ABC methods for model choice in Gibbs random fields

Jean-Michel Marin
Institut de Mathématiques et Modélisation
Université Montpellier 2

Joint work with Aude Grelaud, Christian Robert, François Rodolphe, Jean-François Taly

We consider a finite set of sites $\mathcal{S}=\{1, \cdots, n\}$.

At each site $i \in \mathcal{S}$, we observe $x_{i} \in \mathcal{X}_{i}$ where \mathcal{X}_{i} is a finite set of states.

We also consider an undirected graph \mathcal{G} : the sites i and i^{\prime} are said neighbours, if there is a vertex between i and i^{\prime}.

A clique c is a subset of \mathcal{S} where all elements are mutual neighbours (Daroch, 1980).

We denote by \mathcal{C} the set of all cliques of the undirected graph \mathcal{G}.

Gibbs Random Fields (GRFs) are probabilistic models associated with densities

$$
f(\mathbf{x})=\frac{1}{Z} \exp \{-U(\mathbf{x})\}=\frac{1}{Z} \exp \left\{-\sum_{c \in \mathcal{C}} U_{c}(\mathbf{x})\right\}
$$

where $U(\mathbf{x})=\sum_{c \in \mathcal{C}} U_{c}(\mathbf{x})$ is the potential and Z is the corresponding normalising constant

$$
Z=\sum_{\mathbf{x} \in \mathcal{X}} \exp \left\{-\sum_{c \in \mathcal{C}} U_{c}(\mathbf{x})\right\}
$$

If the density f of a Markov Random Field (MRF) is everywhere positive, then the Hammersley-Clifford theorem establishes that there exists a GRF representation of this MRF (Besag, 1974).

We consider here GRF with potential $U(\mathbf{x})=-\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})$ where $\boldsymbol{\theta} \in \mathbb{R}^{p}$ is a scale parameter, $S(\cdot)$ is a function taking values in \mathbb{R}^{p}.
$S(\mathbf{x})$ is defined on the cliques of the neighbourhood system in that $S(\mathbf{x})=$ $\sum_{c \in \mathcal{C}} S_{c}(\mathbf{x})$.

In that case, we have

$$
f(\mathbf{x} \mid \boldsymbol{\theta})=\frac{1}{Z_{\boldsymbol{\theta}}} \exp \left\{\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})\right\}
$$

the normalising constant $Z_{\boldsymbol{\theta}}$ now depends on the scale parameter $\boldsymbol{\theta}$.

GRF are used to model the dependency within spatially correlated data, with applications in epidemiology and image analysis, among others (Rue and Held, 2005).

They often use a Potts model defined by a sufficient statistic S taking values in \mathbb{R} in that

$$
S(\mathbf{x})=\sum_{i^{\prime} \sim i} \mathbb{I}_{\left\{x_{i}=x_{i^{\prime}}\right\}}
$$

where $\sum_{i^{\prime} \sim i}$ indicates that the summation is taken over all the neighbour pairs.
$\mathcal{X}_{i}=\{1, \cdots, K\}, K=2$ corresponding to the Ising model, and θ is a scalar.
$S(\cdot)$ monitors the number of identical neighbours over \mathcal{X}.

In most realistic settings, the summation

$$
Z_{\boldsymbol{\theta}}=\sum_{\mathbf{x} \in \mathcal{X}} \exp \left\{\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})\right\}
$$

involves too many terms to be manageable.

Selecting a model with sufficient statistic S_{0} versus a model with sufficient statistics S_{1} relies on the Bayes factor

$$
\begin{gathered}
B F_{m_{0} / m_{1}}(\mathbf{x})=\int \exp \left\{\boldsymbol{\theta}_{0}^{\mathrm{T}} S_{0}(\mathbf{x})\right\} / Z_{\boldsymbol{\theta}_{0}, 0} \pi_{0}\left(\mathrm{~d} \boldsymbol{\theta}_{0}\right) / \\
\int \exp \left\{\boldsymbol{\theta}_{1}^{\mathrm{T}} S_{1}(\mathbf{x})\right\} / Z_{\boldsymbol{\theta}_{1}, 1} \pi_{1}\left(\mathrm{~d} \boldsymbol{\theta}_{1}\right)
\end{gathered}
$$

This quantity is not easily computable.

