �niece�,

the child of its sibling)

� Exchange the positions of any two nodes

� Move a subtree to a close position

� Move a subtree to any other position in the tree

• Moves on the ages:
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� Change the age of an internal node

� Change the age of a non-modern leaf

� Rescale the whole tree

� Rescale a subtree

� Rescale the top of the tree

• Moves on catastrophes:

� Add a new catastrophe (*)

� Delete a catastrophe (*)

� Move a catastrophe to a neighbouring edge (*)

• Moves on the parameters:

� Random walk (log scale) of the death rate µ

� Random walk (log scale) of the catastrophe rate ρ (*)

� Random walk on [0, 1] for the catastrophe death probability κ (*)

� Rescale the missing data parameter ξi for a single leaf i (*)

� Rescale the entire vector of missing data parameters ξ (*)

The probability 0 < ξi < 1 for an element of the registered data matrix to

be observable is, for many leaves, close to one, so we update those parameters

by scaling 1 − ξi. We also include a move which scales all ξi (i = 1 . . . L)

simultaneously away from 1 by a factor of η, where η ∼ U([1/2, 2]). In this

case, the Jacobian for the transformation from (ξ1, . . . , ξL, η) to (1 − η(1 −
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Figure 3.2: An example of a MCMC move: moving a catastrophe from an edge
to one of its neighbours.

ξ1), . . . , 1− η(1− ξL), 1/η) is ηL−2, so the acceptance probability is

α(x′|x) = min

(
1,
p(x′|D)

p(x|D)
ηL−2

)

For the addition and deletion of catastrophes, we do not need to use

reversible jump Markov Chain Monte Carlo, as the state vector speci�es the

numbers, and not the locations, of catastrophes on edges.

We omit the details of these moves but give, as an example, the update

that moves a catastrophe from an edge to a parent, child or sibling edge.

Let kT =
∑2L−2

i=1 ki give the total number of catastrophes. Given a state

x = (g, µ, κ, ρ, ξ) with g = (V,E, t, k), we pick edge 〈i, j〉 ∈ E with probability

ki/kT . Let E〈i,j〉 be the set of edges neighbouring edge 〈i, j〉 (child, sibling and

parent edges, but excluding the edge 〈r, A〉 since we put no catastrophes on

this edge of in�nite length) and let qi = card(E〈i,j〉). We have in general qi = 4.

However, for i the index of a leaf node, qi = 2 (1 parent, 1 sibling, no children).

If j is the root and i is non-leaf, then qi = 3 (1 sibling, 2 children) and if j is the

70



root and i is a leaf we have qi = 1 (a sibling edge). Choose a neighbouring edge

〈̃i, j̃〉 uniformly at random from E〈i,j〉 and move one catastrophe from 〈i, j〉 to

〈̃i, j̃〉. The candidate state is x′ = ((V,E, t, k′), µ, κ, ρ), with k′i = ki − 1 and

k′
ĩ

= kĩ + 1 and k′l = kl for l 6= i, ĩ. This move is accepted with probability

α(x′|x) = min

(
1,
qi k

′
ĩ
p(x′|D)

qĩ ki p(x|D)

)
.

Markov Chain Monte Carlo presents two issues: the chain samples from the

posterior distribution only once it has reached equilibrium, and the samples

it outputs are not independent. We assessed convergence with the asymptotic

behaviour of the autocorrelation for the parameters µ, κ, ρ and tr and the

log-likelihood, as suggested by Geyer [1992]. Given Markov chain (Xn) from

which we have a run of length Nsamp and given statistic S, the autocorrelation

function rS and the integrated autocorrelation time τS are de�ned as

rS(t) =
cov (S(Xn), S(Xn+t))

var(S)
(3.19)

τS =
+∞∑
t=−∞

rS(t). (3.20)

We estimate τS by restricting the sum between −M and M for some M ,

1 � M � Nsamp. Then Nsamp/τ is the e�ective sample size, a measure of

the size of an independent sample which would provide the same variance of

the sample mean as the sample output by the MCMC. This method indicates

that we can use runs of about 10 million samples (thinned down to 1000

samples); we also let the MCMC run for 100 million samples and checked that

the computed statistics did not vary. As an example, we give in Figure 3.3
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Figure 3.3: Some of the output used to assess convergence for the results shown
in Section 5.3. These two plots help to visualize a statistic S, here the root age
tr. A run of 10 million samples was thinned down to Nsamp = 1000 samples, of
which the �rst 100 were discarded as burn-in. For the 900 remaining samples,
the left plot shows the autocorrelations rS(t) against t. The two dotted red lines
delimit a 95% credible interval for the correlation of independent samples, so
that once the autocorrelation lies between these two lines, the MCMC output
samples are equivalent to independent samples. The right plot shows the trace
of the root age in the MCMC output.

a part of the output we used to assess convergence for the results shown in

Section 5.3.

3.4 Debugging tests

We made a number of debugging checks on our code. We analysed an empty

data �le and set the log-likelihood to 0, then checked that the posterior
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distributions for the death parameter µ, the catastrophe parameters ρ and

κ and the root age tr were identical to the prior distributions. On small trees

with small data sets, the likelihood can be computed by hand: we checked the

results from our code against manual calculations for a few data sets with 1

or 2 traits on a tree with 4 leaves.

On a tree with 5 leaves, we generated all possible registered data sets with

non-zero probability (including all possible patterns of missing data) following

registration rule R1 from Section 2.2.3. We chose a high death rate, so that

the likelihood of data sets in which 6 or more traits have survived is negligible.

With all parameters �xed, we checked that the likelihoods of all data sets

summed to 1. This is a very strict requirement, unlikely to be satis�ed if there

are bugs, for a point-process of the kind modeling our data. We repeated this

with registration rule R2. This provides a check of the mathematical derivation

as well as of the code.

Analyses of synthetic data are presented in Chapter 4.
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Chapter 4

Validation

In this chapter, we present results showing the validity of our methods, using

synthetic data as well as cross-validation on the real data set collected by Ringe

et al. [2002].

In each analysis, the sample from the posterior distribution on trees is

summarized with a consensus tree, which shows all splits with at least 50%

support in the posterior sample. When the support for a split is between 50%

and 95%, the split is labeled; unlabeled splits receive at least 95% support

in the posterior. The displayed length of a branch is the average length of

that branch in the posterior, conditional on that branch existing; this means

that the time depths shown on consensus trees can occasionaly be confusing,

especially when there is high uncertainty in the topology. The number of

catastrophes displayed on a branch is the average number of catastrophes on

that branch in the posterior sample, conditional on that branch existing, and

rounded to the nearest integer. The samples from the posterior distribution

for the parameters of the model are summarized with either histograms from
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the posterior or 95% Highest Probability Density (HPD) intervals.

4.1 In-model testing

Wemade a number of tests using synthetic data. Fitting the model to synthetic

data simulated according to the likelihood P (D = D|g, µ, λ, ρ, κ, ξ,D =

R(D̃)), (in-model data), shows us just how informative the data is for the

topology, node ages, catastrophe placement, and parameter values, as well as

making a debug-check on our implementation.

For clarity, we �rst look at data simulated on trees with catastrophes but

where no data go missing, then at data simulated on trees with no catastrophes,

but where some data go missing. The results still hold when both issues are

combined.

4.1.1 Catastrophes

We simulated data under our model for di�erent values of λ, µ, κ and ρ, in

order to explore the di�erent possible scenarios of rate heterogeneity, such as

few large catastrophes or many small catastrophes. We synthesized data for

20 languages, with on average λ/µ = 100 traits per language and 5 clade

constraints; the real data sets we analyse in Chapter 5 have more traits than

this. We set µ = 2 · 10−5 deaths/year, since the estimates for that parameter

in Chapter 5 are around that value. We studied small (κ = 0.1), medium (κ =

0.2) and large (κ = 0.5) catastrophes (corresponding to catastrophes equivalent

to 520 years, 1160 years and 3280 years of change respectively). We studied

values of the catastrophe rate ρ corresponding to rare catastrophes (between
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1 and 5 catastrophes on a tree with 38 branches), occasional catastrophes

(around 10 catastrophes on the tree) and very frequent catastrophes (up to

100 catastrophes on the tree, or about 3 per branch on average); we also

studied parameter values taken from the posterior distribution for our analysis

of the Ringe et al. [2002] data described in Chapter 5. We show typical results

in Figures 4.1 and 4.2. The true topology was almost perfectly reconstructed

in every case; the position of catastrophes was perfectly reconstructed; the

posterior evaluations of the parameters were close to the true values. This

remains true for a wide variety of parameter values.

When catastrophes are present in the true tree, the signal for them is strong.

We wished to check the in�uence of catastrophes on our reconstructions, so we

tried �tting a model without catastrophes to data which did, in fact, evolve

with catastrophes. Figure 4.3 is typical: if we do not include catastrophes in

the model, our reconstructed parameters (root age and death rate µ) are very

far from the true values. The reconstructed topology is also much further from

the truth than when we �t the model with catastrophes.

