Approximate Bayesian Computation: a non-parametric perspective

Asymptotic bias and variance for ABC
The ZYX of ABC

Michael G.B. Blum

Laboratoire TIMC, CNRS, Grenoble

ABC in Paris, June 2009

Framework

- Two estimators of the posterior distribution
\diamond Smooth rejection
\diamond With correction adjustment
- Bias and variance of these different estimators
- Numerical comparisons

Smooth rejection

- Simulate n values $\theta_{i}, i=1, \ldots, n$ from the prior π
- Simulate n (possibly multivariate) summary statistics $\mathbf{s}_{\mathbf{i}}$ according to $p\left(\mathbf{s}_{\mathbf{i}} \mid \theta_{i}\right)$
- Consider the weighted sample $\left(\theta_{i}, W_{i}\right), i=1, \ldots, n$

$$
W_{i}=K\left(B^{-1}\left(\mathbf{s}_{i}-\mathbf{s}_{o b s}\right)\right)
$$

where K is a multivariate kernel and B is a bandwidth matrix.

Smooth rejection

We assume

$$
B=b D,
$$

where D is a diagonal matrix accounting for the different scales of the summary statistics.
The bandwidth b is assumed to be the same in each direction.

Smooth rejection

Estimator of the posterior

$$
\hat{g}_{0}\left(\theta \mid \mathbf{s}_{o b s}\right)=\frac{1}{b^{\prime}} \sum_{i=1}^{n} \tilde{K}_{b^{\prime}}\left(\theta_{i}-\theta\right) \frac{W_{i}}{\sum_{i=1}^{n} W_{i}},
$$

where \tilde{K} denotes an univariate kernel and b^{\prime} the corresponding bandwidth.

Correction adjustment

- A model of local regression fitted by weighted least squares

$$
\theta_{i} \mid \mathbf{s}_{i}=m\left(\mathbf{s}_{i}\right)+\epsilon_{i}
$$

- Adjustment

$$
\theta_{i}^{*}=\hat{m}\left(\mathbf{s}_{o b s}\right)+\tilde{\epsilon}_{i},
$$

where $\tilde{\epsilon}_{i}$ denotes the empirical residuals

$$
\tilde{\epsilon}_{i}=\theta_{i}-\hat{m}\left(\mathbf{s}_{i}\right) .
$$

In the following, we assume that \hat{m} is a linear function (Beaumont et al. 2002) or a quadratic function (B. 2009).

The conditional probability of the residuals is denoted $h(\epsilon \mid \mathbf{s})$.

Correction adjustment

Estimator of the posterior (Hyndman et al. 1996, Beaumont et al. 2002, Hansen 2004)

$$
\hat{g}_{j}\left(\theta \mid \mathbf{s}_{o b s}\right)=\frac{1}{b^{\prime}} \sum_{i=1}^{n} \tilde{K}_{b^{\prime}}\left(\theta_{i}^{*}-\theta\right) \frac{W_{i}}{\sum_{i=1}^{n} W_{i}}, j=1,2
$$

Linear adjustment $j=1$
Quadratic adjustment $j=2$

Main theorem B. 2009

Asymptotic bias of $\hat{g}_{j}\left(\theta \mid \mathbf{s}_{o b s}\right), j=0,1,2$

$$
C_{1} b^{\prime 2}+C_{2, j} b^{2}
$$

Asymptotic variance of $\hat{g}_{j}\left(\theta \mid \mathbf{s}_{o b s}\right)$

$$
\frac{C_{3}}{n p\left(\mathbf{s}_{o b s}\right) b^{d} b^{\prime}}
$$

where d is the dimension of the summary statistics and n is the number of simulations.

Conseq 1 : The curse of dimensionality

Mean square errors are minimized when

$$
b, b^{\prime}=O\left(n^{-1 /(d+5)}\right)
$$

$$
\text { Minimals MSE }=O\left(n^{-4 /(d+5)}\right) \text {. }
$$

The rate at which the minimal MSEs converges to 0 decreases importantly as the dimension d of $\mathbf{s}_{\text {obs }}$ increases.

Conseq 2 : Comparison between the estimators with and without adjustment

Asymptotic bias of $\hat{g}_{0}\left(\theta \mid \mathbf{s}_{\text {obs }}\right)$ (smooth rejection)

$$
\mu_{2}(K) b^{2}\left\{\frac{g_{\mathbf{s}}(\theta \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}^{t} D^{2} p_{\mathbf{s}}\left(\mathbf{s}_{o b s}\right)}{p\left(\mathbf{s}_{o b s}\right)}+\frac{\operatorname{tr}\left(D^{2} g_{\mathbf{s s}}(\theta \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}\right)}{2}\right\}
$$