For a fixed neighbourhood or model, the unavailability of $Z_{\boldsymbol{\theta}}$ complicates inference on the scale parameter $\boldsymbol{\theta}$.

The difficulty is increased manifold when several neighbourhood structures are under comparison.

We propose a procedure based on an ABC algorithm aimed at selecting a model.

We consider the toy example of an iid sequence [with trivial neighbourhood structure] tested against a Markov chain model [with nearest neighbour structure].

In a model choice perspective, we face M Gibbs random fields in competition.

Each model m is associated with sufficient statistic $S_{m}(0 \leq m \leq M-1)$, i.e. with corresponding likelihood

$$
f_{m}\left(\mathbf{x} \mid \theta_{m}\right)=\exp \left\{\theta_{m}^{\mathrm{T}} S_{m}(\mathbf{x})\right\} / Z_{\theta_{m}, m}
$$

where $\theta_{m} \in \Theta_{m}$ and $Z_{\theta_{m}, m}$ is the unknown normalising constant.

The choice between those models is driven by the posterior probabilities of the models.

We consider an extended parameter space $\Theta=\cup_{m=0}^{M-1}\{m\} \times \Theta_{m}$ that includes the model index \mathcal{M},

We define a prior distribution on the model index $\pi(\mathcal{M}=m)$ as well as a prior distribution on the parameter conditional on the value m of the model index, $\pi_{m}\left(\theta_{m}\right)$, defined on the parameter space Θ_{m}.

The computational target is thus the model posterior probability

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x}) \propto \int_{\Theta_{m}} f_{m}\left(\mathbf{x} \mid \theta_{m}\right) \pi_{m}\left(\theta_{m}\right) \mathrm{d} \theta_{m} \pi(\mathcal{M}=m)
$$

the marginal of the posterior distribution on $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$ given \mathbf{x}.

If $S(\mathbf{x})$ is a sufficient statistic for the joint parameters $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$,

$$
\mathbb{P}(\mathcal{M}=m \mid \mathbf{x})=\mathbb{P}(\mathcal{M}=m \mid S(\mathbf{x}))
$$

Each model has its own sufficient statistic $S_{m}(\cdot)$.

Then, for each model, the vector of statistics $S(\cdot)=\left(S_{0}(\cdot), \ldots, S_{M-1}(\cdot)\right)$ is obviously sufficient.

We have shown that the statistic $S(\mathbf{x})$ is also sufficient for the joint parameters $\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right)$.

That the concatenation of the sufficient statistics of each model is also a sufficient statistic for the joint parameters is a property that is specific to Gibbs random field models.

When we consider M models from generic exponential families, this property of the concatenated sufficient statistic rarely holds.

ABC algorithm for model choice (ABC-MC)

1. Generate m^{*} from the prior $\pi(\mathcal{M}=m)$.
2. Generate $\theta_{m^{*}}^{*}$ from the prior $\pi_{m^{*}}(\cdot)$.
3. Generate \mathbf{x}^{*} from the model $f_{m^{*}}\left(\cdot \mid \theta_{m^{*}}^{*}\right)$.
4. Compute the distance $\rho\left(S\left(\mathbf{x}^{0}\right), S\left(\mathbf{x}^{*}\right)\right)$.
5. Accept $\left(\theta_{m^{*}}^{*}, m^{*}\right)$ if $\rho\left(S\left(\mathbf{x}^{0}\right), S\left(\mathbf{x}^{*}\right)\right) \leq \epsilon$, otherwise, start again in 1 .

Simulating a data set \mathbf{x}^{*} from $f_{m^{*}}\left(\cdot \mid \theta_{m^{*}}^{*}\right)$ at step 3 is non-trivial for GRFs (Møller and Waagepetersen, 2003).

It is often possible to use a Gibbs sampler updating one clique at a time conditional on the others.

