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These slides attempt to present the material of the first section of our
recently published work in PNAS [Ratmann O, PNAS 2009]. We
expand on the motivation behind ABCµ, and provide a toy example that
is easy to re-implement.
These slides do not include material on the second part of the PNAS
paper that discusses a new ABCµ algorithm. However, one purpose
here is to exemplify with Std-ABC that any ABC method can be
modified for the purpose of model criticism.
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When use ABC / ABCµ ?
Inference on
data-generating stochastic
processes
[Diggle PJ, RSSB 1984]

. . . whose likelihood cannot
be readily evaluated

. . . within Bayesian
framework to
(a) infer model parameters,
(b) error terms to see if
model adequate

Signalling pathways, [Toni T RoySocInt 2008]
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“All models are wrong but some are useful [Box GEP,
JASA1976]”

Statistical reasoning in science
1 perform experiment
2 match model to data, assuming that model is correct

3 explore if model is adequate to explain the data
in one or several aspects:

formally test null hypothesis
that model is “adequate”
if not, use diagnostics
to guide model developments

4 revise model, motivating new experiment
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From ABC to ABCµ: outline

ABC
exploit model predictions for sampling from
approximate posterior densities of θ

ABCµ

Typically, model predictions form the basis for model criticism
[Jeffreys, Th Probability 1961]

use the data already generated in ABC for this purpose too

dual use of model predictions reflected in an extension of the state
space: we are interested in θ and ε1:K

to maintain Bayesian framework, crux is to derive a likelihood on
the augmented space (θ, ε1:K ).
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From ABC to ABCµ: outline
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From ABC to ABCµ: notation
θ random variable, x0 observed data
M data-generating stochastic process
x ∼ f (·|θ, M) simulated data under M given θ

lower dimensional summaries S =
{

S1, . . . , SK
}

introduce mismatch thresholds τk

approximate likelihood here with

tρ,τ

(
x0|θ, M

)
=

1Q
kτk

∫
111
{ K⋂

k=1

∣∣Sk (x)− Sk (x0)
∣∣ ≤ τk/2

}
f (x |θ, M)dx

apply Bayes’ Theorem

tρ,τ (θ|x0, M) = tρ,τ

(
x0|θ, M

)
πθ(θ|M)

/
fρ,τ (x0|M)
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ABC under wrong model: example

How is ABC affected . . .

. . . when the model is not adequate?

oliver.ratmann@imperial.ac.uk Dep Epidemiology & Public Health 8 / 32



Ratmann O ABC meeting Paris 260609 Introduction to ABCµ

ABC under wrong model: example

Simulation study
observe dataset x0 of 100 sample points, x0 = 5,
0.25 Quantile Q0 = 1.48
we believe xi ∼ N (θ, 1) whereas in reality xi ∼ Exp(0.2)

summarize data with 0.25 Quantile Q and x
consider ABC inference for separate as well as for joint
summaries:

ρ
(
x0, Q(x0) ; x , Q(x)

)
=

1
τ1

111
{∣∣x0 − x

∣∣ ≤ τ1/2
}
×

1
τ2

111
{∣∣Q(x0)−Q(x)

∣∣ ≤ τ2/2
}

,

reconstruct tρ,τ (θ|x0, M) with Std-ABC
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ABC under wrong model: example (cont’d)
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ABC under wrong model: example (cont’d)
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But what is the meaning of
posterior estimates of θ?

make use of the data already
generated
Intuitively, want to make
information in B (computed with
ABC) available as job output &
interpret; e.g. want to interpret
posterior εx as retained points
x0 − x . Two steps:

1 Take ABC kernel as prior
πε1:K .

2 Propose new likelihood
definition that provides
desired interpretation.
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ABCµ: Derivation of augmented likelihood

Predictive error of summaries given θ

Given θ, consider the “predictive error” ε with probability
distribution

Pθ,x0(ε ≤ e) =

∫
X
111
{

ρ
(
S(x), S(x0)

)
≤ e

}
f (x |θ, M)dx

X often finite → integral replaced by sum
not difficult to generalize to multiple errors
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ABCµ: Derivation of augmented likelihood

Conditional predictive error density
Assume Pθ,x0(ε ≤ e) has density ξθ,x0 w.r.t. appropriate measure
Write ξθ,x0 as elementary derivative (a. e.)

