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2 Centre De Recherche Économie et Statistique, ENSAE

Abstract: Kitchen et al. (2009) analyze a data set of lexical trait data for twenty
five Semitic languages, including ancient languages Hebrew, Aramaic and Akka-
dian, modern South Arabian and Arabic languages and fifteen ethiosemitic lan-
guages. They estimate a phylogenetic tree for the diversification of lexical traits
using tree and trait models and methods set up for genetic sequence data. We
reanalyze the data in a homplasy-free model for lexical trait data. We use a prior
on phylogenies which is non-informative with respect to some of the key scien-
tific hypotheses (concerning topology and root time). Our results are in broad
agreement with those of Kitchen et al. (2009), though our 95% HPD for the root
of the Semitic tree (the branching of Akkadian) is [4400, 5100]BP and we place
Moroccan and Ogaden Arabic in the Modern South Arabian Group.
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1 Data and problem statement

Kitchen et al. (2009) give a Bayesian phylogenetic analysis of lexical trait
data for L = 25 Semitic languages: Ugaritic, Ge’ez, and the languages
shown in Figure 2. The data are homology classes of words from the core
vocabulary, allowing just a small variation in meaning within a class. Thus
the English ‘all’ and Dutch ‘alle’ meaning all are homologous, but in a dis-
tinct class from Spanish ‘todas’ and Italian ‘tutte’. They gathered words in
K = 96 meaning categories and grouped these words in N = 673 homology
classes. They find evidence that Akkadian is an outgroup. This supports
an independent hypothesis that these languages diversified from a ‘home-
land’ in the north west of modern Syria. Our analysis is consistent with
this result. However, the uncertainty is substantial.
Bayesian phylogenetic studies of this data type (Gray et al. (2003)) use
models and software from genetics. Model assumptions, including the tree
itself, are rejected by historical linguists (McMahon et al. (2005)). Cri-
teria related to parsimony are applied in tree and network visualisation
tools (Ringe et al. (2002), Bowern (2010)). These tools support the com-
parative method, allowing the user to intervene in the analysis, and are
assumed to be free from modeling assumptions. There are few attempts
to quantify uncertainty numerically. They work with heterogeneous data
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types, including traits for word phonology and morphology. Most Bayesian
analyses (including our own) model just the lexical traits.
Kitchen et al. (2009) register the data as a 25× 673 binary matrix D, with
Di,j = 1(0) if language i possesses (lacks) a word in homology class j, and
Di,j =? if this is not known. Obvious loan words have been removed from
the data. The published data fill empty meaning categories with a missing
value. Ringe et al. (2002) register loan words as isolated cognates, while
Bowern (2010) leaves identified loan words in the data. This is preferred.
The reconstructed phylogeny is constrained to fit historically known dates
(calibration data). The Akkadian vocabulary data come from Assyrian
texts from 2700-2900 years Before Present. The biblical Aramaic is 1700-
1900BP, Ge’ez is 1600-1800BP, ancient Hebrew 2500-2700BP and Ugaritic
3300-3500BP. The times at which some vocabularies branched from their
parent is fixed: the origin of ancient Hebrew is 3200-4200BP, the origin
of Ugaritic 3400-4400BP, Aramaic 2850-3850BP and Amharic 700-1700BP.
Kitchen et al. (2009) cite sources. Modern languages have age zero.
The substitution model which Kitchen et al. (2009) fit allows a single word
to come into existence with the same meaning independently in several
locations, and ancient words to be revived, at relative rates which are not
controlled by the data. It is a finite sites model for character substitution
developed as a model for character substitution in DNA base character
sequences, adapted for generic traits by Lewis (2001). We check their results
using a homoplasy-free model for trait evolution and check goodness of fit.