This algorithm results in an approximate generation from the joint posterior distribution

$$
\pi\left\{\left(\mathcal{M}, \theta_{0}, \ldots, \theta_{M-1}\right) \mid \rho\left(S\left(\mathbf{x}^{0}\right), S\left(\mathbf{x}^{*}\right)\right) \leq \epsilon\right\}
$$

When it is possible to achieve $\epsilon=0$, the algorithm is exact since S is a sufficient statistic.

Once a sample of N values of $\left(\theta_{m^{i *}}^{i *}, m^{i *}\right)(1 \leq i \leq N)$ is generated from this algorithm, a standard Monte Carlo approximation of the posterior probabilities is provided by the empirical frequencies of visits to the model, namely

$$
\widehat{\mathbb{P}}\left(\mathcal{M}=m \mid \mathbf{x}^{0}\right)=\sharp\left\{m^{i *}=m\right\} / N,
$$

where $\sharp\left\{m^{i *}=m\right\}$ denotes the number of simulated $m^{i *}$'s equal to m.

$$
\begin{aligned}
B F_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right) & =\frac{\mathbb{P}\left(\mathcal{M}=m_{0} \mid \mathbf{x}^{0}\right)}{\mathbb{P}\left(\mathcal{M}=m_{1} \mid \mathbf{x}^{0}\right)} \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)} \\
\overline{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right) & =\frac{\sharp\left\{m^{i *}=m_{0}\right\}}{\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)},
\end{aligned}
$$

This estimate is only defined when $\sharp\left\{m^{i *}=m_{1}\right\} \neq 0$.

To bypass this difficulty, the substitute

$$
\widehat{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)=\frac{1+\sharp\left\{m^{i *}=m_{0}\right\}}{1+\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\pi\left(\mathcal{M}=m_{1}\right)}{\pi\left(\mathcal{M}=m_{0}\right)}
$$

is particularly interesting because we can evaluate its bias.

We set $N_{0}=\sharp\left\{m^{i *}=m_{0}\right\}$ and $N_{1}=\sharp\left\{m^{i *}=m_{1}\right\}$.

If $\pi\left(\mathcal{M}=m_{1}\right)=\pi\left(\mathcal{M}=m_{0}\right)$, then N_{1} is a binomial $\mathcal{B}(N, \rho)$ random variable with probability $\rho=\left(1+B F_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)\right)^{-1}$ and

$$
\mathbb{E}\left[\frac{N_{0}+1}{N_{1}+1}\right]=B F_{m_{0} / m_{1}}\left(\mathrm{x}^{0}\right)+\frac{1}{\rho(N+1)}-\frac{N+2}{\rho(N+1)}(1-\rho)^{N+1}
$$

The bias of $\widehat{B F} m_{0} / m_{1}\left(\mathbf{x}^{0}\right)$ is $\left\{1-(N+2)(1-\rho)^{N+1}\right\} /(N+1) \rho$, which goes to zero as N goes to infinity.
$\widehat{B F} m_{0} / m_{1}\left(\mathbf{x}^{0}\right)$ can be seen as the ratio of the posterior means on the model probabilities under a $\operatorname{Dir}(1, \cdots, 1)$ prior.
$\widehat{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$ suffers from a large variance when $B F_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$ is very large since.

When $\mathbb{P}\left(\mathcal{M}=m_{1} \mid \mathbf{x}^{0}\right)$ is very small, $\sharp\left\{m^{i *}=m_{1}\right\}$ is most often equal to zero.

We can used a reweighting scheme.

If the choice of m^{*} in the ABC algorithm is driven by the probability distribution $\mathbb{P}\left(\mathcal{M}=m_{1}\right)=\varrho=1-\mathbb{P}\left(\mathcal{M}=m_{0}\right)$ rather than by $\pi(\mathcal{M}=$ $\left.m_{1}\right)=1-\pi\left(\mathcal{M}=m_{0}\right)$, the value of $\sharp\left\{m^{i *}=m_{1}\right\}$ can be increased and later corrected by considering instead

$$
\widetilde{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)=\frac{1+\sharp\left\{m^{i *}=m_{0}\right\}}{1+\sharp\left\{m^{i *}=m_{1}\right\}} \times \frac{\varrho}{1-\varrho} .
$$

Two step ABC:

If a first run of the ABC algorithm exhibits a very large value of $\widehat{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$, the estimate $\widetilde{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$ produced by a second run with

$$
\varrho \propto 1 / \hat{\mathbb{P}}\left(\mathcal{M}=m_{1} \mid \mathbf{x}^{0}\right)
$$

will be more stable than the original $\widehat{B F} m_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$.