Note that these results also show that our methods are not subject to

the criticisms of Blust [2000] who claimed that issues of rate heterogeneity

meant that �lexicostatistics doesn't work�, i.e. that the topology of the tree

cannot be reconstructed through statistical modelling. The main issue raised

by Blust [2000] is e�ectively long branch attraction. Though his notation is

di�erent, he is concerned with trees such as the one shown in Figure 4.4. When

there is enough rate heterogeneity, it may appear that language C is closer to

languages A and B than to language D, its true sibling, and that language

C will therefore end up either falsely grouped with A and B, or falsely as
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(a) (b)

(c) (d)

Figure 4.1: Simulations of synthetic data show the robustness of the model: (a)
and (c), true trees; (b) and (d), reconstructed consensus trees. The consensus
trees are very close to the true trees and the reconstructed catastrophes are on
the correct branches.
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(a) (b)

(c) (d)

Figure 4.2: Simulations of synthetic data show the robustness of the model:
samples from the posterior for the root age tr (a), the death rate µ (b), the
death probability at a catastrophe κ (c) and the catastrophe rate ρ (d) are close
to the true values, shown here in red.

78



1

2

3

4

5
6

7

8

9

10
11

12

13
14

15
16

17

18

19
20

True tree

0 5 1015202530354045 (a) (b)

20

19

5

4

3

2

1

18

17

11

6

9
10

13

12

14

16

15

8
7

80

90

81
81

52

92

0 2 4 6 8 1012 (c) (d)

(e)

Figure 4.3: Importance of including the catastrophes: given data synthesized
under a true tree with catastrophes (a), which was well reconstructed by a model
with catastrophes, as shown in the consensus tree (b), we tried to �t a model
without catastrophes. The topology showon in the consensus tere (c), root age
tr(d) and death rate µ (e) were all badly reconstructed.
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A

B

C

D

Figure 4.4: More change has happened on the branches leading to C and D
than on the branches leading to A and B. Blust [2000] is concerned that such
situations will lead to �subgroup splitting�.

an isolate; Blust [2000] calls this �subgroup splitting�. The reconstructions

above show that rate heterogeneity can be detected and need not lead to false

groupings. The worst that can happen is that if too much change occurs, there

will be high uncertainty in the reconstruction, but this is of course true of any

method. For example, in Figure 4.1 (a), the subtree containing languages 7, 8,

10, 15 and 16 resembles Figure 4.4, and is correctly reconstructed as uncertain

in Figure 4.1 (b). On the other hand, in Figure 4.3 (a), the subtree containing

languages 4, 5, 6, 12, 13 and 14 is incorrectly (and con�dently) reconstructed

in Figure 4.3 (c) when catastrophes are not taken into account.

4.1.2 Missing data

The data used in this section were synthetized using the model described

in Chapter 2, with no catastrophes and with 20 leaves. The missing data

parameters ξi (i = 1 . . . 20) were drawn from aBeta(3, 1) distribution restricted

to the range [0.05, 1], since this corresponds roughly to the proportions of

missing data we observe in real data sets.
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Figure 4.6: Red: true values of the parameters ξi, i = 1 . . . 20; Blue; 95% HPD
intervals from the posterior distribution.

Figure 4.5 shows the true tree used to synthetize the data, and the

consensus tree from our analysis. The topology is almost perfectly reconstructed,

the only issue being that the topology of the subtree with leaves 16, 19 and

20 is undecided. Figure 4.1.2 shows the true values of the ξi (i = 1 . . . 20) and

95% HPD intervals from the posterior samples. Of the 20 parameters, 19 are

covered by the HPD interval and one is not. Figure 4.1.2 shows that the root

time and death parameter µ are also well reconstructed.

These analyses on in-model synthetic data show that data simulated

following our model, and of the size that we typically observe in real data sets,

contain a great deal of useful information about the topology, catastrophe

placement, and model parameters, at least for the parameter regions we

considered.
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Figure 4.7: Red: true values of the root time (left) and of the death parameter
µ; Blue: histograms from the posterior sample. This is not a �selected�
example; it is simply the �rst one we generated.
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4.2 Out-of-model testing

We �t out-of-model data also. These are synthetic data simulated under likely

model-violation scenarios, and are used to identify sources of systematic bias.

4.2.1 Borrowing

Borrowing between languages is a frequent phenomenon, which we do not

include in our model. Even though the levels of borrowing for core vocabulary

are much lower than for general vocabulary [Embleton, 1986], we searched for

potential systematic bias. We simulated data with di�erent levels of borrowing

under two di�erent models of borrowing (global and local). The model of

borrowing we use is as follows: borrowing events occur at rate bµ in each

language, for some level of borrowing b. At a borrowing event at time t in

language l1, a language l2 is chosen uniformly at random; one trait is chosen

uniformly at random amongst those present in language l1 at time t, and it

is copied into l2 - if the trait is already present in l2 then there is no e�ect.

Under the global model, borrowing can occur between any two languages.

Under the local model, it can occur only between languages which split less

than Tb years previously (we used Tb = 1000 years); this is a crude proxy for

geographic proximity. This model of borrowing was speci�ed by Nicholls and

Gray [2008], who also checked borrowing for a simple model �t. We looked

at low levels (b = 0.1) and high levels (b = 0.5) of borrowing. We did not

consider �catastrophic� borrowing, in which one language would borrow many

words from another language in a short amount of time, as did Warnow et al.

[2004]. The results presented here are for the global model; results for the local
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model are very similar.

Similar studies using this exact model have been performed by Greenhill

et al. [2009], who also found that the levels of borrowing we would expect

in core vocabulary are unlikely to introduce signi�cant systematic bias in

age and topology estimates. Nunn et al. [2006] also �nd evidence of bias

in reconstructions for data with high levels of borrowing.

For b = 0.1, the topology is well reconstructed, with only minor di�erences

between the true tree and the output (Figure 4.8 (a)-(b)). The dates,

catastrophes and parameters are also correctly reconstructed. This is typical,

so the e�ect of low levels of borrowing is negligible, under both global and

local models of borrowing. For b = 0.5, the topology was surprisingly

well reconstructed in the examples we looked at, given the amount of noise

in the data (Figure 4.8 (c)-(d)). However, we found that for b = 0.5,

we systematically underestimated the root age and overestimated the rate

parameters by up to 75% (Figure 4.8 (e)-(f)). This is of little concern to us,

since we have reason to believe that no such high levels of borrowing occurred

in the data we are analysing. For example, English is often cited as a language

which borrowed a lot of its lexicon. It is estimated that 50% of its lexicon was

borrowed from Romance languages (mainly French and Latin), but our data

only contains the �core vocabulary�. Only 6% of the core vocabulary of English

comes from borrowing [Embleton, 1986]; furthermore, these borrowings are

easy to detect through phonological irregularities and are removed from the

data.

On the other hand, very high levels of horizontal transmission can be

expected in certain cultural data sets, such as the spread of horse-culture
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: In�uence of borrowing. (a)-(b): low levels of borrowing (b=0.1)
have negligible e�ects on the topology and the parameter estimates. (c)-(d):
high levels of borrowing (b=0.5) still allow to reconstruct most of the topology,
but the root age and parameter estimates, shown here for b = 0.5, are biased
(e-f).
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in America [Roe, 1955]1 or of traits associated with Islam in East Africa

[Ensminger, 1997]1. We would therefore expect our methods to perform poorly

on such datasets.

These results beg the question: how do we detect data sets with high

levels of borrowing? Although we do not have a precise measure to suggest,

the distribution of the number of languages per cognacy class seems helpful.

We synthetized data with borrowing (b = 0, 0.1, 0.5 and 1) on a tree sample

from the posterior for our analysis of the Ringe et al. [2002] data (24 languages)

with parameters also taken from the posterior. Figure 4.9 gives the cumulative

distribution of the number of languages at which a cognacy class appears; we

also include the distribution for the Ringe et al. [2002] data. As one would

expect, higher levels of borrowing make cognacy classes appear at more leaves.

There is a clear di�erence between the various graphs, which can allow us to

detect data with borrowing. The graph for Ringe et al. [2002] data is very close

to the graphs for synthetic with little or no borrowing, in line with linguists'

estimates of borrowing in the Indo-European core vocabulary [Embleton, 1986].

It should be noted that the distribution of the number of languages per

cognacy class depends not only on the level of borrowing, but also on the

topology and other model parameters. In order to detect borrowing in a data

set, we therefore suggest to �rst analyse the data, then construct synthetic

data sets using a tree and parameter values from the posterior and with various

degrees of borrowing.