2 Models and Methods

We model the core vocabularies as sets, and the tree as a branching process
of sets, with set elements (words) undergoing a birth and death process. The
stochastic Dollo model of Nicholls et al (2008) has word birth according to
a Poisson process of constant rate λ. Words are copied into child languages
when a language branches. Each word in each language dies at constant
rate µ. Ryder et al (2011) add rate heterogeneity via a catastrophe process.
Point-like catastrophes are realized on the tree in a Poisson process with
rate ρ. When a vocabulary enters a catastrophe, each word in the set dies
with probability κ. A Poisson number of words with mean ν are born. If
ν = κλ/µ, then one catastrophe equals − log(1 − κ)/µ years in the birth
death process. Ryder et al (2011) show how to sum over missing data. In
this model, the probability that we cannot determine whether language
i = 1, 2, ..., L contains a word in homology class j = 1, 2, ..., N is ξi. This
parameter varies from one language to another.
The parameters are the tree g = (E, t, k) (edge set E, node ages t =
(t1, ..., t2L−1), and k = (k1, ..., k2L−2) the number of catastrophes on each
edge), the rates λ, µ and ρ, and the probabilities ξi, i = 1, 2, ..., L and
κ. The prior age tR of the tree root node (label R say) is approximately
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uniformly distributed up to U a fixed maximum (our U = 16000BP is very
conservative). The distribution over topologies is approximately uniform.
This weighting is available in MrBayes (Huelsenbeck et al. (2001)) also.
Let Γ be the set of all trees g consistent with the calibration data. Fix
a tree g = (E, t, k), and let Tg = {t′; (E′, t′) ∈ Γ, E′ = E} be the set of
admissible node age vectors. For ancestral node i, s+

i (g) = sup{ti; t ∈ Tg}
and s−i (g) = inf{ti; t ∈ Tg} give the greatest and least ages node i can take
given g. Let F (g) = {i ∈ 1, 2, ..., 2L − 1; s+

i (g) = U, i 6= R}. These are the
‘free’ nodes in g with ages in g bounded only by U . Let Z(g) be the number
of distinct complete orderings ti1 < ti2 < ... < ti2L−1

achievable for t ∈ Tg.
The probability density on trees g ∈ Γ given by

fG(g) ∝



Z(g)
∏

i∈F (g)

tR − s−i (g)

U − s−i (g)





−1

has marginal distributions on topologies and root age that are approxi-
mately marginally uniform. Topology is conditionally approximately uni-
form given root age and vis versa. These results are exact if all leaves have
equal fixed time and there are no calibration constraints. Probability pa-
rameters have U(0, 1) priors. The catastrophe rate ρ has a Gamma prior.
It varies from 1/1000 (the scale of edge length), and 1/25000 years (the
scale of tree length), in the prior 90% interval. The λ- and µ-priors are
proportional to 1/µλ. The unknown birth and death times of words on the
tree, and λ, are integrated analytically, and the remainder using MCMC.
We check for model mispecification. First, we simulate posterior predic-
tive distributions for ’singleton’ columns of the data. These are cognates
displayed in just a single language. We remove singletons and correct the
likelihood, fit the remaining data and then predict singletons and com-
pare predictions with the reserved data. Secondly, we remove historically
attested constraints and check that we can recover them, using the Bayes
factor to compare models with and without the constraint. Ryder et al

(2011) give a stable estimator related to the Savage-Dickey ratio. Thirdly,
we check that results are insensitive to omitting leaves. The model error
arising where language i has loan words from language j is removed if lan-
guage j is removed. We fit data simulated out of model (including loan
words). We found date estimation to be fairly robust, tree topology less so.

3 Results and Conclusions

A Bayesian cross validation analysis of the ten calibration constraints on
the full data (KEAM-25) showed problems with the fit. The historically
attested constraints on the branching of Biblical Aramaic and the leaf ages
for Ugaritic and Ge’ez were rejected. There was strong support for catas-
trophe events on the branches above Ugaritic. There was very little rate
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heterogeneity elsewhere on the tree (except above Ge’ez). These catastro-
phes are artifacts of model misfit. We treat the Ugaritic and Ge’ez data
as outliers and remove them (KEAM-23). This improves the fit. We found
little evidence for rate heterogeneity in these data. The posterior probabil-
ity for zero catastrophes is 0.33 against 0.01 in the prior. As part of our
goodness of fit we drop eight more languages from the tree (KEAM-15,
with Tigre, Tigrinya, Amharic, Argobba, Geto, Chaha, Zway, Walani, He-
brew, Aramaic, Akkadian, Moroccan Arabic, Ogaden Arabic, Jibbali and
Soqotri) and check results are robust.
Cross-validation of the KEAM-23 data gave Bayes factors in favor of the
constraint as follows: ’All’ 3.9, ’Akkadian’ 0.5, ’Amharic branching’ 2, ’Ara-
maic’ 0.3, ’Aramaic branching’ 6, ’Hebrew’ 1.8, ’Hebrew branching’ 1.8. See
Figure 1. The least Bayes factor is 0.3 so we reject no historically attested
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FIGURE 1. (Left) Bayesian cross-validation check on the model for KEAM-23
data. (top thin bars) Calibration constraint. (bottom thick bars) 95% HPD in-
terval for constrained age estimated in an analysis with the single constraint
removed. (centre long bars) 95% highest prior density interval estimated in a
prior simulation with the single constraint removed. (Right) Posterior predictive
distributions (predicted-observed, with 95% envelope) for the number of traits
displayed at two, three up to twenty three leaves.