Asymptotic bias of $\hat{g}_{1}\left(\theta \mid \mathbf{s}_{o b s}\right)$ (linear correction)

$$
\begin{array}{r}
\mu_{2}(K) b^{2}\left\{\frac{h_{\mathbf{s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}^{t} D^{2} p_{\mathbf{s}}\left(\mathbf{s}_{o b s}\right)}{p\left(\mathbf{s}_{o b s}\right)}+\frac{\operatorname{tr}\left(D^{2} h_{\mathbf{s s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}\right)}{2}-\right. \\
\left.\frac{h_{\epsilon}\left(\epsilon \mid \mathbf{s}_{o b s}\right) \operatorname{tr}\left(D^{2} m_{\mathbf{s s}}\left(\mathbf{s}_{o b s}\right)\right)}{2}\right\}
\end{array}
$$

Conseq 2 : Comparison between the two estimators with adjustment

Asymptotic bias of $\hat{g}_{1}\left(\theta \mid \mathbf{s}_{\text {obs }}\right)$ (linear correction)

$$
\begin{aligned}
& \mu_{2}(K) b^{2}\left\{\frac{h_{\mathbf{s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}^{t} D^{2} p_{\mathbf{s}}\left(\mathbf{s}_{o b s}\right)}{p\left(\mathbf{s}_{o b s}\right)}\right.+\frac{\operatorname{tr}\left(D^{2} h_{\mathbf{s s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{o b s}}\right)}{2}- \\
&\left.\frac{h_{\epsilon}\left(\epsilon \mid \mathbf{s}_{o b s}\right) \operatorname{tr}\left(D^{2} m_{\mathbf{s s}}\left(\mathbf{s}_{o b s}\right)\right)}{2}\right\}
\end{aligned}
$$

Asymptotic bias of $\hat{g}_{2}\left(\theta \mid \mathbf{s}_{\text {obs }}\right)$ (quadratic correction)

$$
\mu_{2}(K) b^{2}\left\{\frac{h_{\mathbf{s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{\text {obs }}}^{t} D^{2} p_{\mathbf{s}}\left(\mathbf{s}_{o b s}\right)}{p\left(\mathbf{s}_{o b s}\right)}+\frac{\operatorname{tr}\left(D^{2} h_{\mathbf{s s}}(\epsilon \mid \mathbf{s})_{\mid \mathbf{s}=\mathbf{s}_{\text {obs }}}\right)}{2}\right\}
$$

Conseq 2 : Comparison between the two estimators with adjustment

When the model

$$
\theta_{i}=m\left(\mathbf{s}_{i}\right)+\epsilon_{i}
$$

is homoscedastic in the vicinity of $\mathbf{s}_{\text {obs }}$, the bias for the estimator with quadratic adjustment is

$$
o\left(b^{2}\right)+C_{1} b^{\prime 2}
$$

Box-Cox transformations (Box and Cox, 1964) are important to make the model as homoscedastic as possible.

How many simulations are required to reach a given level of accuracy in ABC

- A standard Gaussian model

$$
\left(x_{1}, \ldots, x_{d}\right) \rightsquigarrow \mathcal{N}\left(\left(\mu_{1}, \ldots, \mu_{d}\right), I_{d}\right) .
$$

- Given a sample of $M=10$ individuals, we can compute the asymptotic mean square error (MSE) arising from the estimation of the partial posterior distribution of $e^{\mu_{1}}$ at 1 $\hat{g}\left(e^{\mu_{1}}=1 \mid\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)\right)$

$$
\operatorname{MSE}(n)=\operatorname{bias}^{2}+\text { variance }
$$

- How many simulations are required so that the relative mean square error is less than 10%

How many simulations are required to reach a given level of accuracy ... continued

The curse of dimensionality

The integrated mean square error as a function of the dimension of the summary statistics d

Monte-Carlo approximation, for $j=0,1,2$, of

$$
\operatorname{MISE}=E\left[\int_{e^{\mu_{1} \in \mathbb{R}^{+}}}\left\{g\left(e^{\mu_{1}} \mid\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)\right)-\hat{g}_{j}\left(e^{\mu_{1}} \mid\left(\bar{x}_{1}, \ldots, \bar{x}_{d}\right)\right)\right\}^{2} d e^{\mu_{1}}\right]
$$

The integrated mean square error as a function of the dimension of the summary statistics d

The curse of dimensionality...continued

Perspectives

The variance is inversely proportional to

$$
p\left(\mathbf{s}_{o b s}\right)=\int_{\theta} p\left(\mathbf{s}_{o b s} \mid \theta\right) \pi(\theta) d \theta \text {. }
$$

Reduction of the variance

- Dimension reduction : PCA (Leuenberger et al. 2009), Neural networks (B. and François 2009)
- Adapting the sampling distribution (Sisson et al. 2007, Toni et al. 2009, Beaumont et al. 2009)