Results on a toy example:

Our first example compares an iid Bernoulli model with a two-state firstorder Markov chain.

Both models are special cases of GRF, the first one with a trivial neighbourhood structure and the other one with a nearest neighbourhood structure.

Furthermore, the normalising constant $Z_{\theta_{m}, m}$ can be computed in closed form, as well as the posterior probabilities of both models.

We consider a sequence $\mathbf{x}=\left(x_{1}, . ., x_{n}\right)$ of binary variables. Under model $\mathcal{M}=0$, the GRF representation of the Bernoulli distribution $\mathcal{B}\left(\exp \left(\theta_{0}\right) /\left\{1+\exp \left(\theta_{0}\right)\right\}\right)$ is

$$
f_{0}\left(\mathbf{x} \mid \theta_{0}\right)=\exp \left(\theta_{0} \sum_{i=1}^{n} \mathbb{I}_{\left\{x_{i}=1\right\}}\right) /\left\{1+\exp \left(\theta_{0}\right)\right\}^{n}
$$

For $\theta_{0} \sim \mathcal{U}(-5,5)$, the posterior probability of this model is available since the marginal when $S_{0}(\mathbf{x})=s_{0}\left(s_{0} \neq 0\right)$ is given by

$$
\frac{1}{10} \sum_{k=0}^{s_{0}-1}\binom{s_{0}-1}{k} \frac{(-1)^{s_{0}-1-k}}{n-1-k}\left[\left(1+e^{5}\right)^{k-n+1}-\left(1+e^{-5}\right)^{k-n+1}\right]
$$

Model $\mathcal{M}=1$ is chosen as a Markov chain.

We assume a uniform distribution on x_{1} and

$$
f_{1}\left(\mathbf{x} \mid \theta_{1}\right)=\frac{1}{2} \exp \left(\theta_{1} \sum_{i=2}^{n} \mathbb{I}_{\left\{x_{i}=x_{i-1}\right\}}\right) /\left\{1+\exp \left(\theta_{1}\right)\right\}^{n-1}
$$

For $\theta_{1} \sim \mathcal{U}(0,6)$, the posterior probability of this model is once again available, the likelihood being of the same form as when $\mathcal{M}=0$.

We simulated 2,000 datasets $\mathbf{x}^{0}=\left(x_{1}, \cdots, x_{n}\right)$ with $n=100$ under each model, using parameters simulated from the priors.

For each of those 2,000 datasets \mathbf{x}^{0}, the ABC-MC algorithm was run for 4×10^{6} loops, meaning that 4×10^{6} sets $\left(m^{*}, \theta_{m^{*}}^{*}, \mathbf{x}^{*}\right)$ were exactly simulated from the joint distribution.

A random number of those were accepted when $S\left(\mathrm{x}^{*}\right)=S\left(\mathrm{x}^{0}\right)$. (In the worst case scenario, the number of acceptances was 12 !)

Figure 1: (left) Comparison of the true $\mathbb{P}\left(\mathcal{M}=0 \mid \mathbf{x}^{0}\right)$ with $\widehat{\mathbb{P}}\left(\mathcal{M}=0 \mid \mathbf{x}^{0}\right)$ over 2,000 simulated sequences and 4×10^{6} proposals from the prior. The red line is the diagonal. (right) Same comparison when using a tolerance ϵ corresponding to the 1% quantile on the distances.

Figure 2: (left) Comparison of the true $B F_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$ with $\widehat{B F}_{m_{0} / m_{1}}\left(\mathbf{x}^{0}\right)$ (in logarithmic scales) over 2,000 simulated sequences and 4×10^{6} proposals from the prior. The red line is the diagonal. (right) Same comparison when using a tolerance corresponding to the 1% quantile on the distances.

