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Motivation

1. Specification of actual (marginal/joint) ABC target distribution did not 
explicitly appear within the literature

2. Must be possible to pose all ABC-SMC algorithms within a common 
framework (i.e. SMC samplers framework)

3. Biased/unbiased argument not resolved (within literature)

4. Algorithms with computational cost lower than O(N^2) and whose particle 
weights don’t degenerate to zero
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Background: Notation and Terminology

• Bayesian inference proceeds through the posterior distribution:

• Increasing interest in scenarios where the likelihood function is intractable

• Standard simulation procedures based on repeated likelihood evaluations (eg 
MCMC, SMC) require modification

• Collection of methods utilised for posterior simulation in the presence of 
intractable likelihood has become known as “Approximate Bayesian 
Computation” (ABC)

π(θ|y) ∝ π(y|θ)π(θ) θ ∈ Θ, y ∈ X
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Joint Space Representation

• ABC methods employ standard procedure of embedding target posterior 
within augmented model from which sampling is viable

where

• In ABC setting                   is an artificial dataset distributed according to 
the likelihood

•               weights the intractable posterior, with high density in regions 
where summary statistics                      of x and y are similar

π(θ, x|y) ∝ π(y|x, θ)π(x|θ)π(θ),
x ∈ X

x ∼ π(x|θ)

π(y|x, θ)
T (x) ≈ T (y)
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Weighting function

• Commonly utilised but “inefficient” form is:

• Exclusively rewards those T(x) within an   -tolerance of T(y) as measured by 
a distance function

• Alternative forms of                 have been evaluated, such as Gaussian and 
Epanechnikov kernels 

π(y|x, θ) ∝
{

1 if ρ(T (y), T (x)) ≤ ε
0 else

ε
ρ

π(y|x, θ)
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Marginal Space Representation

• The target marginal distribution is:

• If               for T(y)=T(x) and 0 elsewhere, and if T is (“exactly”) sufficient, 
then             x                  reduces to the true posterior

πABC(θ|y) ∝
∫

X
π(y|x, θ)π(x|θ)π(θ)dx

π(y|x, θ)
πABC(θ|y) ≡ π(θ|y)
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Marginal Space Representation: Monte 
Carlo Approximation

• The target marginal distribution can be approximated as follows:

where                                 are draws from the intractable likelihood

πABC(θ|y) ∝ π(θ)
∫

X
π(y|x, θ)π(x|θ)dx

= π(θ)Eπ(x|θ)[π(y|x, θ)]

≈ π(θ)
S

S∑

s=1

π(y|xs, θ),

x1, . . . , xS ∼ π(x|θ)

8



ABC-MCMC: Targeting the marginal space 

• Sisson et al (2008) argue that ABC-MCMC (Marjoram et al (2003)) is 
explicitly targeting the marginal distribution

• Proof of detailed balance in Marjoram et al (2003) relates to marginal 
distribution

πABC(θ|y)

ABC-MCMC Algorithm (S = 1)
At stage t:
1. Generate θ ∼ q(θt, θ) from a proposal distribution.
2. Generate x ∼ π(x|θ) from the likelihood.
3. With probability min

{
1, π(y|x,θ)π(θ)q(θ,θt)

π(y|xt,θt)π(θt)q(θt,θ)

}
accept θt+1 = θ, (xt+1 = x)

otherwise set θt+1 = θt, (xt+1 = xt).
4. Increment t = t + 1 and go to 1.

πABC(θ|y)
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ABC-MCMC: Targeting the joint space

• The ABC-MCMC algorithm proceeds exactly as before

• MH-ratio:

• Let

Then MH-ratio:

• This is the same expression as in the marginal ABC-MCMC algorithm (if 
S=1), with the same sequence of algorithmic operations!

π(θt+1, xt+1|y)
π(θt, xt|y)

q(θt, xt|θt+1, xt+1)
q(θt+1, xt+1|θt, xt)

π(θt+1)π(y|xt+1θt+1)
π(θt)π(y|xt, θt)

q(θt|θt+1)
q(θt+1|θt)

q(θt+1, xt+1|θt, xt) ! π(xt+1|θt+1)q(θt+1|θt)
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SMC Samplers: Notation

• SMC samplers operates on an artificial sequence of target distributions

• Defined to admit the desired target distribution as a marginal

• (IS) weight expression:

wn (θ1:n) =
φ̃n(θ1:n)
µ̃n (θ1:n)

=
φn(θn)

n−1∏
k=1

Lk (θk+1, θk)

µ1 (θ1)
n∏

k=2
Mk (θk−1, θk)

.

wn (θn−1, θn) =
φn(θn)Ln−1 (θn, θn−1)

φn−1(θn−1)Mn (θn−1, θn)
.
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ABC-SMC: targeting the marginal space

• Sequence of target distributions:

for

• E.g.

φn(θn) = πABC,n(θn|y) ∝
∫

X
πn(y|x, θ)π(x|θ)π(θ)dx

ε1 ≥ ε2 ≥ . . . ≥ εn.

