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Framework

Two estimators of the posterior distribution
� Smooth rejection
� With correction adjustment

Bias and variance of these different estimators
Numerical comparisons
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Smooth rejection

Simulate n values θi , i = 1, . . . , n from the prior π

Simulate n (possibly multivariate) summary statistics si
according to p(si|θi)

Consider the weighted sample (θi , Wi), i = 1, . . . , n

Wi = K (B−1(si − sobs))

where K is a multivariate kernel and B is a bandwidth
matrix.
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Smooth rejection

We assume
B = bD,

where D is a diagonal matrix accounting for the different scales
of the summary statistics.
The bandwidth b is assumed to be the same in each direction.
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Smooth rejection

Estimator of the posterior

ĝ0(θ|sobs) =
1
b′

n∑
i=1

K̃b′(θi − θ)
Wi∑n
i=1 Wi

,

where K̃ denotes an univariate kernel and b′ the corresponding
bandwidth.
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Correction adjustment

A model of local regression fitted by weighted least
squares

θi |si = m(si) + εi

Adjustment
θ∗i = m̂(sobs) + ε̃i ,

where ε̃i denotes the empirical residuals

ε̃i = θi − m̂(si).

In the following, we assume that m̂ is a linear function
(Beaumont et al. 2002) or a quadratic function (B.
2009).
The conditional probability of the residuals is denoted h(ε|s).
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Correction adjustment

Estimator of the posterior (Hyndman et al. 1996,
Beaumont et al. 2002, Hansen 2004)

ĝj(θ|sobs) =
1
b′

n∑
i=1

K̃b′(θ∗i − θ)
Wi∑n
i=1 Wi

, j = 1, 2

Linear adjustment j = 1
Quadratic adjustment j = 2
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Main theorem B. 2009

Asymptotic bias of ĝj(θ|sobs), j = 0, 1, 2

C1b′2 + C2,jb2

Asymptotic variance of ĝj(θ|sobs)

C3

np(sobs)bdb′

where d is the dimension of the summary statistics and n is the
number of simulations.
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Conseq 1 : The curse of dimensionality

Mean square errors are minimized when

b, b′ = O(n−1/(d+5))

Minimals MSE = O(n−4/(d+5)).

The rate at which the minimal MSEs converges to 0 decreases
importantly as the dimension d of sobs increases.
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Conseq 2 : Comparison between the estimators with
and without adjustment

Asymptotic bias of ĝ0(θ|sobs) (smooth rejection)

µ2(K )b2{
gs(θ|s)t

|s=sobs
D2ps(sobs)

p(sobs)
+

tr(D2gss(θ|s)|s=sobs
)

2
}

Asymptotic bias of ĝ1(θ|sobs) (linear correction)

µ2(K )b2{
hs(ε|s)t

|s=sobs
D2ps(sobs)

p(sobs)
+

tr(D2hss(ε|s)|s=sobs
)

2
−

hε(ε|sobs)tr(D2mss(sobs))

2
}
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Conseq 2 : Comparison between the two estimators
with adjustment

Asymptotic bias of ĝ1(θ|sobs) (linear correction)

µ2(K )b2{
hs(ε|s)t

|s=sobs
D2ps(sobs)

p(sobs)
+

tr(D2hss(ε|s)|s=sobs
)

2
−

hε(ε|sobs)tr(D2mss(sobs))

2
}

Asymptotic bias of ĝ2(θ|sobs) (quadratic correction)

µ2(K )b2{
hs(ε|s)t

|s=sobs
D2ps(sobs)

p(sobs)
+

tr(D2hss(ε|s)|s=sobs
)

2
}
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Conseq 2 : Comparison between the two estimators
with adjustment

When the model
θi = m(si) + εi

is homoscedastic in the vicinity of sobs, the bias for the
estimator with quadratic adjustment is

o(b2) + C1b′2,

Box-Cox transformations (Box and Cox, 1964) are
important to make the model as homoscedastic as possible.



Estimating the partial posterior distribution Bias and variance Numerical comparisons

How many simulations are required to reach a given
level of accuracy in ABC

A standard Gaussian model
(x1, . . . , xd) N ((µ1, . . . , µd), Id).
Given a sample of M = 10 individuals, we can compute the
asymptotic mean square error (MSE) arising from the
estimation of the partial posterior distribution of eµ1 at 1
ĝ(eµ1 = 1|(x̄1, . . . , x̄d))

MSE(n) = bias2 + variance

How many simulations are required so that the relative
mean square error is less than 10%
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How many simulations are required to reach a given
level of accuracy ... continued

The curse of dimensionality
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The integrated mean square error as a function of the
dimension of the summary statistics d

Monte-Carlo approximation, for j = 0, 1, 2, of

MISE = E
[∫

eµ1∈R+

{g(eµ1 |(x̄1, . . . , x̄d))− ĝj(eµ1 |(x̄1, . . . , x̄d))}2 deµ1

]
.
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The integrated mean square error as a function of the
dimension of the summary statistics d

The curse of dimensionality...continued
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Perspectives

The variance is inversely proportional to

p(sobs) =

∫
θ
p(sobs|θ)π(θ) dθ.

Reduction of the variance
Dimension reduction : PCA (Leuenberger et al.
2009), Neural networks (B. and François 2009)
Adapting the sampling distribution (Sisson et al.
2007, Toni et al. 2009, Beaumont et al.
2009)
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