1Cited by Nunn et al. [2006].
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Figure 4.9: Cumulative proportion of the number of languages at which
a cognacy class is displayed for synthetic data with various values of the
borrowing parameter b and for the real data from Ringe et al. [2002].

4.2.2 Meaning categories

Our model ignores the fact that the data are grouped in meaning categories.

This leads to several issues:

1. We treat all cognate classes as being independent from each other.

However, it is likely that cognate classes within one meaning category

are not independent. In particular, the probability for a word to die out

is presumably higher if a synonym exists in the language.

2. Our model allows for a language to not have any word in a given meaning

category, which is unlikely to happen since we are dealing with core

vocabulary.

88



3. We assume that data go missing uniformly at random. Actually, they

go missing in blocks: if a language has a question mark for a given

cognate class, it usually means that we do not know the word(s) for

that meaning category in that language, hence the language will usually

also have question marks for all other cognate classes in that meaning

category.

We did not test for systematic bias arising from the assumption that

meaning categories are independent. To test for systematic bias arising

from the assumption that cognacy classes within a meaning category are

independent, we simulated synthetic data taking into account the meaning

category structure, and attempted to reconstruct the parameters and tree;

this expands on an analysis by Nicholls and Gray [2008].

Our model for diversi�cation with meaning categories is similar to the

model described in Chapter 2, with two modi�cations. First, we de�ne 100

meaning categories. When a word in a language is to die, we check whether it

is the last word in that language for that meaning category; if it is, we simply

ignore the death event. This means that at any point on the tree, there is at

least one word per meaning category. It also means that the e�ective death rate

is lower than the death rate we de�ne, so we should not expect our estimate

of the parameter µ to be correct. Second, we simulate data missing in blocks:

given a leaf i and a meaning category, all data for that meaning category at

that leaf go missing simultaneously with probability ξi, and all data for that

meaning category at that leaf are correctly registered with probability 1− ξi;

this di�ers to the model we �t since there we assume that the di�erent cognacy
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Figure 4.10: True tree and consensus tree for synthetic data with meaning
categories imposed.

classes in the same meaning category go missing independently of each other.

Note that we still expect to see reasonable estimates of ξ. We simulated data

on a tree with 20 leaves, 5 constraints, no catastrophes, and with µ = 2.2·10−4,

taken from the posterior distribution of the analysis of the Dyen et al. [1997]

presented in Chapter 5.

Figure 4.10 shows the true tree used to synthetize data as well as the

consensus tree. The reconstruction is good, with two issues. The structure

of the subtree made of leaves 7, 8, 17 and 18 is uncertain, but wrong in

90



most of the posterior samples (the correct structure appears in 25% of the

posterior samples). The position of leaves 3, 4 and 5 relative to that subtree

is undecided (the correct structure appears in 39% of the posterior samples).

In both cases, this is presumably because the true tree contains a very short

branch on which little or no change occurred. As expected, the death rate µ is

not reconstructed, but the root age tr and the missing data parameters ξ are

still correctly estimated (Figures 4.11 and 4.12). Over all, these reconstructions

with out-of-model data are very positive.

We are able to correctly estimate the root age (and other internal node

times) despite our bad estimate of the death rate µ because the model mis-

speci�cation is uniform over the tree: the e�ective death rate is still constant

over the entire tree. It is the e�ective death rate that we reconstruct in Figure

4.11.

4.2.3 Reversibility

In our model, we have imposed the reversibility condition ν = κλ/µ. In order

to check for systematic bias arising from this condition, we simulated data

with di�erent values of ν and estimated all parameters under the reversibility

condition. Here again, we do not expect to be able to correctly estimate all

parameters, but we hope that no systematic bias will be introduced in the

estimates of the topology and of the root age. The data we simulated used

the parameter values µ = 2.23 · 10−4, κ = 0.2, λ = 4.46 · 10−2 and we studied

ν = 2κλ/µ and ν = κλ/2µ. The data were simulated on a tree with 20

languages and 8 internal constraints.
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Figure 4.11: Analysis using synthetic data with meaning categories imposed.
Red: true values of the root time tr (left) and of the death parameter µ (right);
Blue: histograms from the posterior sample.

Figure 4.12: Reconstruction of the missing data parameters ξi, i = 1 . . . 20, for
synthetic data with meaning categories imposed.
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Figure 4.13: In�uence of the reversibility condition. Left: true tree under which
data were simulated, under the condition ν = κλ/2µ; right: reconstructed
consensus tree.

The reconstruction of the topology is not a�ected: the topology is still

almost perfectly reconstructed, as shown in Figure 4.13. However, the position

of catastrophes is much more uncertain: no catastrophes are supported in more

than 50% of the posterior. The trees shown are for ν = κλ/2µ; the situation

is similar for ν = 2κλ/µ.

The parameters µ and κ are not well reconstructed, as shown in �gure 4.14:

the posterior distribution is highly uninformative of κ and the death rate µ is

systematically overestimated. However, the root age, which is the parameter

of interest, is well reconstructed: for ν = κλ/2µ, the true root age was 7622BP

and the 95% HPD is 6932�8584BP; for ν = 2κλ/µ, the true root age is 7664BP

and the 95% HPD is 6472�7701BP. In both cases, the 95% HPD covers the

true value.
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Figure 4.14: In�uence of the reversibility condition. Top: data simulated under
the condition ν = κλ/2µ; bottom: data simulated under the condition ν =
2κλ/µ. Blue: posterior sample from the reconstruction under the reversibility
condition ν = κλ/µ; red: true value of the root age, death rate µ and probability
of death at a catastrophe κ.
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4.3 Reconstruction of known ages

The calibration constraints described in Section 2.1 impose age constraints

on some internal nodes and some leaves. In this section, we perform cross-

validation test on all age constraints in the Ringe et al. [2002] data.

We remove each calibration constraint in turn and attempt to reconstruct

its age from the data and the other calibration constraints. In the Germanic

family, we have three constraints. Removing only one of these constraints

would serve little purpose, since the age of the corresponding node would

e�ectively still be constrained by the two other constraints and so we could

expect to correctly reconstruct the node age in any case. We therefore removed

these three constraints simultaneously and estimated the corresponding node

ages jointly.

Our success at this exercise will be a good indicator to how much we can

trust the age estimates for nodes for which there are no constraints, including

the root. The topological constraints were all perfectly reconstructed. The

bottom half of Figure 4.15 gives the constraint for each node, as well as a 95%

HPD interval from the posterior sample for that node age. In 26 out of 30

tests, the 95% HPD overlaps the constrained age interval.

Some of the HPD intervals are very large and only barely cover the

constraint, for example the one for Hittite. To quantify goodness of �t, and

in particular to estimate the probability for us to make type II error, we use

Bayes factors instead of p-values. Given calibration c (c ∈ {1 . . . C}), let
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ΓC−c =
C⋂
c′=0
c′ 6=c

Γ(c′).

denote the enlarged tree space with the c'th constraint removed but all other

constraints imposed. Let ΓC−cK be the enlarged tree space, extended to include

catastrophes (as in Section (2.2.2)). We then perform a model comparison

between the null model with all the constraints, MC : g ∈ ΓCK , and the

alternative model MC−c : g ∈ ΓC−cK with the constraint removed. The

Bayes factor BC,C−c for the model comparison is the ratio of the posterior

probabilities for these models with equal prior probability on the two models

P (MC−c) = P (MC) = 0.5,

BC,C−c =
P (D|g ∈ ΓCK)

P (D|g ∈ ΓC−cK )

=
P (D|g ∈ ΓCK , g ∈ ΓC−cK )

P (D|g ∈ ΓC−cK )
(since ΓCK ⊂ ΓC−cK )

=
P (g ∈ ΓCK , g ∈ ΓC−cK |D)P (D)

P (g ∈ ΓCK , g ∈ ΓC−cK )
× P (g ∈ ΓC−cK )

P (g ∈ ΓC−cK |D)P (D)

=
P (g ∈ ΓCK |g ∈ ΓC−cK , D)P (g ∈ ΓC−cK |D)

P (g ∈ ΓCK)
× P (g ∈ ΓC−cK )

P (g ∈ ΓC−cK , D)

=
P (g ∈ ΓCK |g ∈ ΓC−cK , D)

P (g ∈ ΓCK |g ∈ ΓC−cK )

In the last fraction, the numerator P (g ∈ ΓCK |g ∈ ΓC−cK , D) is the posterior

probability of constraint c being respected given the data under the alternative

model MC−c; the denominator P (g ∈ ΓCK |g ∈ ΓC−cK ) is the prior probability of

the same event. We estimate these probabilities by simulating the prior and

posterior distribution under the alternative model (with constraint c removed).
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The estimates for the Bayes factors are plotted in the top half of Figure 4.15.

The variance of these estimators is negligible.

