## Approximate Bayesian Computation under model uncertainty (ABC $\mu$ )

# Oliver Ratmann ${ }^{1}$ C Andrieu ${ }^{2} \quad$ C Wiuf ${ }^{3} \quad$ S Richardson ${ }^{1}$ 

${ }^{1}$ Centre for Biostatistics, Imperial College, London, UK
${ }^{2}$ Dep of Mathematics, University of Bristol, Bristol, UK
${ }^{3}$ Bioinformatics Research Centre, University of Aarhus, Aarhus, DK

These slides attempt to present the material of the first section of our recently published work in PNAS [Ratmann O, PNAS 2009]. We expand on the motivation behind $\mathrm{ABC} \mu$, and provide a toy example that is easy to re-implement.
These slides do not include material on the second part of the PNAS paper that discusses a new $\mathrm{ABC} \mu$ algorithm. However, one purpose here is to exemplify with Std-ABC that any ABC method can be modified for the purpose of model criticism.

## When use $\mathrm{ABC} / \mathrm{ABC} \mu$ ?

## Inference on

 data-generating stochastic processes
## [Diggle PJ, RSSB 1984]

... whose likelihood cannot be readily evaluated
... within Bayesian framework to
(a) infer model parameters,
(b) error terms to see if model adequate

Signalling pathways, [Toni T RoySocInt 2008] Jak/Stat Signaling: IL-6 Receptor Family


## "All models are wrong but some are useful [Box GEP, JASA1976]"

## Statistical reasoning in science

- perform experiment
(2) match model to data, assuming that model is correct
(3) explore if model is adequate to explain the data in one or several aspects:
- formally test null hypothesis that model is "adequate"
- if not, use diagnostics to guide model developments
(4) revise model, motivating new experiment



## From $A B C$ to $A B C \mu$ : outline

## ABC

- exploit model predictions for sampling from approximate posterior densities of $\theta$


## ABC $\mu$

- Typically, model predictions form the basis for model criticism [Jeffreys, Th Probability 1961]
- use the data already generated in ABC for this purpose too
- dual use of model predictions reflected in an extension of the state space: we are interested in $\theta$ and $\varepsilon_{1: K}$
- to maintain Bayesian framework, crux is to derive a likelihood on the augmented space ( $\theta, \varepsilon_{1: K}$ ).


## From $A B C$ to $A B C \mu$ : outline



## From $A B C$ to $A B C \mu$ : notation

- $\theta$ random variable, $x_{0}$ observed data
- $M$ data-generating stochastic process
- $x \sim f(\cdot \mid \theta, M)$ simulated data under $M$ given $\theta$
- lower dimensional summaries $\mathbb{S}=\left\{S_{1}, \ldots, S_{K}\right\}$
- introduce mismatch thresholds $\tau_{k}$
- approximate likelihood here with

$$
t_{\rho, \tau}\left(x_{0} \mid \theta, M\right)=\frac{1}{\prod_{k} \tau_{k}} \int \mathbf{1}\left\{\bigcap_{k=1}^{K}\left|S_{k}(x)-S_{k}\left(x_{0}\right)\right| \leq \tau_{k} / 2\right\} f(x \mid \theta, M) d x
$$

- apply Bayes' Theorem

$$
t_{\rho, \tau}\left(\theta \mid x_{0}, M\right)=t_{\rho, \tau}\left(x_{0} \mid \theta, M\right) \pi_{\theta}(\theta \mid M) / f_{\rho, \tau}\left(x_{0} \mid M\right)
$$

## ABC under wrong model: example

How is ABC affected ...
... when the model is not adequate?

## ABC under wrong model: example

## Simulation study

- observe dataset $x_{0}$ of 100 sample points, $\overline{x_{0}}=5$, 0.25 Quantile $Q_{0}=1.48$
- we believe $x_{i} \sim \mathcal{N}(\theta, 1)$ whereas in reality $x_{i} \sim \operatorname{Exp}(0.2)$
- summarize data with 0.25 Quantile $Q$ and $\bar{x}$
- consider ABC inference for separate as well as for joint summaries:

$$
\begin{aligned}
\rho\left(\overline{x_{0}}, Q\left(x_{0}\right) ; \bar{x}, Q(x)\right)= & \frac{1}{\tau_{1}} \mathbf{1}\left\{\left|\overline{x_{0}}-\bar{x}\right| \leq \tau_{1} / 2\right\} \times \\
& \frac{1}{\tau_{2}} \mathbf{1}\left\{\left|Q\left(x_{0}\right)-Q(x)\right| \leq \tau_{2} / 2\right\},
\end{aligned}
$$

