Marginal and joint space representations within ABC, and the issue of bias

Mark Briers QinetiQ Ltd, Worcestershire, UK

Joint work with: Scott Sisson, Gareth Peters, and Yannan Fan (UNSW, Australia) (Keith Copsey (QinetiQ) and Richard Everitt (Bristol))

Motivation

- I. Specification of actual (marginal/joint) ABC target distribution did not explicitly appear within the literature
- 2. Must be possible to pose all ABC-SMC algorithms within a common framework (i.e. SMC samplers framework)
- 3. Biased/unbiased argument not resolved (within literature)
- 4. Algorithms with computational cost lower than O(N^2) and whose particle weights don't degenerate to zero

Contents

- Background
- Marginal and Joint Space representations
- ABC-MCMC: targeting the marginal and joint space
- ABC-SMC: targeting the marginal and joint space
- Application
- Summary

Background: Notation and Terminology

• Bayesian inference proceeds through the posterior distribution:

 $\pi(\theta|y) \propto \pi(y|\theta)\pi(\theta) \qquad \quad \theta \in \Theta, \ y \in \mathcal{X}$

- Increasing interest in scenarios where the likelihood function is intractable
- Standard simulation procedures based on repeated likelihood evaluations (eg MCMC, SMC) require modification
- Collection of methods utilised for posterior simulation in the presence of intractable likelihood has become known as "Approximate Bayesian Computation" (ABC)

Joint Space Representation

 ABC methods employ standard procedure of embedding target posterior within augmented model from which sampling is viable

 $\pi(\theta, x|y) \propto \pi(y|x, \theta)\pi(x|\theta)\pi(\theta),$

where $x \in \mathcal{X}$

- In ABC setting $x \sim \pi(x|\theta)$ is an artificial dataset distributed according to the likelihood
- $\pi(y|x,\theta)$ weights the intractable posterior, with high density in regions where summary statistics $T(x) \approx T(y)$ of x and y are similar

Weighting function

• Commonly utilised but "inefficient" form is:

$$\pi(y|x,\theta) \propto \begin{cases} 1 & \text{if } \rho(T(y),T(x)) \le \epsilon \\ 0 & \text{else} \end{cases}$$

- Exclusively rewards those T(x) within an ϵ -tolerance of T(y) as measured by a distance function ρ
- Alternative forms of $\pi(y|x,\theta)$ have been evaluated, such as Gaussian and Epanechnikov kernels

Marginal Space Representation

• The target marginal distribution is:

$$\pi_{ABC}(\theta|y) \propto \int_{\mathcal{X}} \pi(y|x,\theta)\pi(x|\theta)\pi(\theta)dx$$

• If $\pi(y|x,\theta)$ for T(y)=T(x) and 0 elsewhere, and if T is ("exactly") sufficient, then $\pi_{ABC}(\theta|y) \equiv \pi(\theta|y)$ reduces to the true posterior

Marginal Space Representation: Monte Carlo Approximation

• The target marginal distribution can be approximated as follows:

$$\pi_{ABC}(\theta|y) \propto \pi(\theta) \int_{\mathcal{X}} \pi(y|x,\theta)\pi(x|\theta)dx$$
$$= \pi(\theta)\mathbb{E}_{\pi(x|\theta)}[\pi(y|x,\theta)]$$
$$\approx \frac{\pi(\theta)}{S}\sum_{s=1}^{S} \pi(y|x^s,\theta),$$

where $x^1, \ldots, x^S \sim \pi(x|\theta)$ are draws from the intractable likelihood

- Sisson et al (2008) argue that ABC-MCMC (Marjoram et al (2003)) is explicitly targeting the marginal distribution $\pi_{ABC}(\theta|y)$
- Proof of detailed balance in Marjoram et al (2003) relates to marginal distribution $\pi_{ABC}(\theta|y)$

ABC-MCMC Algorithm (S = 1)

At stage t:

- 1. Generate $\theta \sim q(\theta_t, \theta)$ from a proposal distribution.
- 2. Generate $x \sim \pi(x|\theta)$ from the likelihood.
- 3. With probability $\min\left\{1, \frac{\pi(y|x,\theta)\pi(\theta)q(\theta,\theta_t)}{\pi(y|x_t,\theta_t)\pi(\theta_t)q(\theta_t,\theta)}\right\}$ accept $\theta_{t+1} = \theta$, $(x_{t+1} = x)$ otherwise set $\theta_{t+1} = \theta_t$, $(x_{t+1} = x_t)$.
- 4. Increment t = t + 1 and go to 1.

