Approximate Bayesian Computation: a non-parametric perspective

Asymptotic bias and variance for ABC The ZYX of ABC

Michael G.B. Blum

Laboratoire TIMC, CNRS, Grenoble

ABC in Paris, June 2009

▲口》▲□》▲目》▲目》 目 うくぐ

Framework

- Two estimators of the posterior distribution
 - Smooth rejection
 - With correction adjustment
- Bias and variance of these different estimators
- Numerical comparisons

Smooth rejection

- Simulate *n* values θ_i , i = 1, ..., n from the prior π
- Simulate n (possibly multivariate) summary statistics s_i according to p(s_i|θ_i)
- Consider the weighted sample $(\theta_i, W_i), i = 1, ..., n$

$$W_i = K(B^{-1}(\mathbf{s}_i - \mathbf{s}_{obs}))$$

where K is a multivariate kernel and B is a bandwidth matrix.

Smooth rejection

We assume

$$B=bD,$$

where *D* is a diagonal matrix accounting for the different scales of the summary statistics.

The bandwidth *b* is assumed to be the same in each direction.

Smooth rejection

Estimator of the posterior

$$\hat{g}_0(heta|\mathbf{s}_{obs}) = rac{1}{b'}\sum_{i=1}^n ilde{K}_{b'}(heta_i - heta)rac{W_i}{\sum_{i=1}^n W_i},$$

where \tilde{K} denotes an univariate kernel and b' the corresponding bandwidth.

Correction adjustment

 A model of local regression fitted by weighted least squares

$$\theta_i | \mathbf{s}_i = m(\mathbf{s}_i) + \epsilon_i$$

Adjustment

$$\theta_i^* = \hat{m}(\mathbf{s}_{obs}) + \tilde{\epsilon}_i,$$

where $\tilde{\epsilon}_i$ denotes the empirical residuals

$$\tilde{\epsilon}_i = \theta_i - \hat{m}(\mathbf{s}_i).$$

In the following, we assume that \hat{m} is a linear function (Beaumont et al. 2002) or a quadratic function (B. 2009). The conditional probability of the residuals is denoted $h(\epsilon|\mathbf{s})$.

・ < 母 > < 目 > < 日 > 、 日 - < の < の

Correction adjustment

Estimator of the posterior (Hyndman et al. 1996, Beaumont et al. 2002, Hansen 2004)

$$\hat{g}_j(\theta|\mathbf{s}_{obs}) = \frac{1}{b'}\sum_{i=1}^n \tilde{K}_{b'}(\theta_i^* - \theta) \frac{W_i}{\sum_{i=1}^n W_i}, \ j = 1, 2$$

Linear adjustment j = 1Quadratic adjustment j = 2

Main theorem B. 2009

Asymptotic bias of $\hat{g}_{j}(\theta | \mathbf{s}_{obs}), j = 0, 1, 2$

 $C_1 b'^2 + C_{2,j} b^2$

Asymptotic variance of $\hat{g}_j(\theta | \mathbf{s}_{obs})$

 $\frac{C_3}{np(\mathbf{s}_{obs})b^db'}$

where d is the dimension of the summary statistics and n is the number of simulations.

Conseq 1 : The curse of dimensionality

Mean square errors are minimized when

 $b, b' = O(n^{-1/(d+5)})$

Minimals MSE =
$$O(n^{-4/(d+5)})$$
.

The rate at which the minimal MSEs converges to 0 decreases importantly as the dimension d of \mathbf{s}_{obs} increases.