Mis�t in the cross-validation corresponds to strong evidence against the

constraint. Following Raftery [1996], we take a Bayes factor exceeding 12

(i.e. 2 log(BC,C−c) & 5) as strong evidence against the constraint. We have

con�ict for three of the thirty constraints: the ages of two leaves (Old Irish and

Avestan), and the age of one clade (Balto-Slav). As our analysis in Chapter 5

shows, there is a high posterior probability that a catastrophe event occurred

on the branch between Old Irish and Welsh, and another between Old Persian

and Avestan. The evidence for rate heterogeneity in rest of the tree is so slight,

that when we try to predict these calibrations we are predicting atypical events.

Note that our handling of missing data was instrumental in improving

our predictions. The calibration interval for the Hittite vocabulary in these

data is 3200�3700BP. If we ignore missing data (so replace ?'s with 0's), our

prediction for the age of Hittite is 60�2010BP, well outside of the constraints.

With missing data included in the model, the he 95% HPD interval for the age

of Hittite in our model is 430�3250BP, which just overlaps the constraint and

has a higher mean (so we are not only getting greater uncertainty, but also

improving the �t). The Bayes factor gives odds less than 2:1 against, so the

evidence against the constraint is �hardly worth mentioning� [Raftery, 1996].
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Figure 4.15: Reconstruction of known node ages: top, logarithm of Bayes
factors log(BC,C−c) for c = 1, 2, ..., C; bottom, thin lines show age constraints
for di�erent nodes, thick lines show 95% posterior HPD interval for the
reconstructed dates when the constraint is removed. HI: Hittite; TA: Tocharian
A; TB: Tocharian B; LU: Luvian; LY: Lycian; OI: Old Irish; UM: Umbrian;
OS: Oscan; LA: Latin; GK: Greek; AR: Old Armenian; GO: Gothic; ON: Old
Norse; OE: Old English; OG: Old High German; OS: Old Church Slavonic;
PR: Prussian; AV: Avestan; PE: Old Persian; VE: Vedic; CE: Celtic group;
IT: Italic group; GE: Germanic group; WG: West Germanic group; NW: Nort-
West Germanic group; BS: Balto-Slav group; BA: Baltic group; IR: Iranian
group; II: Indo-Iranian group; TG: Tocharian group
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Chapter 5

Analysis of Indo-European data

sets

In this chapter, we analyse two lexical data sets of Indo-European languages

and estimate the age of Proto-Indo-European using the model presented in

Chapter 2 and with the implemention described in Chapter 3.

The consensus trees displayed in this chapter were built using the same

method as in Chapter 4: in a tree, an edge corresponds to a split partitioning

the leaves into two sets. A consensus tree displays just those splits present in at

least 50% of the posterior sample. Splits which receive less than 95% support

are labeled. Where no split is present in 50% of the posterior sample, the

consensus tree is multifurcating. The length shown for an edge is the average

posterior length given the existence of the split; similarly, the number of

catastrophes shown on an edge is the average posterior number of catastrophes

on that edge given the existence of the split, rounded to the nearest integer.

Since all the parameters have marginal posterior distribution close to normal,
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we give our estimates as 95% highest probability density intervals in the

normal approximation, using the mean and twice the standard deviation in the

posterior sample. For the root age, we give 95% highest probability density

intervals.

5.1 Analysis of the Ringe et al. [2002] dataset

As mentioned in Section 2.2, several topological and age constraints are

imposed on the trees we reconstruct, along with a range of ages for ancestral

nodes and ancient languages. The tree in Figure 5.1 shows the consensus

tree from a reconstruction which ignores these constraints, in an attempt to

reconstruct these known topological facts. Without any internal constraints,

there is no information about the rate parameters, hence the age estimates are

meaningless in this analysis: the likelihood would be unchanged by multiplying

all branch lengths by an arbitrary factor ν and dividing all the rates by ν.

Similarly, the absence of age constraints implies that there is no signal for

catastrophes and so no branch bears catastrophes in more than 50% of the

sample trees. There are therefore no catastrophes in Figure 5.1 and we do not

show any time scale. However, the reconstruction of the topology is interesting:

nine of the ten known topological features are supported with probability at

least 95% in the posterior distribution. The only exception is the North-West

Germanic clade (formed by Old English, Old High German and Old Norse),

which appears in 45% of the posterior sample.

We show a consensus tree in �gure 5.3 for the complete data analysed with

all clade constraints included. For the results described here, our prior on
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Figure 5.1: Top: Consensus tree for the Ringe et al. [2002] dataset, without any
internal constraints. The dates are meaningless and are therefore not shown,
but the topology is well reconstructed. Bottom: A sample tree showing the
age topological constraints in black; the bars on internal nodes are topological
constraints.
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Figure 5.2: Reconstructed values of the missing data parameters 1− ξi for the
Ringe et al. [2002] data. Blue: 95% highest probability density intervals at
each language; Red: proportion of missing data for the language.

topologies is uniform on labeled histories, and the prior on the catastrophe rate

ρ is a Γ(1.5, 0.0002); we get similar results with a uniform prior on topologies

and a prior on the catastrophe rate p(ρ) ∝ 1/ρ. The prior on other parameters

of the model is described in Chapter 2. Our estimates for the parameters

are as follows: µ = 1.86 · 10−4 ± 3.94 · 10−5 deaths/year; κ = 0.361 ± 0.11;

ρ = 1.3 · 10−4 ± 3.3 · 10−5 catastrophes/year (corresponding to large but rare

catastrophes: about 1 catastrophe every 15,000 years, or an average of 3.4 on

the tree, with each catastrophe corresponding to 2400 years of change). The

�life expectancy� of a cognacy class on a branch is then 1/(µ+κρ) = 4800 years.

This is greater than the average branch length of 1160 years, so we expect an

explosion of the number of languages a registered cognacy class appears at.

Our estimates of the missing data parameters ξi are shown in Figure 5.2; for

any language i, the posterior distribution of ξi is quite tight and close to the

proportion of missing data in that language.
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Figure 5.3: Consensus tree for the Ringe et al. [2002] dataset. Red dots show
catastrophes supported with probability above one half.
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The analysis reconstructs some well-known features of the Indo-European

tree which were not part of our constraints. Linguists generally agree that

the Germanic, Celtic and Italic families form a subtree, although the relative

positions of the three families in this subtree is subject to debate. Our

analysis reconstructs this subtree, but no particular con�guration of the

relative positions is favored. The Indo-Persian group can fall outside the

Balto-Slav group but the relative position of these two is uncertain. The

deep topology of the tree is left quite uncertain by these data, especially the

position of Albanian. We �nd evidence for catastrophic rate heterogeneity in

three positions: on the edges leading to Old Irish, Old Persian, and in the

Umbrian-Oscan clade.

Our posterior 95% highest probability density (HPD) interval for the root

age of the Indo-European family is 7110 - 9750 years BP. The posterior

distribution of this key statistic is close to normal.

The registration rule used by Ringe et al. [2002] when collecting their data

was rule R1 from Section 2.2.3: all data which are observed at at least one

leaf are recorded. To validate our results, we removed all singletons (traits

which are observed at exactly one leaf), giving the data which would have

been obtained had registration rule R2 been followed. A consensus tree is

displayed in Figure 5.4.

In general, the reconstruction of the topology is similar to our previous

analysis. The 95% HPD interval for the root age is 6650 - 9380 BP, consistent

with our previous analysis. The parameter estimates are as follows: µ =

1.56 ·10−4±2.8 ·10−5 deaths/year; κ = 0.19±0.11; ρ = 1.01 ·10−4±8.72 ·10−5

(corresponding one catastrophe every 9,500 years, or an average of 5.4 on the
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tree, with each catastrophe equivalent to TC = 1350 years of change). The life

expectancy of a registered word is 5800 years. The only noteworthy di�erence

is the position of catastrophes, which are in very di�erent places (the only

conserved catastrophe is the one on the branch leading to Old Irish). This

is not surprising: in Figure 5.3, the catastrophes are all close to the leaves.

Presumably, the signal for these catastrophes comes in large part from an

unusual number of singletons at those leaves, which is best explained by a

catastrophical event. With singletons removed, the signal is much weaker.

As a consequence, the reconstructed catastrophes are smaller and are placed

in positions where there is rate heterogeneity, but not as strong as the rate

heterogeneity detected in Figure 5.3. These catastrophes are present in some

of the posterior samples for the analysis with singletons included, but they

appeared in less than half the samples and are therefore not displayed in the

consensus tree of Figure 5.3.

Another validation method of our results is to exclude part of the data,

either by removing some cognacy classes or by removing some languages. The

results for these analyses are in line with those for the complete data: on the

one hand, removing some cognacy classes makes no signi�cant di�erence in the

reconstructed topology, and slightly increases the variance of the reconstructed

ages; on the other hand, removing some languages increases the uncertainty

of the topology and of the reconstructed ages. As an example, Figure 5.5

presents a consensus tree with half the languages and half the cognacy classes

excluded. The excluded traits were chosen at random; the excluded languages

were chosen in a way that ensures that most subfamilies were represented

(although the Baltic family is not represented by any language in this analysis).
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Figure 5.4: Consensus tree for the analysis of the Ringe et al. [2002] data with
singletons excluded.
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Figure 5.5: Consensus tree for a subset of the Ringe et al. [2002] data.