ABC-MCMC: Targeting the joint space

- The ABC-MCMC algorithm proceeds exactly as before
- MH-ratio: $\frac{\pi(\theta_{t+1}, x_{t+1}|y)}{\pi(\theta_t, x_t|y)} \frac{q(\theta_t, x_t|\theta_{t+1}, x_{t+1})}{q(\theta_{t+1}, x_{t+1}|\theta_t, x_t)}$
- Let $q(\theta_{t+1}, x_{t+1}|\theta_t, x_t) \triangleq \pi(x_{t+1}|\theta_{t+1})q(\theta_{t+1}|\theta_t)$

Then MH-ratio:

$$\frac{\pi(\theta_{t+1})\pi(y|x_{t+1}\theta_{t+1})}{\pi(\theta_t)\pi(y|x_t,\theta_t)}\frac{q(\theta_t|\theta_{t+1})}{q(\theta_{t+1}|\theta_t)}$$

• This is the same expression as in the marginal ABC-MCMC algorithm (if S=1), with the same sequence of algorithmic operations!

SMC Samplers: Notation

- SMC samplers operates on an artificial sequence of target distributions
 - Defined to admit the desired target distribution as a marginal
- (IS) weight expression:

$$w_n\left(\theta_{1:n}\right) = \frac{\widetilde{\phi}_n(\theta_{1:n})}{\widetilde{\mu}_n\left(\theta_{1:n}\right)} = \frac{\phi_n(\theta_n)\prod_{k=1}^{n-1}L_k\left(\theta_{k+1},\theta_k\right)}{\mu_1\left(\theta_1\right)\prod_{k=2}^n M_k\left(\theta_{k-1},\theta_k\right)}.$$

$$w_n\left(\theta_{n-1},\theta_n\right) = \frac{\phi_n(\theta_n)L_{n-1}\left(\theta_n,\theta_{n-1}\right)}{\phi_{n-1}(\theta_{n-1})M_n\left(\theta_{n-1},\theta_n\right)}.$$

• Sequence of target distributions:

$$\phi_n(\theta_n) = \pi_{ABC,n}(\theta_n | y) \propto \int_{\mathcal{X}} \pi_n(y | x, \theta) \pi(x | \theta) \pi(\theta) dx$$

for $\epsilon_1 \geq \epsilon_2 \geq \ldots \geq \epsilon_n$.

• E.g.

$$\pi_n(y|x,\theta) \propto \begin{cases} 1 & \text{if } \rho(T(y),T(x)) \le \epsilon_n \\ 0 & \text{else,} \end{cases}$$

• Weighting function (Sisson et al, 2007):

$$w_t \propto \frac{\pi_{ABC,n}(\theta_n|y)}{\pi_{ABC,n}(\theta_{n-1}|y)} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$
$$\approx \frac{\frac{\pi(\theta_n)}{B_n} \sum_{b=1}^{B_n} \pi_n(y|x_n^b, \theta_n)}{\frac{\pi(\theta_{n-1})}{B_{n-1}} \sum_{b=1}^{B_{n-1}} \pi_{n-1}(y|x_{n-1}^b, \theta_{n-1})} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$

where this expression follows by inserting the Monte Carlo approximation to the marginal distribution into the numerator and denomenator

• Weighting function (Sisson et al, 2007):

$$w_t \propto \frac{\pi_{ABC,n}(\theta_n|y)}{\pi_{ABC,n}(\theta_{n-1}|y)} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$
$$\approx \frac{\frac{\pi(\theta_n)}{B_n} \sum_{b=1}^{B_n} \pi_n(y|x_n^b, \theta_n)}{\frac{\pi(\theta_{n-1})}{B_{n-1}} \sum_{b=1}^{B_{n-1}} \pi_{n-1}(y|x_{n-1}^b, \theta_{n-1})} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$

where this expression follows by inserting the Monte Carlo approximation to the marginal distribution into the numerator and denomenator

• With B_N = I expression can be compared to (marginal) MCMC

• Weighting function (Sisson et al, 2007):

$$w_t \propto \frac{\pi_{ABC,n}(\theta_n|y)}{\pi_{ABC,n}(\theta_{n-1}|y)} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$
$$\approx \frac{\frac{\pi(\theta_n)}{B_n} \sum_{b=1}^{B_n} \pi_n(y|x_n^b, \theta_n)}{\frac{\pi(\theta_{n-1})}{B_{n-1}} \sum_{b=1}^{B_{n-1}} \pi_{n-1}(y|x_{n-1}^b, \theta_{n-1})} \frac{L_{n-1}(\theta_{n-1}|\theta_n)}{K_n(\theta_n|\theta_n)}$$

where this expression follows by inserting the Monte Carlo approximation to the marginal distribution into the numerator and denomenator

- With B_N = I expression can be compared to (marginal) MCMC
- Biased algorithm: ratio of Monte Carlo estimates
 - Bias reduces for large B_N but can be significant for B_N = I

