
An Adaptive Sequential Monte Carlo Method for Approximate

Bayesian Computation

Ajay Jasra

ajay.jasra@imperial.ac.uk

Department of Mathematics

Imperial College London

ABC in Paris, June 26th

Joint with Arnaud Doucet & Pierre Del Moral

0-0



Introduction

• Consider a standard Bayesian model

π(θ|y) ∝ f(y|θ)π (θ)

where π (θ) denotes the prior and f(y|θ) is the likelihood.

• Assume f(y|θ) is expensive/impossible to calculate.

• Therefore, can be difficult to compute posterior expectations:

∫

Θ

h(θ)π(θ|y)dθ,

e.g. via MCMC methods.
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ABC Approximation

• Consider the approximated posterior:

πε (θ, x|y) =
π(θ)f(x|θ)IAε,y (x)∫
Aε,y×Θ

π(θ)f(x|θ)dxdθ
(1)

• with

– ε > 0 a tolerance level

– IB (∙) the indicator function

– Aε,y = {z ∈ D : ρ(η (z) , η (y)) < ε}

– η : D → S represents some summary statistics

– ρ : S × S →R+ a distance metric.

• For ε small and η sufficient, integrating x, we recover the posterior.
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• The choice of summary statistic is important; see the later talks. It is assumed η, ρ are

given.

• We focus on trying to simulate from (1) with ε as small as possible. This is to recover a

good approximation of the true posterior distribution.

• There exist other approximations, e.g. based upon kernel methods. The issue of which

may be preferable is not discussed.
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Simulation-Based Methods

• Sampling from (1), when ε is small, can be difficult.

• Many methods proposed: rejection, MCMC, sequential Monte Carlo (SMC).

• Focus upon SMC, which has been particularly controversial (Sisson et al. 2007).

• Given a set {ε1, . . . , εT :∞ > ε1 > ∙ ∙ ∙ > εT > 0};

• Sequentially sample from πε1 (as in (1)), then πε2 until πεT .

• At ε1 it is easy simulate; πε1 is well approximated. Then the idea is to try to use these

good approximations, to get to πε2 etc, and ultimately πεT .
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Simulation-Based Methods: Issues

• SMC simulates a collection ofN samples, in parallel, sampling from πε1 then πε2 and

so on.

• Previous approaches have:

– Computational complexity, inN , that isO(N2) (e.g. Beaumont et al. 2009; Toni

et al. 2008).

– A deterministic sequence of ε1, . . . , εT .

• The first issue is computationally prohibitive. The second may be difficult to select in

realistic scenarios.
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• We present an SMC method that has the properties:

– a computational complexity that is O(N).

– it determines, in an automatic fashion, the sequence of tolerance levels to be

used.

– it determines, in an automatic fashion, the parameters of some proposals.

the latter is present in the method of Beaumont et al. (2009).
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SMC Samplers

• Given a sequence of target distributions π1, . . . , πT , on the same space.

• It is possible to sample from them, indirectly, using SMC samplers.

• Use the sequence

π̃n(z0:n) = πn(zn)

n−1∏

j=0

Lj(zj+1, zj) (2)

where z0:n := (z0, . . . , zn).

• {Ln}0≤n≤T−1 are a sequence of Markov kernels that act backward in time.

• It is clear from Eq. (2) that {π̃n} admit {πn} as marginals.
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SMC Samplers: Algorithm

• Step 0. Set n = 0; for i = 1, . . . , N sample Z
(i)
0 ∼ η0 and compute W

(i)
0 ∝

π0(Z
(i)
0 )/η0(Z

(i)
0 ),

∑N
j=1W

(j)
0 = 1.

• Step 1. If ESS({W (i)n }) < NT then resampleN particles, also denoted{Z(i)n } and

setW
(i)
n =

1
N

. Set n = n+ 1, if n = T + 1 stop.

• Step 2. For i = 1, . . . , N, sample Z
(i)
n ∼ Kn(Z

(i)
n−1, ∙), compute

W (i)n ∝W
(i)
n−1

πn(Z
(i)
n )Ln−1(Z

(i)
n−1, Z

(i)
n )

πn−1(Z
(i)
n−1)Kn(Z

(i)
n−1, Z

(i)
n )

(3)

and return to Step 1.
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SMC Samplers: Algorithm Settings

• For ABC set

πεn(θ, x1:M |y) ∝

(
1

M

M∑

k=1

IAεn,y (xk)

)(
M∏

k=1

f(xk|θ)

)

π(θ) (4)

for a givenM ∈ N.