- reconstruct $t_{\rho, \tau}\left(\theta \mid x_{0}, M\right)$ with Std-ABC


## ABC under wrong model: example (cont'd)



$\mu$

$\mu$

$$
\mathbb{S}=\{\bar{x}, Q\}
$$

## ABC under wrong model: example (cont'd)



- But what is the meaning of posterior estimates of $\theta$ ?
make use of the data already generated
Intuitively, want to make information in $\mathbf{B}$ (computed with ABC) available as job output \& interpret; e.g. want to interpret posterior $\varepsilon_{\bar{x}}$ as retained points $\bar{x}_{0}-\bar{x}$. Two steps:
(1) Take ABC kernel as prior $\pi_{\varepsilon_{1: K}}$.
(2) Propose new likelihood definition that provides desired interpretation.


## $\mathrm{ABC} \mu$ : Derivation of augmented likelihood

## Predictive error of summaries given $\theta$

- Given $\theta$, consider the "predictive error" $\varepsilon$ with probability distribution

$$
\mathbb{P}_{\theta, x_{0}}(\varepsilon \leq e)=\int_{\mathcal{X}} 1\left\{\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right) \leq e\right\} f(x \mid \theta, M) d x
$$

- $\mathcal{X}$ often finite $\rightarrow$ integral replaced by sum
- not difficult to generalize to multiple errors


## $\mathrm{ABC} \mu$ : Derivation of augmented likelihood

## Conditional predictive error density

- Assume $\mathbb{P}_{\theta, x_{0}}(\varepsilon \leq e)$ has density $\xi_{\theta, x_{0}}$ w.r.t. appropriate measure
- Write $\xi_{\theta, x_{0}}$ as elementary derivative (a. e.)

$$
\begin{aligned}
& \xi_{\theta, x_{0}}(\varepsilon) \\
& \quad=\lim _{h \rightarrow 0} \frac{1}{2 h} \int \mathbf{1}\left\{\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)-h<\varepsilon \leq\right. \\
& \left.\quad \rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)+h\right\} f(x \mid \theta, M) d x \\
& =\lim _{h \rightarrow 0} \int \delta_{h}\left(\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)-\varepsilon\right) f(x \mid \theta, M) d x \\
& \stackrel{\text { def }}{=} \int \delta\left\{\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)=\varepsilon\right\} f(x \mid \theta, M) d x
\end{aligned}
$$

## $\mathrm{ABC} \mu$ : Derivation of augmented likelihood

## Augmented likelihood on $(\theta, \varepsilon)$

- set

$$
f_{\rho}\left(x_{0} \mid \theta, \varepsilon, M\right) \stackrel{\text { def }}{=} \xi_{\theta, x_{0}}(\varepsilon)=\int \delta\left\{\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)=\varepsilon\right\} f(x \mid \theta, M) d x
$$

## Interpretation

By construction:
$\rho \neq 0 \sim$ discrepancies between data and model

- "expect" mode of $\xi_{\theta, x_{0}}(\varepsilon) \approx 0$ for some $\theta$ only if model matches data
- if mode "far away" from 0 for all $\theta$, detect model mismatch under that discrepancy


## Joint posterior density

## Joint posterior density of $\theta$ and summary errors

Given prior $\pi(\theta, \varepsilon \mid M)$, apply Bayes' Theorem

$$
f_{\rho}\left(\theta, \varepsilon \mid x_{0}, M\right)=\xi_{\theta, x_{0}}(\varepsilon) \pi(\theta, \varepsilon \mid M) / f_{\rho}\left(x_{0} \mid M\right)
$$

- take $\pi\left(\theta, \varepsilon \mid M_{i}\right)=\pi_{\varepsilon}(\varepsilon \mid M) \pi_{\theta}(\theta \mid M)$
- choose $\pi(\varepsilon \mid M)$ with mode at zero


## "Standard" ABC $\mu$ algorithm

"Std"-ABC $\mu$ [Ratmann, PNAS 2009]
Std-ABC $\mu 1$ Sample $\theta \sim \pi(\theta \mid M)$, simulate $x \sim f(\cdot \mid \theta, M)$ and compute $\varepsilon=\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)$.
Std-ABC $\mu 2$ Accept $(\theta, \varepsilon, x)$ with probability proportional to $\pi(\varepsilon \mid M)$, and go to Std-ABC $\mu 1$.

