ABC methods for model choice in Gibbs random fields

Jean-Michel MARIN

Institut de Mathématiques et Modélisation Université Montpellier 2

Joint work with Aude Grelaud, Christian Robert, François Rodolphe, Jean-François Taly

We consider a finite set of sites $S = \{1, \dots, n\}$.

At each site $i \in S$, we observe $x_i \in \mathcal{X}_i$ where \mathcal{X}_i is a finite set of states.

We also consider an undirected graph \mathcal{G} : the sites *i* and *i'* are said neighbours, if there is a vertex between *i* and *i'*.

A clique c is a subset of S where all elements are mutual neighbours (Daroch, 1980).

We denote by \mathcal{C} the set of all cliques of the undirected graph \mathcal{G} .

Gibbs Random Fields (GRFs) are probabilistic models associated with densities

$$f(\mathbf{x}) = \frac{1}{Z} \exp\{-U(\mathbf{x})\} = \frac{1}{Z} \exp\left\{-\sum_{c \in \mathcal{C}} U_c(\mathbf{x})\right\},\,$$

where $U(\mathbf{x}) = \sum_{c \in \mathcal{C}} U_c(\mathbf{x})$ is the potential and Z is the corresponding normalising constant

$$Z = \sum_{\mathbf{x} \in \mathcal{X}} \exp \left\{ -\sum_{c \in \mathcal{C}} U_c(\mathbf{x}) \right\} \,.$$

If the density f of a Markov Random Field (MRF) is everywhere positive, then the Hammersley-Clifford theorem establishes that there exists a GRF representation of this MRF (Besag, 1974). We consider here GRF with potential $U(\mathbf{x}) = -\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})$ where $\boldsymbol{\theta} \in \mathbb{R}^p$ is a scale parameter, $S(\cdot)$ is a function taking values in \mathbb{R}^p .

 $S(\mathbf{x})$ is defined on the cliques of the neighbourhood system in that $S(\mathbf{x}) = \sum_{c \in \mathcal{C}} S_c(\mathbf{x}).$

In that case, we have

$$f(\mathbf{x}|\boldsymbol{\theta}) = \frac{1}{Z_{\boldsymbol{\theta}}} \exp\{\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})\},\$$

the normalising constant Z_{θ} now depends on the scale parameter θ .

GRF are used to model the dependency within spatially correlated data, with applications in epidemiology and image analysis, among others (Rue and Held, 2005).

They often use a Potts model defined by a sufficient statistic S taking values in \mathbb{R} in that

$$S(\mathbf{x}) = \sum_{i' \sim i} \mathbb{I}_{\{x_i = x_{i'}\}},$$

where $\sum_{i'\sim i}$ indicates that the summation is taken over all the neighbour pairs.

 $\mathcal{X}_i = \{1, \cdots, K\}, K = 2$ corresponding to the Ising model, and θ is a scalar.

 $S(\cdot)$ monitors the number of identical neighbours over \mathcal{X} .

In most realistic settings, the summation

$$Z_{\boldsymbol{\theta}} = \sum_{\mathbf{x} \in \mathcal{X}} \exp\{\boldsymbol{\theta}^{\mathrm{T}} S(\mathbf{x})\}\$$

involves too many terms to be manageable.

Selecting a model with sufficient statistic S_0 versus a model with sufficient statistics S_1 relies on the Bayes factor

$$BF_{m_0/m_1}(\mathbf{x}) = \int \exp\{\boldsymbol{\theta}_0^{\mathrm{T}} S_0(\mathbf{x})\} / Z_{\boldsymbol{\theta}_0,0} \pi_0(\mathrm{d}\boldsymbol{\theta}_0) \Big/ \int \exp\{\boldsymbol{\theta}_1^{\mathrm{T}} S_1(\mathbf{x})\} / Z_{\boldsymbol{\theta}_1,1} \pi_1(\mathrm{d}\boldsymbol{\theta}_1)$$

This quantity is not easily computable.

For a fixed neighbourhood or model, the unavailability of Z_{θ} complicates inference on the scale parameter θ .

The difficulty is increased manifold when several neighbourhood structures are under comparison.

We propose a procedure based on an ABC algorithm aimed at selecting a model.

We consider the toy example of an iid sequence [with trivial neighbourhood structure] tested against a Markov chain model [with nearest neighbour structure]. In a model choice perspective, we face M Gibbs random fields in competition.

Each model m is associated with sufficient statistic S_m $(0 \le m \le M - 1)$, i.e. with corresponding likelihood

$$f_m(\mathbf{x}|\theta_m) = \exp\left\{\theta_m^{\mathrm{T}} S_m(\mathbf{x})\right\} / Z_{\theta_m,m},$$

where $\theta_m \in \Theta_m$ and $Z_{\theta_m,m}$ is the unknown normalising constant.

The choice between those models is driven by the posterior probabilities of the models.

