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We consider a finite set of sites S = {1, · · · , n}.

At each site i ∈ S, we observe xi ∈ Xi where Xi is a finite set of states.

We also consider an undirected graph G: the sites i and i
′

are said neigh-
bours, if there is a vertex between i and i

′
.

A clique c is a subset of S where all elements are mutual neighbours
(Daroch, 1980).

We denote by C the set of all cliques of the undirected graph G.
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Gibbs Random Fields (GRFs) are probabilistic models associated with
densities

f(x) =
1
Z

exp{−U(x)} =
1
Z

exp

{
−
∑
c∈C

Uc(x)

}
,

where U(x) =
∑
c∈C Uc(x) is the potential and Z is the corresponding

normalising constant

Z =
∑
x∈X

exp

{
−
∑
c∈C

Uc(x)

}
.

If the density f of a Markov Random Field (MRF) is everywhere positive,
then the Hammersley-Clifford theorem establishes that there exists a GRF
representation of this MRF (Besag, 1974).
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We consider here GRF with potential U(x) = −θTS(x) where θ ∈ Rp is
a scale parameter, S(·) is a function taking values in Rp.

S(x) is defined on the cliques of the neighbourhood system in that S(x) =∑
c∈C Sc(x).

In that case, we have

f(x|θ) =
1
Zθ

exp{θTS(x)} ,

the normalising constant Zθ now depends on the scale parameter θ.
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GRF are used to model the dependency within spatially correlated data,
with applications in epidemiology and image analysis, among others (Rue
and Held, 2005).

They often use a Potts model defined by a sufficient statistic S taking
values in R in that

S(x) =
∑
i′∼i

I{xi=xi′} ,

where
∑
i′∼i indicates that the summation is taken over all the neighbour

pairs.

Xi = {1, · · · ,K}, K = 2 corresponding to the Ising model, and θ is a
scalar.

S(·) monitors the number of identical neighbours over X .
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In most realistic settings, the summation

Zθ =
∑
x∈X

exp{θTS(x)}

involves too many terms to be manageable.

Selecting a model with sufficient statistic S0 versus a model with sufficient
statistics S1 relies on the Bayes factor

BFm0/m1(x) =
∫

exp{θT
0 S0(x)}/Zθ0,0π0(dθ0)

/
∫

exp{θT
1 S1(x)}/Zθ1,1π1(dθ1)

This quantity is not easily computable.
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For a fixed neighbourhood or model, the unavailability of Zθ complicates
inference on the scale parameter θ.

The difficulty is increased manifold when several neighbourhood struc-
tures are under comparison.

We propose a procedure based on an ABC algorithm aimed at selecting
a model.

We consider the toy example of an iid sequence [with trivial neighbour-
hood structure] tested against a Markov chain model [with nearest neigh-
bour structure].
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In a model choice perspective, we face M Gibbs random fields in compe-
tition.

Each model m is associated with sufficient statistic Sm (0 ≤ m ≤M − 1),
i.e. with corresponding likelihood

fm(x|θm) = exp
{
θT
mSm(x)

}/
Zθm,m ,

where θm ∈ Θm and Zθm,m is the unknown normalising constant.

The choice between those models is driven by the posterior probabilities
of the models.
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We consider an extended parameter space Θ = ∪M−1
m=0 {m} × Θm that

includes the model index M,

We define a prior distribution on the model index π(M = m) as well as
a prior distribution on the parameter conditional on the value m of the
model index, πm(θm), defined on the parameter space Θm.

The computational target is thus the model posterior probability

P(M = m|x) ∝
∫

Θm

fm(x|θm)πm(θm) dθm π(M = m) ,

the marginal of the posterior distribution on (M, θ0, . . . , θM−1) given x.
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If S(x) is a sufficient statistic for the joint parameters (M, θ0, . . . , θM−1),

P(M = m|x) = P(M = m|S(x)) .

Each model has its own sufficient statistic Sm(·).

Then, for each model, the vector of statistics S(·) = (S0(·), . . . , SM−1(·))
is obviously sufficient.
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We have shown that the statistic S(x) is also sufficient for the joint pa-
rameters (M, θ0, . . . , θM−1).

That the concatenation of the sufficient statistics of each model is also a
sufficient statistic for the joint parameters is a property that is specific to
Gibbs random field models.

When we consider M models from generic exponential families, this prop-
erty of the concatenated sufficient statistic rarely holds.

ABC in Paris, 26/06/2009 Page 11



ABC algorithm for model choice (ABC-MC)

1. Generate m∗ from the prior π(M = m).

2. Generate θ∗m∗ from the prior πm∗(·).

3. Generate x∗ from the model fm∗(·|θ∗m∗).

4. Compute the distance ρ(S(x0), S(x∗)).

5. Accept (θ∗m∗ ,m
∗) if ρ(S(x0), S(x∗)) ≤ ε, otherwise, start again in 1.
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Simulating a data set x∗ from fm∗(·|θ∗m∗) at step 3 is non-trivial for GRFs
(Møller and Waagepetersen, 2003).

It is often possible to use a Gibbs sampler updating one clique at a time
conditional on the others.

This algorithm results in an approximate generation from the joint pos-
terior distribution

π
{

(M, θ0, . . . , θM−1)|ρ(S(x0), S(x∗)) ≤ ε
}
.