- Sisson et al, 2009 (errata note for Sisson et al, 2007 paper)
- Directly evaluate the importance sampling distribution, hence avoiding the need for Monte Carlo approximation in the denominator of $\pi_{ABC,n}(\theta_n|y)$
- This corresponds to using (an approximation to) the optimal L kernel

$$w_n(\theta_n) = \frac{\pi_{ABC,n}(\theta_n|y)}{\int_{\Theta} \pi_{n-1}(\theta_{n-1}|y)K(\theta_n|\theta_{n-1})d\theta_{n-1}}$$
$$\approx \frac{\pi(\theta_n)}{\sum_{j=1}^N w_{n-1}(\theta_{n-1}^{(j)})k(\theta_n|\theta_{n-1})}$$

• Unbiased algorithm, but now with $O(N^2)$ computation

ABC-SMC: targeting the joint space

• Incremental weight on joint space given by:

$$w_n[(\theta_{n-1}, x_{n-1}), (\theta_n, x_n)] \propto \frac{\pi_n(\theta_n, x_n | y) L_{n-1}[(\theta_n, x_n), (\theta_{n-1}, x_{n-1})]}{\pi_{n-1}(\theta_{n-1}, x_{n-1} | y) M_n[(\theta_{n-1}, x_{n-1}), (\theta_n, x_n)]}$$

- As in ABC-MCMC, interpretation on joint space is through the use of "standard" SMC sampler methodology
- For general choice of L_{n-1}, a (generally intractable) normalising constant appears in weight expression which renders this model impractical

Some unbiased SMC-ABC algorithms

ABC-SMC(MCMC)

$$w_n[(\theta_{n-1}, x_{n-1}), (\theta_n, x_n)] \propto \frac{\pi_n(\theta_{n-1}, x_{n-1}|y)}{\pi_{n-1}(\theta_{n-1}, x_{n-1}|y)} = \frac{\pi_n(y|x_{n-1}, \theta_{n-1})}{\pi_{n-1}(y|x_{n-1}, \theta_{n-1})},$$

Note that it is possible for all weights to be assigned zero weight

- Del Moral et al (2008) introduce automated ϵ_n selection scheme
- Sisson et al (2007) include a PRC step
- ABC-SMC(PMC)
 - O(N^2) algorithm

Application

- Estimate: number and parameters of a CBRN release
- Variable number of releases of a given material, specified by:
 - Release location; Release times; Release amounts
- Grid of sensors located downwind of the releases
- Dispersion model for how the plumes propagate over time
 - This can be a complex stochastic process, varying dependent on atmospheric conditions (e.g. wind profiles), and the environment (e.g. buildings)
- Sensor model which relates the actual concentration to the measurements returned by the sensors
 - Again can be complex

ABC-SMC (RJMCMC)

- Use of Trans-dimensional Metropolis-Hastings kernel within ABC-SMC
- As usual, difficult to specify efficient transition distribution
 - Results in severe particle depletion

• Need to resolve this issue, or look at alternative methodology

Three releases

• Simulated three-release scenario

Release	Time	x-coord	Mass
1 st	0	(40,15)	250
2 nd	0	(30,5)	300
3 rd	0.8	(40,15)	200

Ground-truth release details

Cross wind of (-11,0)

Sensor measurements (4-by-4 arrays)

Results

Release	MAP number of releases	Time	x-coord	y-coord	Mass
Ground-truth	3	0 0 0.8	40 30 40	15 5 15	250 300 200
ABC-SMC	Fixed = 3	-0.43 -0.21 0.1	45.0 32.0 45.9	15.7 5.2 16.0	205.7 263.0 198.7
Trans-dimensional ABC- SMC	3	-0.97 -0.03 -0.36	53.4 30.4 49.6	16.7 5.3 15.2	302.9 261.6 162.5

- Although errors exist in the values, once effects from early or late release predictions are taken into account one can clearly link the estimates to the ground-truth values.
- Hence one can obtain reasonable estimates, even when the number of releases is unknown.

Conclusions

- I. Specification of actual (marginal/joint) ABC target distribution did not explicitly appear within the literature
 Marginal and joint space representations exposed (explicitly)
- Must be possible to pose all ABC-SMC algorithms within a common framework (i.e. SMC samplers framework)
 Clarity on use of ABC-SMC for both marginal and joint space representations
- 3. Biased/unbiased argument not resolved (within literature) Bias argument now (hopefully) resolved
- Algorithms with computational cost lower than O(N^2) and whose particle weights don't degenerate to zero
 Only one SMC algorithm that has cost lower than O(N^2)?
- Novel application of ABC-SMC(RJ-MCMC) presented