Cmp'd to Standard-ABC almost unchanged (only record realized errors) \& no additional cost

Marginally in $(\theta, \varepsilon)$ we obtain samples from $f_{\rho}\left(\theta, \varepsilon \mid x_{0}, M\right)$ by construction. Exploit expression in terms of predictive density to interpret $f_{\rho}\left(\theta, \varepsilon \mid x_{0}, M\right)$.

## ABC $\mu$ : parameter inference

Approximation of true posterior $f\left(\theta \mid x_{0}, M\right)$
Under regularity assumptions on $\xi_{\theta, \chi_{0}}$

$$
f_{\rho}\left(\theta \mid x_{0}, M\right) \propto \pi_{\theta}(\theta \mid M) \int \pi_{\varepsilon}\left(\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)\right) f(x \mid \theta, M) d x
$$

- $\pi_{\varepsilon}(\varepsilon \mid M)=\mathbf{1}\{|\varepsilon| \leq \tau / 2\} / \tau \Rightarrow$ "standard" ABC
- may interpret ABC kernel $\frac{1}{\tau} K\left(\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right) / \tau\right)\right)$ as particular prior belief on $M$ [Wilkinson R,2008]

We suggest not to stop at prior interpretation of error ...

## ABC $\mu$ : model criticism

... Posterior $\varepsilon$ is a compound variable that reflects stochastic fluctuations and systematic biases between the model and $x_{0}$.
$K$ real-valued summary errrors
In contrast to ABC where error $\rho\left(\mathbb{S}(x), \mathbb{S}\left(x_{0}\right)\right)$ is scalar \& positive, consider $K$ real-valued summary errors $\varepsilon_{k}$ that correspond to $\rho_{k}\left(S_{k}(x), S_{k}\left(x_{0}\right)\right)$.
$\rightarrow$ gain of interpretability and diagnostic value

## ABC $\mu$ : model criticism

## Formally

- define multiple, real-valued prior error terms with density

$$
\pi_{\varepsilon_{1: K}}\left(\varepsilon_{1: K} \mid M\right) \stackrel{\text { def }}{=} \prod_{k=1}^{K} 1 / \tau_{k} K\left(\varepsilon_{k} / \tau_{k}\right)
$$

think: $K\left(\varepsilon_{k} / \tau_{k}\right)=\mathbf{1}\left\{\left|\varepsilon_{k}\right| \leq \tau_{k} / 2\right\}$

- set augmented likelihood to joint predictive density

$$
f_{\rho, \tau}\left(x_{0} \mid \theta, \varepsilon_{1: K}, M\right) \stackrel{\text { def }}{=} \xi_{\theta, x_{0}}\left(\varepsilon_{1: K}\right)
$$

## ABC $\mu$ : model criticism

## Interpretation of posterior $\varepsilon_{1: K}$

Under regularity assumptions on $\xi_{\theta, \chi_{0}}$

$$
\begin{aligned}
f_{\rho, \tau}\left(\varepsilon_{1: K} \mid x_{0}, M\right) & =\int f_{\rho, \tau}\left(\theta, \varepsilon_{1: K} \mid x_{0}, M\right) d \theta \\
& =\pi_{\varepsilon_{1: K}}\left(\varepsilon_{1: K} \mid M\right) L_{\rho}\left(\varepsilon_{1: K} \mid M\right) / f_{\rho, \tau}\left(x_{0} \mid M\right)
\end{aligned}
$$

where (prior) predictive density [Box, RSSA 1980] of summary errors is

$$
L_{\rho}\left(\varepsilon_{1: K} \mid M\right) \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \int_{\mathcal{X}} \delta_{h}\left(\left(\rho_{k}\left(S_{k}(x), S_{k}\left(x_{0}\right)\right)-\varepsilon_{k}\right)_{1: K}\right) \pi(x \mid M) d x
$$

and (prior) predictive density of data is

$$
\pi(x \mid M) \stackrel{\text { det }}{=} \int f(x \mid \theta, M) \pi(\theta \mid M) d \theta
$$

## $\mathrm{ABC} \mu$ : model criticism

$$
\begin{aligned}
f_{\rho, \tau}\left(\varepsilon_{1: K} \mid x_{0}, M\right) & =\int f_{\rho, \tau}\left(\theta, \varepsilon_{1: K} \mid x_{0}, M\right) d \theta \\
& \propto L_{\rho}\left(\varepsilon_{1: K} \mid M\right) \pi_{\varepsilon_{1: K}}\left(\varepsilon_{1: K} \mid M\right)
\end{aligned}
$$