We consider an extended parameter space $\Theta = \bigcup_{m=0}^{M-1} \{m\} \times \Theta_m$ that includes the model index \mathcal{M} ,

We define a prior distribution on the model index $\pi(\mathcal{M} = m)$ as well as a prior distribution on the parameter conditional on the value m of the model index, $\pi_m(\theta_m)$, defined on the parameter space Θ_m .

The computational target is thus the model posterior probability

$$\mathbb{P}(\mathcal{M}=m|\mathbf{x}) \propto \int_{\Theta_m} f_m(\mathbf{x}|\theta_m) \pi_m(\theta_m) \,\mathrm{d}\theta_m \,\pi(\mathcal{M}=m) \,,$$

the marginal of the posterior distribution on $(\mathcal{M}, \theta_0, \ldots, \theta_{M-1})$ given **x**.

If $S(\mathbf{x})$ is a sufficient statistic for the joint parameters $(\mathcal{M}, \theta_0, \dots, \theta_{M-1})$, $\mathbb{P}(\mathcal{M} = m | \mathbf{x}) = \mathbb{P}(\mathcal{M} = m | S(\mathbf{x}))$.

Each model has its own sufficient statistic $S_m(\cdot)$.

Then, for each model, the vector of statistics $S(\cdot) = (S_0(\cdot), \ldots, S_{M-1}(\cdot))$ is obviously sufficient.

We have shown that the statistic $S(\mathbf{x})$ is also sufficient for the joint parameters $(\mathcal{M}, \theta_0, \ldots, \theta_{M-1})$.

That the concatenation of the sufficient statistics of each model is also a sufficient statistic for the joint parameters is a property that is specific to Gibbs random field models.

When we consider M models from generic exponential families, this property of the concatenated sufficient statistic rarely holds.

ABC algorithm for model choice (ABC-MC)

- 1. Generate m^* from the prior $\pi(\mathcal{M} = m)$.
- 2. Generate $\theta_{m^*}^*$ from the prior $\pi_{m^*}(\cdot)$.
- 3. Generate \mathbf{x}^* from the model $f_{m^*}(\cdot | \theta_{m^*}^*)$.
- 4. Compute the distance $\rho(S(\mathbf{x}^0), S(\mathbf{x}^*))$.
- 5. Accept $(\theta_{m^*}^*, m^*)$ if $\rho(S(\mathbf{x}^0), S(\mathbf{x}^*)) \leq \epsilon$, otherwise, start again in 1.

Simulating a data set \mathbf{x}^* from $f_{m^*}(\cdot | \theta_{m^*}^*)$ at step 3 is non-trivial for GRFs (Møller and Waagepetersen, 2003).

It is often possible to use a Gibbs sampler updating one clique at a time conditional on the others.

This algorithm results in an approximate generation from the joint posterior distribution

$$\pi\left\{\left(\mathcal{M},\theta_0,\ldots,\theta_{M-1}\right)|\rho(S(\mathbf{x}^0),S(\mathbf{x}^*))\leq\epsilon\right\}\ .$$

When it is possible to achieve $\epsilon = 0$, the algorithm is exact since S is a sufficient statistic.

Once a sample of N values of $(\theta_{m^{i*}}^{i*}, m^{i*})$ $(1 \le i \le N)$ is generated from this algorithm, a standard Monte Carlo approximation of the posterior probabilities is provided by the empirical frequencies of visits to the model, namely

$$\widehat{\mathbb{P}}(\mathcal{M}=m|\mathbf{x}^0)=\sharp\{m^{i*}=m\}/N\,,\$$

where $\sharp\{m^{i*} = m\}$ denotes the number of simulated m^{i*} 's equal to m.

$$BF_{m_0/m_1}(\mathbf{x}^0) = \frac{\mathbb{P}(\mathcal{M} = m_0 | \mathbf{x}^0)}{\mathbb{P}(\mathcal{M} = m_1 | \mathbf{x}^0)} \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)}$$
$$\overline{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{\sharp\{m^{i*} = m_0\}}{\sharp\{m^{i*} = m_1\}} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)},$$

This estimate is only defined when $\sharp\{m^{i*} = m_1\} \neq 0$.

To bypass this difficulty, the substitute

$$\widehat{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{1 + \sharp\{m^{i*} = m_0\}}{1 + \sharp\{m^{i*} = m_1\}} \times \frac{\pi(\mathcal{M} = m_1)}{\pi(\mathcal{M} = m_0)}$$

is particularly interesting because we can evaluate its bias.

We set $N_0 = \#\{m^{i*} = m_0\}$ and $N_1 = \#\{m^{i*} = m_1\}.$

If $\pi(\mathcal{M} = m_1) = \pi(\mathcal{M} = m_0)$, then N_1 is a binomial $\mathcal{B}(N, \rho)$ random variable with probability $\rho = (1 + BF_{m_0/m_1}(\mathbf{x}^0))^{-1}$ and

$$\mathbb{E}\left[\frac{N_0+1}{N_1+1}\right] = BF_{m_0/m_1}(\mathbf{x}^0) + \frac{1}{\rho(N+1)} - \frac{N+2}{\rho(N+1)}(1-\rho)^{N+1}$$

The bias of $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$ is $\{1 - (N+2)(1-\rho)^{N+1}\}/(N+1)\rho$, which goes to zero as N goes to infinity.