πn(y|x, θ) ∝
{

1 if ρ(T (y), T (x)) ≤ εn

0 else,
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ABC-SMC: targeting the marginal space

• Weighting function (Sisson et al, 2007):

where this expression follows by inserting the Monte Carlo approximation 
to the marginal distribution into the numerator and denomenator

wt ∝ πABC,n(θn|y)
πABC,n(θn−1|y)

Ln−1(θn−1|θn)
Kn(θn|θn)

≈
π(θn)
Bn

∑Bn

b=1 πn(y|xb
n, θn)

π(θn−1)
Bn−1

∑Bn−1
b=1 πn−1(y|xb

n−1, θn−1)
Ln−1(θn−1|θn)

Kn(θn|θn)
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ABC-SMC: targeting the marginal space

• Weighting function (Sisson et al, 2007):

where this expression follows by inserting the Monte Carlo approximation 
to the marginal distribution into the numerator and denomenator

• With B_N = 1 expression can be compared to (marginal) MCMC

• Biased algorithm: ratio of Monte Carlo estimates

• Bias reduces for large B_N but can be significant for B_N = 1

wt ∝ πABC,n(θn|y)
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ABC-SMC: targeting the marginal space

• Sisson et al, 2009 (errata note for Sisson et al, 2007 paper)

• Directly evaluate the importance sampling distribution, hence avoiding the 
need for Monte Carlo approximation in the denominator of 

• This corresponds to using (an approximation to) the optimal L kernel

• Unbiased algorithm, but now with O(N^2) computation

πABC,n(θn|y)

wn(θn) =
πABC,n(θn|y)∫

Θ πn−1(θn−1|y)K(θn|θn−1)dθn−1

≈ π(θn)
∑N

j=1 wn−1(θ
(j)
n−1)k(θn|θn−1)
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ABC-SMC: targeting the joint space

• Incremental weight on joint space given by:

• As in ABC-MCMC, interpretation on joint space is through the use of 
“standard” SMC sampler methodology

• For general choice of L_{n-1}, a (generally intractable) normalising constant 
appears in weight expression which renders this model impractical

wn[(θn−1, xn−1), (θn, xn)] ∝ πn(θn, xn|y)Ln−1[(θn, xn), (θn−1, xn−1)]
πn−1(θn−1, xn−1|y)Mn[(θn−1, xn−1), (θn, xn)]
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Some unbiased SMC-ABC algorithms

• ABC-SMC(MCMC)

• Note that it is possible for all weights to be assigned zero weight

• Del Moral et al (2008) introduce automated     selection scheme

• Sisson et al (2007) include a PRC step

• ABC-SMC(PMC)

• O(N^2) algorithm

wn[(θn−1, xn−1), (θn, xn)] ∝ πn(θn−1, xn−1|y)
πn−1(θn−1, xn−1|y)

=
πn(y|xn−1, θn−1)

πn−1(y|xn−1, θn−1)
,

εn
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Application

• Estimate: number and parameters of a CBRN release

• Variable number of releases of a given material, specified by:

• Release location; Release times; Release amounts

• Grid of sensors located downwind of the releases

• Dispersion model for how the plumes propagate over time

• This can be a complex stochastic process, varying dependent on 
atmospheric conditions (e.g. wind profiles), and the environment (e.g. 
buildings)

• Sensor model which relates the actual concentration to the measurements 
returned by the sensors

• Again can be complex
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ABC-SMC (RJMCMC)

• Use of Trans-dimensional Metropolis-Hastings kernel within ABC-SMC

• As usual, difficult to specify efficient transition distribution

• Results in severe particle depletion

• Need to resolve this issue, or look at alternative methodology
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ABC for Scalable Manipulation of Belief

www.QinetiQ.comQinetiQ Proprietary

Three releases

Release Time x-coord Mass

1st 0 (40,15) 250

2nd 0 (30,5) 300

3rd 0.8 (40,15) 200

Ground-truth release details

Cross wind of (-11,0)

Sensor measurements (4-by-4 arrays)

• Simulated three-release scenario
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ABC for Scalable Manipulation of Belief

Results

• Although errors exist in the values, once effects from early or late 
release predictions are taken into account one can clearly link the 
estimates to the ground-truth values. 

• Hence one can obtain reasonable estimates, even when the number of 
releases is unknown.

Release MAP number 
of releases

Time x-coord y-coord Mass

Ground-truth 3 0
0
0.8

40
30
40

15
5
15

250
300
200

ABC-SMC Fixed = 3 -0.43
-0.21
0.1

45.0
32.0
45.9

15.7
5.2

16.0

205.7
263.0
198.7

Trans-dimensional ABC-
SMC 

3 -0.97
-0.03
-0.36

53.4
30.4
49.6

16.7
5.3

15.2

302.9
261.6
162.5
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Conclusions

1. Specification of actual (marginal/joint) ABC target distribution did not explicitly 
appear within the literature
Marginal and joint space representations exposed (explicitly)

2. Must be possible to pose all ABC-SMC algorithms within a common framework 
(i.e. SMC samplers framework)
Clarity on use of ABC-SMC for both marginal and joint space 
representations

3. Biased/unbiased argument not resolved (within literature)
Bias argument now (hopefully) resolved

4. Algorithms with computational cost lower than O(N^2) and whose particle weights 
don’t degenerate to zero
Only one SMC algorithm that has cost lower than O(N^2)?

• Novel application of ABC-SMC(RJ-MCMC) presented
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• Questions?
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