ξθ,x0(ε)

= lim
h→0

1
2h

∫
111
{

ρ
(
S(x), S(x0)

)
− h < ε ≤

ρ
(
S(x), S(x0)

)
+ h

}
f (x |θ, M)dx

= lim
h→0

∫
δh

(
ρ
(
S(x), S(x0)

)
− ε

)
f (x |θ, M)dx

def
=

∫
δ
{
ρ
(
S(x), S(x0)

)
= ε

}
f (x |θ, M)dx
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ABCµ: Derivation of augmented likelihood

Augmented likelihood on (θ, ε)

set

fρ(x0|θ, ε, M)
def
= ξθ,x0(ε) =

∫
δ
{

ρ
(
S(x), S(x0)

)
= ε

}
f (x |θ, M)dx

Interpretation
By construction:
ρ 6= 0 ∼ discrepancies between data and model

“expect” mode of ξθ,x0(ε) ≈ 0 for some θ
only if model matches data

if mode “far away” from 0 for all θ,
detect model mismatch under that discrepancy
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Joint posterior density

Joint posterior density of θ and summary errors
Given prior π(θ, ε|M), apply Bayes’ Theorem

fρ(θ, ε|x0, M) = ξθ,x0(ε) π(θ, ε|M) / fρ(x0|M)

take π(θ, ε|Mi) = πε(ε|M)πθ(θ|M)

choose π(ε|M) with mode at zero
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“Standard” ABCµ algorithm

“Std”-ABCµ [Ratmann, PNAS 2009]
Std-ABCµ1 Sample θ ∼ π(θ|M), simulate x∼ f (·|θ, M) and compute

ε = ρ
(
S(x), S(x0)

)
.

Std-ABCµ2 Accept (θ, ε, x) with probability proportional to π(ε|M),
and go to Std-ABCµ1.

Cmp’d to Standard-ABC almost unchanged (only record realized
errors) & no additional cost

Marginally in (θ, ε) we obtain samples from fρ(θ, ε|x0, M) by
construction. Exploit expression in terms of predictive density to
interpret fρ(θ, ε|x0, M).
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ABCµ: parameter inference

Approximation of true posterior f (θ|x0, M)

Under regularity assumptions on ξθ,x0

fρ(θ|x0, M) ∝ πθ(θ|M)

∫
πε

(
ρ
(
S(x), S(x0)

))
f (x |θ, M)dx

πε(ε|M) = 111{|ε| ≤ τ/2}/τ ⇒ “standard” ABC

may interpret ABC kernel 1
τ K

(
ρ(S(x), S(x0)/τ)

)
as particular prior

belief on M [Wilkinson R,2008]

We suggest not to stop at prior interpretation of error . . .
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ABCµ: model criticism

. . . Posterior ε is a compound variable that reflects stochastic
fluctuations and systematic biases between the model and x0.

K real-valued summary errrors
In contrast to ABC where error ρ

(
S(x), S(x0)

)
is scalar & positive,

consider K real-valued summary errors εk
that correspond to ρk

(
Sk (x), Sk (x0)

)
.

→ gain of interpretability and diagnostic value
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ABCµ: model criticism

Formally . . .

define multiple, real-valued prior error terms with density

πε1:K (ε1:K |M)
def
=

K∏
k=1

1/τk K
(
εk/τk

)
think: K

`
εk /τk

´
= 111

˘˛̨
εk

˛̨
≤ τk /2

¯
set augmented likelihood to joint predictive density

fρ,τ (x0|θ, ε1:K , M)
def
= ξθ,x0(ε1:K ).
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ABCµ: model criticism

Interpretation of posterior ε1:K

Under regularity assumptions on ξθ,x0

fρ,τ (ε1:K |x0, M) =

∫
fρ,τ (θ, ε1:K |x0, M)dθ

= πε1:K (ε1:K |M)Lρ(ε1:K |M) / fρ,τ (x0|M)

where (prior) predictive density [Box, RSSA 1980] of summary errors is

Lρ(ε1:K |M)
def
= lim

h→0

∫
X

δh

((
ρk

(
Sk (x), Sk (x0)