Conseq 2 : Comparison between the estimators with and without adjustment

Asymptotic bias of $\hat{g}_0(\theta | \mathbf{s}_{obs})$ (smooth rejection)

$$\mu_2(\mathcal{K})b^2\{\frac{g_{\mathbf{s}}(\theta|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}}^t D^2 p_{\mathbf{s}}(\mathbf{s}_{obs})}{p(\mathbf{s}_{obs})} + \frac{\operatorname{tr}(D^2 g_{\mathbf{ss}}(\theta|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}})}{2}\}$$

Asymptotic bias of $\hat{g}_1(\theta | \mathbf{s}_{obs})$ (linear correction)

$$\mu_{2}(\mathcal{K})b^{2}\left\{\frac{h_{\mathbf{s}}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}}^{t}D^{2}\rho_{\mathbf{s}}(\mathbf{s}_{obs})}{\rho(\mathbf{s}_{obs})} + \frac{\operatorname{tr}(D^{2}h_{\mathbf{ss}}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}})}{2} - \frac{h_{\epsilon}(\epsilon|\mathbf{s}_{obs})\operatorname{tr}(D^{2}m_{\mathbf{ss}}(\mathbf{s}_{obs}))}{2}\right\}$$

Conseq 2 : Comparison between the two estimators with adjustment

Asymptotic bias of $\hat{g}_1(\theta | \mathbf{s}_{obs})$ (linear correction)

$$\mu_{2}(\mathcal{K})b^{2}\left\{\frac{h_{s}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}}^{t}D^{2}p_{s}(\mathbf{s}_{obs})}{p(\mathbf{s}_{obs})}+\frac{\operatorname{tr}(D^{2}h_{ss}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}})}{2}-\frac{h_{\epsilon}(\epsilon|\mathbf{s}_{obs})\operatorname{tr}(D^{2}m_{ss}(\mathbf{s}_{obs}))}{2}\right\}$$

Asymptotic bias of $\hat{g}_2(\theta | \mathbf{s}_{obs})$ (quadratic correction)

$$\mu_2(\mathcal{K})b^2\{\frac{h_{\mathbf{s}}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}}^t D^2 p_{\mathbf{s}}(\mathbf{s}_{obs})}{p(\mathbf{s}_{obs})} + \frac{\operatorname{tr}(D^2 h_{\mathbf{ss}}(\epsilon|\mathbf{s})_{|\mathbf{s}=\mathbf{s}_{obs}})}{2}\}$$

Conseq 2 : Comparison between the two estimators with adjustment

When the model

$$\theta_i = m(\mathbf{s}_i) + \epsilon_i$$

is homoscedastic in the vicinity of \mathbf{s}_{obs} , the bias for the estimator with quadratic adjustment is

 $o(b^2) + C_1 b'^2$,

Box-Cox transformations (Box and Cox, 1964) are important to make the model as homoscedastic as possible.

How many simulations are required to reach a given level of accuracy in ABC

- A standard Gaussian model $(x_1, \ldots, x_d) \rightsquigarrow \mathcal{N}((\mu_1, \ldots, \mu_d), I_d).$
- Given a sample of *M* = 10 individuals, we can compute the asymptotic mean square error (MSE) arising from the estimation of the partial posterior distribution of *e*^{μ1} at 1 *ĝ*(*e*^{μ1} = 1 | (*x*₁,...,*x*_d))

$$MSE(n) = bias^2 + variance$$

 How many simulations are required so that the relative mean square error is less than 10%

How many simulations are required to reach a given level of accuracy ... continued

The curse of dimensionality

The integrated mean square error as a function of the dimension of the summary statistics d

Monte-Carlo approximation, for j = 0, 1, 2, of

MISE =
$$E\left[\int_{e^{\mu_1}\in\mathbb{R}^+} \{g(e^{\mu_1}|(\bar{x}_1,\ldots,\bar{x}_d)) - \hat{g}_j(e^{\mu_1}|(\bar{x}_1,\ldots,\bar{x}_d))\}^2 de^{\mu_1}\right]$$

The integrated mean square error as a function of the dimension of the summary statistics *d*

The curse of dimensionality...continued

Perspectives

The variance is inversely proportional to

$$p(\mathbf{s}_{obs}) = \int_{ heta} p(\mathbf{s}_{obs}| heta) \pi(heta) \, d heta.$$

Reduction of the variance

- Dimension reduction : PCA (Leuenberger et al. 2009), Neural networks (B. and François 2009)
- Adapting the sampling distribution (Sisson et al. 2007, Toni et al. 2009, Beaumont et al. 2009)