 $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$ can be seen as the ratio of the posterior means on the model probabilities under a $\mathcal{D}ir(1,\dots,1)$ prior.

 $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$ suffers from a large variance when $BF_{m_0/m_1}(\mathbf{x}^0)$ is very large since.

When $\mathbb{P}(\mathcal{M} = m_1 | \mathbf{x}^0)$ is very small, $\#\{m^{i*} = m_1\}$ is most often equal to zero.

We can used a reweighting scheme.

If the choice of m^* in the ABC algorithm is driven by the probability distribution $\mathbb{P}(\mathcal{M} = m_1) = \varrho = 1 - \mathbb{P}(\mathcal{M} = m_0)$ rather than by $\pi(\mathcal{M} = m_1) = 1 - \pi(\mathcal{M} = m_0)$, the value of $\sharp\{m^{i*} = m_1\}$ can be increased and later corrected by considering instead

$$\widetilde{BF}_{m_0/m_1}(\mathbf{x}^0) = \frac{1 + \sharp\{m^{i*} = m_0\}}{1 + \sharp\{m^{i*} = m_1\}} \times \frac{\varrho}{1 - \varrho} \,.$$

Two step ABC:

If a first run of the ABC algorithm exhibits a very large value of $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$, the estimate $\widetilde{BF}_{m_0/m_1}(\mathbf{x}^0)$ produced by a second run with

$$\varrho \propto 1 / \hat{\mathbb{P}}(\mathcal{M} = m_1 | \mathbf{x}^0)$$

will be more stable than the original $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$.

Results on a toy example:

Our first example compares an iid Bernoulli model with a two-state firstorder Markov chain.

Both models are special cases of GRF, the first one with a trivial neighbourhood structure and the other one with a nearest neighbourhood structure.

Furthermore, the normalising constant $Z_{\theta_m,m}$ can be computed in closed form, as well as the posterior probabilities of both models.

We consider a sequence $\mathbf{x} = (x_1, .., x_n)$ of binary variables. Under model $\mathcal{M} = 0$, the GRF representation of the Bernoulli distribution $\mathcal{B}(\exp(\theta_0)/\{1 + \exp(\theta_0)\})$ is

$$f_0(\mathbf{x}|\theta_0) = \exp\left(\theta_0 \sum_{i=1}^n \mathbb{I}_{\{x_i=1\}}\right) / \{1 + \exp(\theta_0)\}^n.$$

For $\theta_0 \sim \mathcal{U}(-5,5)$, the posterior probability of this model is available since the marginal when $S_0(\mathbf{x}) = s_0$ ($s_0 \neq 0$) is given by

$$\frac{1}{10} \sum_{k=0}^{s_0-1} \binom{s_0-1}{k} \frac{(-1)^{s_0-1-k}}{n-1-k} \left[(1+e^5)^{k-n+1} - (1+e^{-5})^{k-n+1} \right]$$

ABC in Paris, 26/06/2009

Model $\mathcal{M} = 1$ is chosen as a Markov chain.

We assume a uniform distribution on x_1 and

$$f_1(\mathbf{x}|\theta_1) = \frac{1}{2} \exp\left(\theta_1 \sum_{i=2}^n \mathbb{I}_{\{x_i=x_{i-1}\}}\right) / \{1 + \exp(\theta_1)\}^{n-1}.$$

For $\theta_1 \sim \mathcal{U}(0,6)$, the posterior probability of this model is once again available, the likelihood being of the same form as when $\mathcal{M} = 0$.

We simulated 2,000 datasets $\mathbf{x}^0 = (x_1, \dots, x_n)$ with n = 100 under each model, using parameters simulated from the priors.

For each of those 2,000 datasets \mathbf{x}^0 , the ABC-MC algorithm was run for 4×10^6 loops, meaning that 4×10^6 sets $(m^*, \theta^*_{m^*}, \mathbf{x}^*)$ were exactly simulated from the joint distribution.

A random number of those were accepted when $S(\mathbf{x}^*) = S(\mathbf{x}^0)$. (In the worst case scenario, the number of acceptances was 12!)

Figure 1: *(left)* Comparison of the true $\mathbb{P}(\mathcal{M} = 0 | \mathbf{x}^0)$ with $\widehat{\mathbb{P}}(\mathcal{M} = 0 | \mathbf{x}^0)$ over 2,000 simulated sequences and 4×10^6 proposals from the prior. The red line is the diagonal. *(right)* Same comparison when using a tolerance ϵ corresponding to the 1% quantile on the distances.

Figure 2: (*left*) Comparison of the true $BF_{m_0/m_1}(\mathbf{x}^0)$ with $\widehat{BF}_{m_0/m_1}(\mathbf{x}^0)$ (in logarithmic scales) over 2,000 simulated sequences and 4×10^6 proposals from the prior. The red line is the diagonal. (*right*) Same comparison when using a tolerance corresponding to the 1% quantile on the distances.