)
− εk

)
1:K

)
π(x |M)dx

and (prior) predictive density of data is

π(x |M)
def
=

∫
f (x |θ, M)π(θ|M)dθ
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ABCµ: model criticism

fρ,τ (ε1:K |x0, M) =

∫
fρ,τ (θ, ε1:K |x0, M)dθ

∝ Lρ(ε1:K |M)πε1:K (ε1:K |M)

towards more accurate model criticism
inspect multiple errors jointly, no problem for Monte Carlo methods

“weighted” prior predictive error according to error magnitude
focus on those θ actually inferred
criticize posterior model
alleviate sensitivity of Lρ(ε1:K |M) on πθ(θ|M)

computationally feasible
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ABCµ: model criticism

Posterior mean shift
[unpublished material taken out]
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ABCµ: model criticism

[unpublished material taken out]

k th mean shift re-weighted according to mutual constraints
[unpublished material taken out]
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ABCµ: model criticism

Recall: summaries typically co-dependent and not clear if sufficient for θ under M

Exploit co-dependency of summary errors in ABCµ

If εk independent, then mutual constraints collapse [unpublished
material taken out]
Mutual constraints require co-dependent summaries
Mutual constraints do not require summaries to be sufficient for θ
under M

ABCµ reveals model inconsistency with conflicting, co-dependent
summaries
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ABCµ under wrong model: example 2

Simulation study
observe dataset x0 of 100 sample points, x0 = 5,
0.25 Quantile Q0 = 1.48
we believe xi ∼ N (µ, σ2) whereas in reality xi ∼ Exp(0.2)
[unpublished material taken out]
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ABCµ under wrong model: example 2

Std-ABCµ with 5 summary errors
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Concluding remarks 1

Utility of posterior summary errors ε1:K

Exploit the data already generated in ABC also for model criticism
Formally, dual use of simulated data is described by the joint
posterior density

fρ,τ (θ, ε1:K |x0, M)

that rests on augmenting the likelihood in a particular way
Marginally in θ, we perform approximate inference exactly as in
ABC
Marginally in ε1:K , we criticize the fitted model with all summaries
simultaneously
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Concluding remarks 2

Choice of summary errors ε1:K

we always work with K errors that correspond to K summaries

we always include as many summaries as possible to preserve
co-dependencies;
compare to [Joyce P, Stat App Gen Mol Biol 2008]

we do not combine summaries into scalar error

we always choose τ so that co-dependencies are preserved
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Concluding remarks 3

Diagnostics and hypothesis testing
we use high probability density intervals of marginals fρ,τ (εk |x0, M)
to obtain precise information as to how improve a model

these are not confidence intervals, and marginal posterior errors
are typically not independent

to test H0 : ε1:K = 0 we compute a Bayes factor [unpublished
material taken out]
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Concluding remarks 4

Std-ABCµ does not work well in other than very simple settings
Prob1: fρ,τ (θ, ε1:K |x0, M) typically very different from
πθ(θ|M)

∏K
k=1 πεk (εk |M)

Prob2: By simulating x ∼ f (·|θ, M), we extend the state space
(θ, ε1:K ) with x . The volatility of the stochastic process f (·|θ, M)
induces an extra price to pay.

Prob3: Compared to scalar error, acceptance probability of ABCµ
based on several summary errors ε1:K is further reduced.

But straightforward to modify existing methods of ABC. We also
implement a novel ABCµ algorithm . . .
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Concluding remarks 5

We use repeated sampling xb ∼ f (·|θ, M), b = 1, . . . , B to control
the volatility of the data generating process. [Andrieu C, Ann Stat
2009]

We also replaced the joint likelihood ξθ,x0(ε1:K ) with a conservative
combination of its marginals mink ξk ,θ,x0(εk ) [Ratmann O, PNAS
2009]

For our applications, we found MCMC samplers (with annealing
& refined proposals) to work well [Ratmann O, PLOS CompBiol
2007]
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Thank you

Sylvia Richardson, Christophe Andrieu, Carsten Wiuf

and

Wellcome Trust
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