constraint. The bottom bar for ’All’ gives the posterior HPD interval for
the age of the root. The 95% HPD for the root age in Semitic (KEAM-23)
is [3800, 5100]BP. Kitchen et al. (2009) report [4400, 7400]BP. There is an
extra bound of [4350, 8000]BP. With this we have [4400, 5100].
Posterior predictive 95% HPD intervals for the data for traits at single
leaves show that 11 of the 23 reserved singleton counts fall below the 95%
HPD predictive interval. The conflation of loan words with unidentified
missing data depletes the number of singletons. We remove the singleton
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data, as it is unreliable. The fit to the frequency distribution of the more
commonly occurring cognates, in Figure 1 (Right), is good. There is a small
excess of high frequency words: a small number of words evolve at rates
lower than the bulk rate. Unidentified loan words inflate the number of
frequently occurring words and must be rare.
The consensus tree for KEAM-23 (Figure 2) is very like the consensus tree
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FIGURE 2. Consensus tree for the KEAM-23 data. Edge lengths are proportional
to posterior mean time to branching. Edges thresholded at support 50% posterior
probability. Numbers on nodes give posterior probability for the edges above.
Unnumbered edges have posterior support equal one.

in Kitchen et al. (2009). Akkadian is an outgroup with posterior probabil-
ity 0.67 and prior probability 0.04. Figure 3 shows the posterior probabil-
ities for a few clades of interest. There is evidence for an Akkadian out-
group (Akkadian.Out) in KEAM-22/15. The Arabic languages group with
Modern-South-Arabian (MS.Arabian). The evidence for a Modern-South
Arabian outgroup (MS.Arabian.Out) is at a similar level to Akkadian in
KEAM-25 and KEAM-15, but these are dominated by bias and variance
respectively. Hebrew and Aramaic are split by Ugaritic in the unreliable
KEAM-25 analysis (Heb.Ara). Posterior distributions for ages and topology
are in agreement between KEAM-23 and KEAM-15.
To conclude, the overall tree structure in Figure 2 is very close to that
reported in Kitchen et al. (2009). It is supported by our goodness-of-fit
tests. The main point of difference is in the position of the two Arabic
languages and the narrowed posterior distribution of the root time.
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FIGURE 3. Posterior probabilities for selected clades in the three analyses.

References

Bowern, C. (2010). Historical linguistics in Australia: trees, networks and
their implications, Phil. Trans. R. Soc. B 365, 3845-3854

Gray, R. and Atkinson, Q. (2003). Language-tree divergence times support
the Anatolian theory of Indo-European origin, Nature 426 435–439.

Huelsenbeck, J.P. and Ronquist, F. (2001). MRBAYES: Bayesian inference
of phylogeny, Bioinformatics 17 754–755.

Kitchen, A., Ehret, C., Assefa, S., and Mulligan, C.J. (2009). Bayesian phy-
logenetic analysis of Semitic languages identifies an Early Bronze Age
origin of Semitic in the Near East, Proc. Roy. Soc. B, 276, 2703–2710.

Lewis, P.O. (2001). A likelihood approach to estimating phylogeny from
discrete morphological character data, Systematic Biol. 50 913–925.

McMahon, A. and McMahon, R. (2005). Language Classification by Num-
bers, Oxford University Press

Nicholls, G.K., and Gray, R.D. (2008). Dated ancestral trees from binary
trait data and its application to the diversification of languages, J.

Roy. Statist. Soc. B, 70, 545–566.

Ringe, D., Warnow, T. and Taylor, A. (2002). Indo-European and Com-
putational Cladistics, Trans. Philological Soc. 100 59–129.

Ryder, R.J., and Nicholls, G.K. (2011). Missing data in a stochastic Dollo
model for binary trait data, and its application to the dating of Proto-
Indo-European, Applied Statistics, 60, 71–92.