It is worth noting that in the end, more than half of the cognacy classes are

discarded, since some of the remaining classes were only observed at leaves

which are excluded from the data.

With this reduced data set, there is no signal for catastrophes, and the mode

for the catastrophe death probability κ is e�ectively at 0. Unsurprisingly, the

variance of all reconstructed statistics is very high: the 95% HPD interval for

the root age is 5910 - 12950 BP, but the mode for this statistic is close to the

mode in analyses with the complete data. Similarly, the death parameter µ

is reconstructed as 1.35 · 10−4 ± 9.2 · 10−5, a much greater variance than in

previous analyses. The results are similar when only cognacy classes or only

languages are excluded, although the variance is not as large.
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5.2 Analysis of the Dyen et al. [1997] data

Figure 5.6 presents a consensus tree for the analysis of the Dyen et al. [1997]

data under our stochastic-Dollo model. Our estimates for the parameters are

as follows: µ = 2.37 · 10−4 ± 2.16 · 10−5 deaths/year; κ = 0.121 ± 0.096;

ρ = 2.17 · 10−4 ± 1.2 · 10−4 catastrophes/year (corresponding to smaller but

more common catastrophes than for the Ringe et al. [2002] data: about 1

catastrophe every 4600 years, or an average of 31.3 on the tree, with each

catastrophe corresponding to 550 years of change). The life expctancy of a

registered word is 3800 years, again greater than the average branch length of

840 years.

The analysis of the Dyen et al. [1997] data strongly supports Indo-Iranian

as an outgroup. It also supports the Germanic and Italic subfamilies being

siblings, with Celtic as the next closest cousin, though the con�gurations

Germanic-Celtic and Italic-Celtic are also present in the posterior (with about

15% posterior probability each). On the other hand, the analysis of the

Ringe et al. [2002] data does not support any particular outgroup, and it

shows a preference for a Germanic-Celtic subgrouping. Here again, the other

con�gurations also appear in the posterior sample in non-negligible frequencies.

In both cases, the position of Albanian is very unclear. There is agreement

between the analyses for the other topological features; these also correspond

to the results linguists have obtained through the comparative method.

There is rate heterogeneity in a number of positions. Super�cially,

some of these positions could be expected. For example, French Creoles,

Pennsylvania Dutch and the Gypsy language of Greece all went through some
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rate heterogeneity, which could be linked to the large geographical distance

from their parent language. We do not have an explanation for the other

catastrophes, although they are strongly supported in our analysis. We cannot

compare the position of catastrophes in Figures 5.3 and 5.6, because the

catastrophes in Figure 5.3 occur close to the leaves and the languages we

use in the two analyses are di�erent. However, there is one catastrophe deep

in the tree in our analysis of the Ringe et al. [2002] data with singletons

removed (Figure 5.4), on the branch leading to the subtree containing the

Germanic, Celtic and Italic languages; interestingly, this is also one of only

two catastrophes deep in the tree in our analysis of the Dyen et al. [1997] data.

The analysis of the Dyen et al. [1997] data gives a 95% highest probability

density interval for the root age of 7080 � 8350 BP, with signi�cant overlap of

our estimates using the Ringe et al. [2002] data.

Dyen et al. [1997]'s data were registered by Gray and Atkinson [2003]

following registration rule R2 (i.e. they discarded singletons), so it is not

possible to validate our results by analysing the data under a di�erent

registration rule. However, as previously, we validated our results by using

only subsets of our data, and as previously, this led to similar results as with

the complete data, only with greater uncertainty.

109



Persian_List

Waziri

Wakhi
Baluchi

Tadzik

Afghan
Ossetic

Khaskura

Marathi
Bengali
Nepali_List

Gujarati

Panjabi_ST

Kashmiri
Gypsy_GkSinghalese

Lahnda

Hindi

Latvian
Lithuanian_STLithuanian_O

Czech

Byelorussian

Slovenian

Lusatian_L

Czech_E

Ukrainian
Russian

Slovak

Serbocroatian
Macedonian

Lusatian_U

Polish

Bulgarian

Albanian_Top
Albanian_G

Albanian_T

Albanian_K
Albanian_C

Swedish_List

Faroese
Icelandic_ST

Swedish_Up
Swedish_VL

Riksmal
Danish

English_ST
Takitaki

Frisian

Penn_Dutch

Afrikaans

German_ST

Flemish

Dutch_List

Armenian_Mod
Armenian_List

Sardinian_C

Romanian_List

Sardinian_L
Vlach

Sardinian_N

Brazilian

Walloon

Ladin

French_Creole_D

Portuguese_ST
Provencal

French

Catalan
Spanish

French_Creole_C

Italian

Breton_SE

Welsh_C

Breton_List

Breton_ST

Welsh_N

Irish_B
Irish_A

Greek_Mod
Greek_ML

Greek_D

Greek_MD

Greek_K

TOCHARIAN_BTOCHARIAN_A
HITTITE

76

81

94

94

72

67

72

95

84

93

61

77

77

0   10002000300040005000600070008000

Figure 5.6: Consensus tree for the Dyen et al. [1997] data set.

110



Chapter 6

Conclusions and extensions

Several attempts at dating Proto-Indo-European using statistical methods

have been made previously, as mentioned in Chapter 1. However, some of

the models used were clearly not adapted to lexical data, and none of these

models had been fully validated. The model we have described in Chapter

2 and implemented as descibed in Chapter 3 is speci�cally tailored to lexical

data. Plausible sources for systematic bias are either incorporated in the model

or have been tested for using synthetic data, either by us in Chapter 4 or in

previous work. Most signi�cantly, we have showed that borrowing at the levels

that we expect in our data does not bias our age estimates.

The reconstruction of known ages presented in Section 4.3 further validates

our ability to predict time depths. After several analyses of two data sets

(Chapter 5), all our results agree with the Anatolian hypothesis that the spread

of the Indo-European family started around 8000 BP. None of our analyses

agree with the Kurgan theory that the spread started between 6000 and 65000

BP.
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The results presented in this thesis show how promising statistical models

of language diversi�cation are. Although much of the e�ort so far has been

in developing models of lexical data, it would be equally interesting to be

able to correctly handle all the very diverse aspects of linguistic data: models

of grammatical and phonological data, as well as models of contact-induced

change rather than descent with modi�cation, would be very useful to help

further our understanding of language history.

A few such models already exist, and have been mentioned in Section 1.2.

It would be of particular interest to be able to reconcile the various aspects of

language change: despite the di�erent mechanisms at play, these aspects are

not independent of each other and all must be studied simultaneously if we

are to understand the global picture of language diversi�cation.

These models, or extensions of these models, could also be used to gain

knowledge on the ancestral languages themselves. Even though the nodes

on the trees we reconstruct do not correspond exactly to any languages of

interest, they are closely related to such languages. Reconstructing ancestral

sequences has been the subject of much research in molecular phylogenetics

[Fitch, 1971, Yang et al., 1995]. In particular, many linguists are interested in

reconstructing features of the language spoken by the Proto-Indo-Europeans

[Schleicher, 1868]. Estimating which cognates are present at the root of the

trees we sample would provide information about this Proto-language, and it

would of great interest to compare these reconstructions to those obtained by

linguists using the comparative method [Beekes, 1995].

The results presented in Chapter 5 indicate that our modelling of catastrophic

rate heterogeneity is satisfactory in the setting we studied. To apply it to other
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settings, however, it may be necessary to expand on it. For example, it may be

interesting to impose that a catastrophe occur simulatenously on all branches

at the same time, corresponding to an event that impacts all lineages. It may

also be worthy to allow "negative catastrophes", or periods of time during

which no change occurs. The most obvous extension is to allow catastrophes

to have di�erent sizes. Some of the work in molecular phylogenetics mentioned

in Section 1.3 may be relevant.

In the following sections, we give three possible extensions of our methods:

we discuss the objections famously raised by Bergsland and Vogt [1962] against

glottochronology, reconstruct the spread of Swabian dialects and examine the

hypothesis that �punctuational bursts� at language splitting events account

for a large amount of linguistic change. Further work is needed to better

understand and validate the ideas presented in this chapter.