When it is possible to achieve ε = 0, the algorithm is exact since S is a
sufficient statistic.
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Once a sample of N values of (θi∗mi∗ ,mi∗) (1 ≤ i ≤ N) is generated from
this algorithm, a standard Monte Carlo approximation of the posterior
probabilities is provided by the empirical frequencies of visits to the model,
namely

P̂(M = m|x0) = ]{mi∗ = m}
/
N ,

where ]{mi∗ = m} denotes the number of simulated mi∗’s equal to m.
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BFm0/m1(x0) =
P(M = m0|x0)
P(M = m1|x0)

π(M = m1)
π(M = m0)

BFm0/m1(x0) =
]{mi∗ = m0}
]{mi∗ = m1}

× π(M = m1)
π(M = m0)

,

This estimate is only defined when ]{mi∗ = m1} 6= 0.

To bypass this difficulty, the substitute

B̂Fm0/m1(x0) =
1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× π(M = m1)
π(M = m0)

is particularly interesting because we can evaluate its bias.
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We set N0 = ]{mi∗ = m0} and N1 = ]{mi∗ = m1}.

If π(M = m1) = π(M = m0), then N1 is a binomial B(N, ρ) random
variable with probability ρ = (1 +BFm0/m1(x0))−1 and

E
[
N0 + 1
N1 + 1

]
= BFm0/m1(x0) +

1
ρ(N + 1)

− N + 2
ρ(N + 1)

(1− ρ)N+1 .

The bias of B̂Fm0/m1(x0) is {1 − (N + 2)(1 − ρ)N+1}/(N + 1)ρ, which
goes to zero as N goes to infinity.

B̂Fm0/m1(x0) can be seen as the ratio of the posterior means on the model
probabilities under a Dir(1, · · · , 1) prior.
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B̂Fm0/m1(x0) suffers from a large variance when BFm0/m1(x0) is very
large since.

When P(M = m1|x0) is very small, ]{mi∗ = m1} is most often equal to
zero.

We can used a reweighting scheme.

If the choice of m∗ in the ABC algorithm is driven by the probability
distribution P(M = m1) = % = 1 − P(M = m0) rather than by π(M =
m1) = 1 − π(M = m0), the value of ]{mi∗ = m1} can be increased and
later corrected by considering instead

B̃Fm0/m1(x0) =
1 + ]{mi∗ = m0}
1 + ]{mi∗ = m1}

× %

1− %
.

ABC in Paris, 26/06/2009 Page 17



Two step ABC:

If a first run of the ABC algorithm exhibits a very large value of
B̂Fm0/m1(x0), the estimate B̃Fm0/m1(x0) produced by a second run with

% ∝ 1
/

P̂(M = m1|x0)

will be more stable than the original B̂Fm0/m1(x0).
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Results on a toy example:

Our first example compares an iid Bernoulli model with a two-state first-
order Markov chain.

Both models are special cases of GRF, the first one with a trivial neigh-
bourhood structure and the other one with a nearest neighbourhood struc-
ture.

Furthermore, the normalising constant Zθm,m can be computed in closed
form, as well as the posterior probabilities of both models.
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We consider a sequence x = (x1, .., xn) of binary variables. Under
model M = 0, the GRF representation of the Bernoulli distribution
B(exp(θ0)/{1 + exp(θ0)}) is

f0(x|θ0) = exp

(
θ0

n∑
i=1

I{xi=1}

)/
{1 + exp(θ0)}n .

For θ0 ∼ U(−5, 5), the posterior probability of this model is available
since the marginal when S0(x) = s0 (s0 6= 0) is given by

1
10

s0−1∑
k=0

(
s0 − 1
k

)
(−1)s0−1−k

n− 1− k
[
(1 + e5)k−n+1 − (1 + e−5)k−n+1

]
.
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Model M = 1 is chosen as a Markov chain.

We assume a uniform distribution on x1 and

f1(x|θ1) =
1
2

exp

(
θ1

n∑
i=2

I{xi=xi−1}

)/
{1 + exp(θ1)}n−1 .

For θ1 ∼ U(0, 6), the posterior probability of this model is once again
available, the likelihood being of the same form as when M = 0.
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We simulated 2, 000 datasets x0 = (x1, · · · , xn) with n = 100 under each
model, using parameters simulated from the priors.

For each of those 2, 000 datasets x0, the ABC-MC algorithm was run
for 4 × 106 loops, meaning that 4 × 106 sets (m∗, θ∗m∗ ,x

∗) were exactly
simulated from the joint distribution.

A random number of those were accepted when S(x∗) = S(x0). (In the
worst case scenario, the number of acceptances was 12!)

ABC in Paris, 26/06/2009 Page 22



0.0 0.4 0.8

0.0
0.4

0.8

P(M=0|x)

P(M
=0
|x)

^

0.0 0.4 0.8

0.0
0.4

0.8

P(M=0|x)

P(M
=0
|x)

^

Figure 1: (left) Comparison of the true P(M = 0|x0) with P̂(M = 0|x0)
over 2, 000 simulated sequences and 4×106 proposals from the prior. The
red line is the diagonal. (right) Same comparison when using a tolerance
ε corresponding to the 1% quantile on the distances.
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Figure 2: (left) Comparison of the true BFm0/m1(x0) with B̂Fm0/m1(x0)
(in logarithmic scales) over 2, 000 simulated sequences and 4×106 propos-
als from the prior. The red line is the diagonal. (right) Same comparison
when using a tolerance corresponding to the 1% quantile on the distances.

ABC in Paris, 26/06/2009 Page 24