- towards more accurate model criticism inspect multiple errors jointly, no problem for Monte Carlo methods
- "weighted" prior predictive error according to error magnitude
- focus on those $\theta$ actually inferred
- criticize posterior model
- alleviate sensitivity of $L_{\rho}\left(\varepsilon_{1: K} \mid M\right)$ on $\pi_{\theta}(\theta \mid M)$
- computationally feasible


## ABC $\mu$ : model criticism

## Posterior mean shift

 [unpublished material taken out]
## ABC $\mu$ : model criticism

## [unpublished material taken out]

$k$ th mean shift re-weighted according to mutual constraints [unpublished material taken out]

## ABC $\mu$ : model criticism

Recall: summaries typically co-dependent and not clear if sufficient for $\theta$ under $M$
Exploit co-dependency of summary errors in $\mathrm{ABC} \mu$

- If $\varepsilon_{k}$ independent, then mutual constraints collapse [unpublished material taken out]
- Mutual constraints require co-dependent summaries
- Mutual constraints do not require summaries to be sufficient for $\theta$ under $M$

ABC $\mu$ reveals model inconsistency with conflicting, co-dependent summaries

## ABC $\mu$ under wrong model: example 2

## Simulation study

- observe dataset $x_{0}$ of 100 sample points, $\bar{x}_{0}=5$, 0.25 Quantile $Q_{0}=1.48$
- we believe $x_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$ whereas in reality $x_{i} \sim \operatorname{Exp}(0.2)$ [unpublished material taken out]


## ABC $\mu$ under wrong model: example 2

- Std-ABC $\mu$ with 5 summary errors



## Concluding remarks 1

## Utility of posterior summary errors $\varepsilon_{1: K}$

- Exploit the data already generated in ABC also for model criticism
- Formally, dual use of simulated data is described by the joint posterior density

$$
f_{\rho, \tau}\left(\theta, \varepsilon_{1: K} \mid x_{0}, M\right)
$$

that rests on augmenting the likelihood in a particular way

- Marginally in $\theta$, we perform approximate inference exactly as in ABC
- Marginally in $\varepsilon_{1: K}$, we criticize the fitted model with all summaries simultaneously


## Concluding remarks 2

## Choice of summary errors $\varepsilon_{1: K}$

- we always work with $K$ errors that correspond to $K$ summaries
- we always include as many summaries as possible to preserve co-dependencies; compare to [Joyce P, Stat App Gen Mol Biol 2008]
- we do not combine summaries into scalar error
- we always choose $\tau$ so that co-dependencies are preserved


## Concluding remarks 3

## Diagnostics and hypothesis testing

- we use high probability density intervals of marginals $f_{\rho, \tau}\left(\varepsilon_{k} \mid x_{0}, M\right)$ to obtain precise information as to how improve a model
- these are not confidence intervals, and marginal posterior errors are typically not independent
- to test $H_{0}: \varepsilon_{1: K}=0$ we compute a Bayes factor [unpublished material taken out]


## Concluding remarks 4

Std-ABC $\mu$ does not work well in other than very simple settings

- Prob1: $f_{\rho, \tau}\left(\theta, \varepsilon_{1: K} \mid x_{0}, M\right)$ typically very different from $\pi_{\theta}(\theta \mid M) \prod_{k=1}^{K} \pi_{\varepsilon_{k}}\left(\varepsilon_{k} \mid M\right)$
- Prob2: By simulating $x \sim f(\cdot \mid \theta, M)$, we extend the state space $\left(\theta, \varepsilon_{1: K}\right)$ with $x$. The volatility of the stochastic process $f(\cdot \mid \theta, M)$ induces an extra price to pay.
- Prob3: Compared to scalar error, acceptance probability of $\mathrm{ABC} \mu$ based on several summary errors $\varepsilon_{1: K}$ is further reduced.

But straightforward to modify existing methods of ABC. We also implement a novel ABC $\mu$ algorithm ...

## Concluding remarks 5

- We use repeated sampling $x_{b} \sim f(\cdot \mid \theta, M), b=1, \ldots, B$ to control the volatility of the data generating process. [Andrieu C, Ann Stat 2009]
- We also replaced the joint likelihood $\xi_{\theta, x_{0}}\left(\varepsilon_{1: K}\right)$ with a conservative combination of its marginals $\min _{k} \xi_{k, \theta, x_{0}}\left(\varepsilon_{k}\right)$ [Ratmann O, PNAS 2009]
- For our applications, we found MCMC samplers (with annealing \& refined proposals) to work well [Ratmann O, PLOS CompBiol 2007]


## Thank you

## Sylvia Richardson, Christophe Andrieu, Carsten Wiuf

Wellcome Trust