6.1 Revisiting some extreme examples listed by

Bergsland & Vogt [1962]

Swadesh [1952] developed a method known as glottochronology, which he

claimed could be used to date the most recent common ancestor of any two

related languages, by calculating the percentage of shared cognates in the

core vocabulary. This was the �rst attempt at dating ancient languages with

mathematical methods. Swadesh [1952] assumed that the core vocabulary

evolved at a constant rate. It then follows immediately that if C is the

percentage of shared cognates and r the retention rate, then the age of the
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most recent common ancestor is t = logC
2 log r

. The constant r was estimated using

a pair of languages for which the age of the most recent common ancestor is

known. Glottochronology had many shortcomings; from a statistical point of

view, the main issues are that there was never any attempt to evaluate the

uncertainty of the estimators, and that large amounts of data were not used.

Bergsland and Vogt [1962] strongly criticized glottochronology, and their

research is at the origin of the strong disbelief amongst linguists of any

statistical method for dating ancient languages. Bergsland and Vogt [1962]

used three sets of related languages: Icelandic and three Norwegian dialects,

which they compared to several versions of the common ancestor Old Norse;

Modern Georgian, Old Georgian and Mingrelian, three Kartvelian languages;

and Old and Modern Armenian. They estimated the retention rate r for each

set and obtained very di�erent values. This was taken to show that there is

no universal constant retention rate and that attempts at dating are therefore

pointless.

The methods described in this thesis and in other recent works on

dating ancient languages present several advantages when compared to

glottochronology:

1. It is the very nature of Bayesian estimation to compute uncertainties;

2. Phylogenetic methods allow us to include data from many languages,

rather than only two;

3. The method described by Swadesh [1952] and used by Bergsland and

Vogt [1962] only allowed one cognacy class per meaning category. Where

there is polymorphism, some (and occasionally most) of the data had to

114



be ignored.

The research by Bergsland and Vogt [1962] is still viewed by many linguists

as an issue that no dating method so far has managed to circumvent. For

example, Nakhleh et al. [2005] state that �none of [Bergsland and Vogt's]

objections have been e�ectively met by recent work�.

The points made by Bergsland and Vogt [1962] helped a great deal in

putting forward the �aws of glottochronology, but their methods also su�er

from drawbacks which make their point less forceful. In this chapter, we show

that most of the issues raised by Bergsland and Vogt [1962] do not apply to

our methods. We calculate dates �Before the Present� (BP); by �present�, we

mean the time at which the data were recorded, which is in fact approximately

1962.

The �rst set of languages analysed by Bergsland and Vogt [1962] includes

Modern Icelandic, Norwegian Riksmal and the Norwegian dialects of Gjestal

and Sandnes, as well as �ve versions of Old Norse: 10th , 11th , 12th and 13th

century Old Norse, and �Legal� Old Norse. We ignored Legal Old Norse in this

analysis, because the age of this language is not clear. The known topology

of the other languages is shown in Figure 6.1. Note that unlike the ancient

languages in other chapters of this thesis, the versions of Old Norse are not

leaves, nor are they the most recent common ancestor of a set of languages.

Rather, they are assumed to lie on the Adam-Root branch. This is equivalent

to coding these languages as leaves with the branch above them having length

0, as in Figure 6.2. In fact, 13th century Old Norse is very close to the most

recent common ancester of Modern Icelandic, Riskmal, Gjestal and Sandnes.
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Figure 6.2: Representation in TraitLab of the known topology of the Norse
family. Note that the branches leading to the ancestral languages have length
0.
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Bergsland and Vogt [1962] claim that Icelandic was subject to almost no

change between the 13th and 20th centuries. In particular, they claim that

when the data are restricted to the shorter Swadesh-100 list (given in Appendix

A), the set of cognacy classes observed in Modern Icelandic is exactly the set

observed in 13th century Old Norse. This is true for the data they collected,

but only because their word list for Modern Icelandic includes words which

they describe as �rare� and �literary� and which are in fact not used anymore

in spoken Icelandic. This goes against best practice in linguistic data collection

[Slaska, 2005]. In our analysis, words which only exist in literary Icelandic are

treated as absent in that language. We also exclude literary words in the other

modern languages, but these are much less frequent, presumably because these

languages have less of a literary tradition.

Glottochronology as developed by Swadesh [1952] and used by Bergsland

and Vogt [1962] did not allow for polymorphism (several words for one

meaning): if synonyms were in use in a language, Bergsland and Vogt [1962]

followed Hymes [1960]'s advice to toss a coin to choose which one to keep. Even

though Bergsland and Vogt [1962] were not able to handle polymorphism, they

still listed all words for a given meaning category in every language in their

word lists. When we coded up the data in binary format, we were therefore able

to include all words in a given meaning category for every language. Wherever

Bergsland and Vogt [1962] expressed doubt on the presence of a cognacy class

in a language, we listed that data point as missing. We excluded all known

borrowings, and treated borrowed words as absent. In doing this, we followed

to the best of our ability the standard procedure for registration data used by

Ringe et al. [2002].
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Even with these data excluded, we should expect Icelandic to have

experienced less change than average. Indeed, there is a selection bias in

the data analysed by Bergsland and Vogt [1962]: the languages they studied

were chosen because they were expected to be exceptions to Swadesh [1952]'s

retention constant; this selection bias has already been pointed out by Sanko�

[1970]. The important question is whether this rate heterogeneity is so strong

as to prevent us from correctly estimating the age of internal nodes.

In the analyses presented in this section, we did not include catastrophical

rate heterogeneity.

Our main interest in Chapter 5 is in dating ancestral nodes. The main

question with these data is therefore whether we are able to reconstruct the

known ages of ancient languages. Since the di�erent versions of Old Norse are

in close succession, removing the age constraint on one language and trying

to reconstruct its age (as we did in Section 4.3 for the Ringe et al. [2002]

data) serves little purpose: the reconstruction will always cover the constraint,

because there are constraints on the other languages which e�ectively still

constrain the language's age. Removing all constraints at the same time (as

we did for the Germanic clade and its subclades in Section 4.3) is not possible,

since we would then have no age constraints left and therefore no means of

estimating the parameters and ages. Instead, we analysed a data set restricted

to only 13th century Old Norse and the 4 modern languages, and �xed µ =

1.86 · 10−4, the mean value from our main analysis of the Ringe et al. [2002]

data presented in Chapter 5 (a better though less practical approach would

have been to draw samples from the posterior distribution for µ which we

sample in Section 5.1; this would have increased the standard deviation of
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our estimate of the age of Old Norse). We ignored the known age constraint

on Old Norse and attempted to reconstruct the age of this ancient language.

The age constraint is 660-760BP (assuming the data were collected in 1960),

and the 95% HPD interval for the reconstructed age is 615-872BP, completely

covering the constraint. This shows well that even if one language changes at a

very di�erent rate, the presence of several languages still allows us to correctly

reconstruct the age of ancient languages. Rather than use a value of µ taken

from the posterior sample of another analysis, it would be interesting to get an

age constraint for another internal node of the tree (such as the most recent

common ancestor to Riksmal, Sandnes and Gjestal) and use this constraint

to jointly estimate µ and reconstruct the age of Old Norse; unfortunately, we

have no such temporal information at our disposal.

Bergsland and Vogt [1962]'s point remains valid when we try to reconstruct

the age of a leaf. The branch between 13th century Old Norse and Modern

Icelandic should be of length between 660 and 760 years. We analysed the data

with Riksmal, Sandnes and Gjestal constrained to be modern leaves, and with

the century-wide time constraints on the di�erents �avours of Old Norse, but

allowed the age of Icelandic to vary. The 95% HPD interval for the length of

the branch between 13th century Old Norse and Modern Icelandic is 100 � 221

years, far from the correct range. Had we tried to predict the age of Icelandic,

we would have failed. In this aspect, the �ndings of Bergsland and Vogt [1962]

are con�rmed: Icelandic did change at a very low rate. Nonetheless, this low

rate on one branch does not impact signi�cantly our estimates of over ages

and parameters: the leaf age estimation is exposed to error on the leaf branch,

whereas the clade root age is more robust.
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Finally, we analysed the complete data with all age constraints included.

Since the topology and all the node ages are known, the only parameter of

interest is the death rate µ, which we estimate at µ = 2.47 · 10−4 ± 4.0 · 10−5

deaths/year. This is in line with the estimates for the Ringe et al. [2002] and

Dyen et al. [1997] data sets presented in Chapter 5 (mean values µ = 1.86·10−4

and µ = 2.37 · 10−4, respectively). Remember that Icelandic and Old Norse

were chosen by Bergsland and Vogt [1962] because they were the most extreme

example they could �nd; yet our estimate of µ is in the same range as for other

data sets, and we were able to reconstruct the age of 13th century Old Norse.

This is a good example of the main advantage of modern phylogenetic methods

against glottochronology: the ability to include many languages in an analysis

means that the natural variance in rates gets averaged out and we can still

compute viable estimates.