• This sequence admits the same marginal in θ for anyM .

• It is more expensive to sample from πεn(θ, x1:M |y) than πεn(θ, x|y) whenM > 1,
but has advantages, illustrated later.

• Let ε∗ be the smallest value of ε we can select.
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SMC Samplers: Algorithm Settings

• The performance of SMC samplers depends upon

– {εn}

– the transition kernels {Kn}

– backward transition kernels {Ln}.

• Let {εn} be fixed andKn, an MCMC kernel of invariant density πεn . Take Ln−1 as

Ln−1(z, z
′) =

πεn(z
′)Kn(z

′, z)

πεn(z)
.

• Then Eq. (3) becomes

W (i)n ∝W
(i)
n−1

πεn(Z
(i)
n−1)

πεn−1(Z
(i)
n−1)

∝W (i)n−1

∑M
k=1 IAεn,y (X

(i)
k,n−1)

∑M
k=1 IAεn−1,y (X

(i)
k,n−1)

. (5)
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• W (i)n doesn’t depend on {Z(i)n } = {(θ
(i)
n , X

(i)
1:M,n)}: order of sampling and resam-

pling can be swapped.

• A sample is ‘dead’ if ∀k, ρ(η(X
(i)
k,n−1), η(y)) > εn−1 (W

(i)
n−1 = 0); there are a

random number of samples ‘alive’.

• Resampling will bring dead particles back to life.

• As εn < εn−1, some samples will die when sampling from πεn .

• Selecting the decay for {εn} is important:

– Too fast, and the algorithm will collapse, with no alive particles

– Too slow, and the algorithm will take a long time.
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SMC Samplers: Adaptive {εn}

• Approach based upon fact that (5) for {W (i)n } does not depend on {Z(i)n }.

• Hence εn is selected before the weight is calculated.

• Define

PA({W (i)n }, εn) :=

∑N
i=1 I{Wn>0}(W

(i)
n )

N

the proportion of alive particles.

• The value of εn is set via:

PA({W (i)n }, εn) = αPA({W (i)n−1}, εn−1)

with α ∈ (0, 1).

• The {Kn} can be adapted using adaptive MCMC ideas.
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Adaptive SMC Algorithm

• Step 0. Set n = 0; for i = 1, . . . , N, sample θ
(i)
0 ∼ π(∙) and X

(i)
k,0 ∼ f(∙|θ

(i)
0 ),

k = 1, . . . ,M.

• Step 1. Set n = n+1, if εn−1 = ε
∗ stop, otherwise determine εn, withW

(i)
n as (5).

If εn < ε
∗ then set εn = ε

∗.

• Step 2. If ESS({W (i)n }) < NT then resampleN particles denoted {θ(i)n−1, X
(i)
1:M,n−1}

and setW
(i)
n =

1
N

.

• Step 3. For i = 1, . . . , N, sample (θ
(i)
n , X

(i)
1:M,n) ∼ Kn((θ

(i)
n−1, X

(i)
1:M,n−1), ∙) if

W
(i)
n > 0 and return to Step 1.
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Toy Example

• Some parameters to be set and understood:M,α,N .

• Consider:

θ ∼ U[−10,10], f (x| θ) = 0.5φ (x; θ, 1) + 0.5φ (x; θ, 1/100) .

U[a,b] is the uniform on [a, b] and φ
(
x;m,σ2

)
is the normal density.

• Random walk Metropolis kernels used for {Kn}.

• Found, unsurprisingly, better approximations of πεT , for largeM ,N and α.
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• Also looked at the trade-off of choosingM ,N and α.

• For complex problems, want α,N to be ‘large’ andM to be moderate.

• Otherwise, one can keep α ‘small’, keepingM andN large.

• Also compare a deterministic ε schedule versus an adaptive one:

– Deterministic: ε1 = 10 and then falling linearly by 0.1 until εn < 0.01; ε
∗ =

0.01.

– Adaptive: α = 0.9 and ε∗ = 0.01.

• Whilst reasonable, the deterministic schedule leads to the ESS crashing close to ε∗.

• Adaptive procedure has a consistent resampling rate and inferences are likely to be

more reliable.
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Summary

• Presented an SMC method which is fully adaptive and computationally efficient.

• Have compared with population Monte Carlo. Found that for a fixed computational effort

SMC samplers can perform better.

• For real data and complex model (in epidemiology), found that SMC samplers can out-

perform MCMC (Bortot et al, 2007) when sampling from the model with small ε∗.

• This latter aspect is the most important part of the algorithm.
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