The second data set studied by Bergsland and Vogt [1962] comprises Old

Georgian (5th century), Modern Georgian and Mingrelian, a language spoken

in West Georgia. Modern Georgian is assumed to descend directly from Old

Georgian. The age of its most recent common ancestor with Mingrelian is not

known, but it �probably has to placed in the last millenium B.C.�, according

to Bergsland and Vogt [1962], and anyway before the 5th century A.D.. Yet

when they used glottochronology on the pair Modern Georgian-Mingrelian,

Bergsland and Vogt [1962] reconstructed an age of about 1300BP, i.e. in the

7th century A.D., which they call �much too young�.

In this case, it is easy to see why the reconstructed age is o� the mark:

through is tormented history, Mingrelian has borrowed many words from
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Georgian. As is usually the case, these words can be detected thanks to

their irregular phonological characteristics. Helpfully, Bergsland and Vogt

[1962] specify which words have been borrowed, but they do not discard

them from their data, so we were able to register the data using the same

standard procedure as Ringe et al. [2002], excluding borrowings from our data.

The argument for excluding borrowed words is quite clear: when Mingrelian

borrowed a word from Georgian, the orginal word must have already died out

in Mingrelian; treating borrowed words as present in the data would therefore

systematically underestimate the deat rate µ. We once again �xed the death

parameter µ to the mean value from our analysis of the Ringe et al. [2002] data

(µ = 1.86·10−4). The 95% HPD interval for the age of the most recent common

ancestor to Georgian and Mingrelian is 2065�3170 BP, which coincides almost

exactly with the last millenium B.C.

We were not able to use the third set of languages studied by Bergsland

and Vogt [1962], which is the couple Old Armenian and Modern Armenian,

because the word lists were not clear enough to be transcribed into binary

data. Bergsland and Vogt [1962] claim that this another case where languages

changed at a rate slower than usual. However, the argument for including

many languages rather than only two still holds, and it would be interesting

to see whether their results are identical with other related languages in the

same analysis.

We certainly do not disagree with Bergsland and Vogt [1962] that there

is variability in the number of changes that occur per millenium in di�erent

languages. However, this variability is taken into account by stochastic models
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and in general, it does not hinder our ability to date ancestral languages or to

reconstruct the model parameters. It exposes us more to errors on leaf ages,

but that is not an estimation problem of great interest to us.

In their conclusions, Bergsland and Vogt [1962] claim that the rate

heterogeneity they have exhibited prevents statistical methods from correctly

estimating dates, and that �it follows� that the topology cannot be correctly

reconstructed either. This ipse-dixitism is in fact far from obvious: even if it

were the case that our methods could not correctly estimate dates, they may

well be able to reconstruct the topology, just like uncertainty in the topology

does not imply that we cannot reconstruct dates. In fact, linguists have so

far tended to accept with more ease that statistical methods are able to infer

topologies than dates [McMahon and McMahon, 2005].

6.2 Swabian dialects

This section presents analyses of a data set of linguistic features of 14

Swabian dialects (spoken in Baden-Würtemberg and Bavaria). The data

were initially collected by Konig [1989] on 2,400 maps, which were then

transcribed into binary data by Rother [pers. comm.]. The data cover lexical,

grammatical and phonological features and are divided into 14 categories:

human body, community and clothing; farming, weather, wild fauna and

�ora; food, housework, time and adverbs; cattle and pets; ; crops; woodwork

and transportation (lexical); vowel quantities; short vowels ; long vowels

and diphtongs; plosive consonants; other consonants (phonological); verb

forms; noun and article forms; pronoun and adjective forms and syntax
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(grammatical).

The temporal and geographical scales of these data are much smaller than

for the Indo-European family. As such, we might expect large amounts of

borrowing and a tree model will probably not capture the entire linguistic

history of these dialects. Nonetheless, it is certainly interesting to see whether

reconstructed trees on these data using our model corresponds to known

historical facts.

The rough geographical position of the 14 dialects in Bavaria and Swabia

is shown in Figure 6.3. The river Lech, also shown in Figure 6.3, is a strong

physical boundary and is expected to split the dialects into two subgroups on

either side of it. According to Rother [pers. comm.], we should expect to see

two subtrees, corresponding to the two sides of the river. On both sides, the

Swabians progressed from North to South, so we should also hope to see this

in the reconstructed trees.

Figure 6.4 shows a consensus tree for an analysis of the Household lexicon

data. The only constraint we imposed was that the root lie between 1200 and

1500 BP. The consensus tree corresponds closely to the geographical features:

we observe a clear East-West cut and on both sides, a progression from North

to South. This corresponds to the path along which it is believed the Swabians

colonized the region, although it is also possible that the data contain a

signal for this topology because lexical items were borrowed along this path.

Many catastrophes are found on the branch leading to the Ostfranken dialect.

Ostfranken is known to be problematic because the data may not correctly

re�ect this dialect.

Our model was developed with lexical data in mind; in particular, the
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Figure 6.3: Rough geographical position of 14 Swabian dialects. The thick blue
line represents the Lech river, a strong physical boundary between the East and
West of this region.
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Figure 6.4: Consensus tree for an analysis of the Household lexicon data of
Swabian dialects.
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feature that a word can only be born once on the tree does not apply to

syntactical or phonological data, where a �nite site approach such as the one

described by Lewis [2001] may be appropriate. As mentioned in Chapter 1, it is

also debatable whether a tree model is appropriate for such data. Indeed, our

analyses of phonological and syntactical data produced much less convincing

results as the lexical data.

6.3 Punctuational bursts

Catastrophes were initially introduced in our model to take into account

possible �catastrophic� rate heterogeneity. However, another possible use of

this feature is to analyse what Atkinson et al. [2008] call �punctuational bursts�.

Atkinson et al. [2008] wished to test the hypothesis that languages diversify

at two rates: a basic, slow rate, along the entire tree (the anagenic process);

and a faster rate whenever two languages split (punctuational bursts). There

are several plausible explanations for punctuational bursts. When a language

is founded by the migration of a small subset of a population, the �founder

e�ect� leads to fast change over a short period of time. Language splitting is

also associated with other events which can lead to fast change, such as war.

Atkinson et al. [2008] study three language families: Indo-European (a

subset of the Dyen et al. [1997] data), Austronesian and Bantu. In order to

test for punctuational bursts, they construct language trees for each family

using the software BayesTraits [Pagel et al., 2004]. For data in which all

the leaves are modern (i.e. isochronous), they then plot the number of changes

between each leaf and the root of the tree against the number of internal nodes
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between the leaf and the root and �nd a positive correlation, which is a signal

for the existence of punctuational bursts. They calculate that punctuational

bursts account for 21% of changes in the history of the Indo-European family.

A more direct way to test for punctuational bursts is to include them

directly in the model. Indeed, if punctuational bursts occur on the tree,

they are equivalent to a catastrophe event occuring after every splitting event.

Recall however that the position of a catastrophe on a branch does not matter.

To include punctuational bursts in our model, we therefore simply need to

impose the presence of exactly one catastrophe on each branch, as shown in

Figure 6.5. With L languages, there will be 2L− 2 catastrophes on the tree g,

each corresponding to an e�ective length TC . If the total length of the tree is

denoted by |g|, the proportion of change attributable to punctuational bursts

is (2L−2)TC
|g|+(2L−2)TC

.

We used this model to analyse the Ringe et al. [2002] data as well as the

same subset of the Dyen et al. [1997] data as Atkinson et al. [2008]. The reason

for taking only a subset of the data is that some of the languages listed by Dyen

et al. [1997] could be deemed too close for their divergence to be truly regarded

as a language splitting event. Therefore, 22 languages were removed from the

data. It is worth remembering from Section 3.1 that with one catastrophe

on every branch and with the improper prior distribution on the death rate

p(µ) ∝ 1/µ, the posterior distribution can also be improper when µ→ 0. This

is not an issue in this case, as the likelihood is very small for small values of µ

and so the MCMC never visits this part of the state-space, so we can impose

a very conservative cuto�, rendering the posterior distribution proper without

altering the MCMC.
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Our results are starkly di�erent to those obtained by Atkinson et al. [2008].

In our analyses, the probability of death at a catastrophe κ is very close to

0, implying that punctuational bursts have close to no e�ect. For the Ringe

et al. [2002] data, our model attributes 0.39% of all changes to punctuational

bursts; for the Dyen et al. [1997] data, 0.23% of all changes are attributed to

punctuational bursts.

Further work is needed to understand the discrepancy between our results

and those of Atkinson et al. [2008]. Atkinson et al. [2008] show through

simulation studies that the presence of borrowing in the data does not impact

their model of punctuational bursts. It would however be interesting to see

whether the presence of catastrophical rate heterogeneity, for which there is

a signal in the data as shown in Section 5.1 and 5.2, introduces a bias for or

against punctuational bursts in either methodology. Note also that our method

assumes equal-sized catastrophes on all branches, and that unlike Atkinson

et al. [2008], our model of language change is clock-like; this might explain the

discrepancy.
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Figure 6.5: Example tree with punctuational bursts: one catastrophe on each
branch.
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Appendix A

Swadesh list

This appendix gives all 207 meaning categories in the standard Swadesh list,

used by Ringe et al. [2002], Dyen et al. [1997] and Bergsland and Vogt [1962].

There have been a number of minor adjustements suggested for this list.

The major re�nement was when Swadesh shortened the list to 100 meaning

categories. The meanings which are also included in the shorter list are

indicated in bold.

1. all

2. and

3. animal

4. ashes

5. at

6. back

7. bad

8. bark

9. because

10. belly

11. big

12. bird

13. bite

14. black

15. blood

16. blow

17. bone

18. breast

19. breathe

20. burn

21. child

22. claw

23. cloud

24. cold

25. come

26. count

27. cut

28. day

29. die

30. dig

31. dirty

32. dog

33. drink

34. dry

35. dull

36. dust
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37. ear

38. earth

39. eat

40. egg

41. eye

42. fall

43. far

44. fat

45. father

46. fear

47. feather

48. few

49. �ght

50. �re

51. �sh

52. �ve

53. �oat

54. �ow

55. �ower

56. �y

57. fog

58. foot

59. four

60. freeze

61. full

62. give

63. good

64. grass

65. green

66. guts

67. hair

68. hand

69. he

70. head

71. hear

72. heart

73. heavy

74. here

75. hit

76. hold

77. horn

78. how

79. hunt

80. husband

81. I

82. ice

83. if

84. in

85. kill

86. knee

87. know

88. lake

89. laugh

90. leaf

91. left

92. leg

93. lie

94. live

95. liver

96. long

97. louse

98. man

99. many

100. meat

101. moon

102. mother

103. mountain

104. mouth

105. name

106. narrow

107. near

108. neck

109. new

110. night

111. nose

112. not

113. old

114. one

115. other

116. person

117. play

118. pull

119. push

120. rain

121. red

122. right
(correct)

123. right (side)

124. river

125. road

126. root

127. rope

128. rotten

129. round

130. rub

131. salt

132. sand
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133. say

134. scratch

135. sea

136. see

137. seed

138. sew

139. sharp

140. short

141. sing

142. sit

143. skin

144. sky

145. sleep

146. small

147. smell

148. smoke

149. smooth

150. snake

151. snow

152. some

153. spit

154. split

155. squeeze

156. stab

157. stand

158. star

159. stick

160. stone

161. straight

162. suck

163. sun

164. swell

165. swim

166. tail

167. ten

168. that

169. there

170. they

171. thick

172. thin

173. think

174. this

175. thou

176. three

177. throw

178. tie

179. tongue

180. tooth

181. tree

182. turn

183. two

184. vomit

185. walk

186. warm

187. wash

188. water

189. we

190. wet

191. what

192. when

193. where

194. white

195. who

196. wide

197. wife

198. wind

199. wing

200. wipe

201. with

202. woman

203. woods

204. worm

205. ye

206. year

207. yellow

132



Table of notations

The following table gives a brief description of all the notations used in this
thesis, as well as the page where the notation is introduced. Due to the limited
size of the alphabets, some notations have several meanings, but the context
always prevents any confusion.

Notation Type Description Page

A node the Adam node of a tree, linked by a branch of
in�nite length to the root

33

a integer index of a cognacy class or a column of D; 1 ≤ a ≤
N

26

B matrix any matrix (in practice, one of D, D∗, I) 27
B set of edges the set of edges with at least L− d′ descendants 64

BC,C−c real a Bayes factor 96
b real the "level" of borrowing: the rate of borrowing is

bµ
84

C integer the number of constraints 33
C real a �nite constant 58
C real the proportion of shared cognates between two

languages
114

c constraint a constraint on the tree 33
c1, c2 node the children nodes of node i 48
D L × N

matrix
data. Entries can be 0, 1 or ? 26

D∗ L × N∗

random
matrix

notional full random binary data matrix 41

D∗ L × N∗

matrix
realization of D∗ 41

Da set of
vectors

set of vectors d∗ allowed in column a 27
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Notation Type Description Page

D̃ L × N
matrix

masked version of D∗; corresponds to D∗ with
some entries replaced with ?, and to D with extra
unregistered columns

42

d, d′ integers integers involved in the registration conditions;
usually equal to 0 or 1

62

d∗ binary
vector

a column allowed by the data 27

E set of edges the set of all edges in a tree 33
E event the event that a cognacy class is registered 45

E〈i,j〉 set of edges the set of edges neighbouring edge 〈i, j〉 70

2F0 function a generalized hypergeometric function 54
f function a prior distribution
fG function the prior distribution on trees 34
g tree a binary rooted tree 33, 40
I∗ L × N∗

random
matrix

random indicator matrix of observations 42

I∗ L × N∗

matrix
realization of I∗ 42

i integer index of a language or node of a tree, or a row of
the data D; 1 ≤ i ≤ L

26

j node a node of a tree, often the parent of node i
k vector of

integers
vector of number of catastrophes 40

ki integer the number of catastrophes on edge {i, j} 40
L integer number of languages 26

L(x) function the likelihood function
M set of

integers
a cognacy class; M ⊆ {1, 2, ..., L} 26

MC model the null model with all constraints included 96
MC−c model the model with constraint c removed 96
m set of

integers
list of languages displaying a cognacy class in the
unobserved complete data

27

ma set of
leaves

list of leaves known to display cognacy class a 49

N integer number of cognacy classes 26
N∗ integer number of cognacy classes born on the tree,

including unregistered classes
41
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Notation Type Description Page

Nsamp integer the number of samples in a MCMC run 71
p function a prior distribution
Q function function counting the number of ?'s in a column 42
Qa integer number of languages for which the data for

cognacte a is ?
43

q function a MCMC proposal distribution 68
qi integer the number of edges neighbouring edge 〈i, j〉 70
R function registration rule 42
r node the root of a tree 33
r real Swadesh's "retention rate" 115
ri,j real a transition rate 53
rS function the autocorrelation function of statistic S of a

Markov Chain
71

S set of
nodes

the set of nodes having ages not bounded above by
a constraint

34

si integer the number of leaves descended from node i 48
T real upper bound on the age of the root 33
Tb real the time after which local borrowing is no longer

allowed
84

TC real amount of time equivalent to a catastrophe 40
ti real the age of node or leaf i 33
tr real the age of the root r 33
t vector of

reals
the vector of ages of nodes in a tree; t =
(t1, t2, ..., tA)

33

u
(n)
i real the probability for a cognacte class present at node

i to be registered at exactly n leaves below i
48

V set of
nodes

the set of all nodes of a tree 33

VL set of
leaves

the set of all leaves of a tree; VL ⊂ V 33

V
(i)
L set of

leaves
the set of leaves descended from node i 48

v
(n)
i real the probability for a cognacte class present at node

i to be registered or missing at exactly n leaves
below i

48

(Xn) random
process

a Markov chain 71

x state a MCMC state 67
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Notation Type Description Page

Y function function counting the number of 1's in a column 42
Ya integer number of languages for which the data for

cognacte a is 1
43

ZD point
process

the point process of birth locations on the tree 44

z (node,
time)
couple

a point on the tree 44

α real a MCMC acceptation probability 68
α, β reals the parameters of a Gamma distribution 57
Γ set of trees the set of all rooted binary trees with L

distinguishable leaves
33

Γ(c) set of trees the set of trees obeying constraint c 33
ΓC set of trees the set of trees obeying all constraints 34
δi,j real the probability for a cognacy class to survive down

edge 〈i, j〉
48

ε real the length of time between deaths and births at a
catastrophe; very close to 0

53

η real an arbitrary factor 51
θ list of

parameters
condensed notation for a list of parameters, for
example θ = (g, κ, ρ, ξ)

57

κ real probability of death of a cognate at a catastrophe 38

Λ([g]) real normalizing constant: Λ([g]) =
∫

[g]
λ̃(z) dz 45

λ real birth rate of cognacy classes outside of catastrophes 38

λ̃ function e�ective birth rate of cognacy classes at a point on
the tree

45

µ real death rate of cognacy classes outside of
catastrophes

38

ν real mean number of births at a catastrophe 38
ξi real probability for a cognate class to be missing at leaf

i
40

ξ vector of
reals

the vector (ξ1, . . . , ξL

πi real the equilibrium probability of displaying i cognacy
classes

54

ρ real rate of occurrence of catastrophes 38
σ(t) permutation order of the internal ages t 33
τ real a time on an edge of the tree 44
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Notation Type Description Page

τS real the autocorrelation time of statistic S 71
Ωa set of sets

of integers
set of cognacy classes consistent with the data for
cognacy class a

27

Ω list of sets
of sets of
integers

the vector (Ω1,Ω2, ...,ΩN) 27

ω set of
integers

a possible value for the list of languages at which a
cognacy class is displayed

27
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