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Managing Uncertainty in Complex Models (MUCM)
Four year project across 6 universities: Sheffield, Durham, LSE,
Southampton, Aston, Bristol.

PIs: Tony O’Hagan, Peter Challenor, Jonty Rougier, Henry Wynn,
Dan Cornford, Jeremy Oakley, Michael Goldstein.

8 RAs, 5 PhD students.

Aim: to develop some of the statistical technology required when
analysing computer experiments.

Focused on expensive deterministic models

Based around the use of emulators
◮ cheap statistical surrogates (meta-models) of the simulator

Aim to account for all sources of uncertainty in model predictions.
Including uncertainty in

◮ Initial conditions
◮ Model parameters
◮ Imperfect/incomplete science
◮ Approximate solutions to model equations
◮ Code uncertainty
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Calibration

For forwards models we specify parameters θ and i.c.s and the model
generates output X . We are interested in the inverse-problem, i.e.,
observe data D, want to estimate parameter values.
As Bayesians, we are used to thinking of this as π(θ|D,M).
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For forwards models we specify parameters θ and i.c.s and the model
generates output X . We are interested in the inverse-problem, i.e.,
observe data D, want to estimate parameter values.
As Bayesians, we are used to thinking of this as π(θ|D,M).
What does this represent? Or rather, what do we believe we are doing?

Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
the data given the model - cf. the coefficients in a linear regression.

e.g., ocean physics models must be run with viscosity several orders of
magnitude too large.
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Calibration

For forwards models we specify parameters θ and i.c.s and the model
generates output X . We are interested in the inverse-problem, i.e.,
observe data D, want to estimate parameter values.
As Bayesians, we are used to thinking of this as π(θ|D,M).
What does this represent? Or rather, what do we believe we are doing?

Does θ have a physical interpretation, i.e., are we estimating physical
parameters?

Or is θ interpretted statistically? i.e., θ is the value that best explains
the data given the model - cf. the coefficients in a linear regression.

e.g., ocean physics models must be run with viscosity several orders of
magnitude too large.
When can we interpret the value found for θ as a physical value?

If the model is a perfect representation of the system

When the model is imperfect, but we have a description (that we
believe) of the discrepancy between model and system.
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Bayesian Calibration Framework I
Kennedy and O’Hagan 2001, RSS B

R.D. Wilkinson (University of Sheffield) The Error in ABC Paris 2009 4 / 15



Bayesian Calibration Framework I
Kennedy and O’Hagan 2001, RSS B

Suppose we have a computer model η(t, θ) that we wish to use to
make predictions of a physical system ζ(t) using observations D(t).

◮ θ are model parameters we wish to learn
◮ t are control/index parameters, e.g., time, location etc.
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make predictions of a physical system ζ(t) using observations D(t).

◮ θ are model parameters we wish to learn
◮ t are control/index parameters, e.g., time, location etc.

Standard approach is the best-input approach, where we assume
there is a single ‘best’ value of θ, which we call θ̂. The model run at
θ̂, the hat-run η(θ̂), is the best model prediction.
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Bayesian Calibration Framework I
Kennedy and O’Hagan 2001, RSS B

Suppose we have a computer model η(t, θ) that we wish to use to
make predictions of a physical system ζ(t) using observations D(t).

◮ θ are model parameters we wish to learn
◮ t are control/index parameters, e.g., time, location etc.

Standard approach is the best-input approach, where we assume
there is a single ‘best’ value of θ, which we call θ̂. The model run at
θ̂, the hat-run η(θ̂), is the best model prediction.

The standard assumption that

D(t) = η(t, θ̂) + et

where e· is a white noise error process is a poor assumption for most
models. If the model is imperfect, then residuals D − η(θ) may be
correlated, even if the measurement error process is white.
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Bayesian Calibration Framework II
Kennedy and O’Hagan 2001, RSS B

Instead, assume that we observe reality plus measurement error.

D(t) = ζ(t) + e(t)

Often, e(·) will be a white noise process with known mean and
variance.

θ̂ η(θ̂, t) ζ(t) D(t)

ǫ(t) e(t)R.D. Wilkinson (University of Sheffield) The Error in ABC Paris 2009 5 / 15
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Bayesian Calibration Framework II
Kennedy and O’Hagan 2001, RSS B

Instead, assume that we observe reality plus measurement error.

D(t) = ζ(t) + e(t)

Often, e(·) will be a white noise process with known mean and
variance.
Introduce a model error (discrepancy) term. Assume that reality is
the best model prediction plus an error

ζ(t) = η(t, θ̂) + ǫ(t).

Note ǫ does not depend on θ.
Argue that η(·, θ̂) and ǫ(·) are independent. Kennedy and O’Hagan
use Gaussian processes to model both the model η and the error ǫ.
Allows a rich structure to be learnt for ǫ(·).
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Rejection based ABC

Approximate Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ η(θ)

Accept θ if ρ(D,X ) ≤ δ

What is the approximation?
◮ We wish to solve D = η(θ).
◮ Accepted θ are not from π(θ|D, η), but from some approximation to it.

How do we choose
◮ distance measure ρ(·, ·)
◮ tolerance δ
◮ summary statistic S(·), etc?
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The error in ABC
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The error in ABC

Approximate Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ η(θ)

Accept θ if ρ(D,X ) ≤ δ

It is possible to show that output from this algorithm is an exact draw
from the posterior when we assume that the measurement is made in the
presence of a uniform additive error term.

D = η(θ) + ǫ
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Simulate X ∼ η(θ)

Accept θ if ρ(D,X ) ≤ δ

It is possible to show that output from this algorithm is an exact draw
from the posterior when we assume that the measurement is made in the
presence of a uniform additive error term.

D = η(θ) + ǫ

If ρ(x , y) = |x − y |, then this is equivalent to assuming uniform error on
[−δ, δ]. Accepted θ are from the posterior

π(θ|D, η, ǫ ∼ U[−δ, δ])
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The error in ABC

Approximate Rejection Algorithm

Draw θ from π(θ)

Simulate X ∼ η(θ)

Accept θ if ρ(D,X ) ≤ δ

It is possible to show that output from this algorithm is an exact draw
from the posterior when we assume that the measurement is made in the
presence of a uniform additive error term.

D = η(θ) + ǫ

If ρ(x , y) = |x − y |, then this is equivalent to assuming uniform error on
[−δ, δ]. Accepted θ are from the posterior

π(θ|D, η, ǫ ∼ U[−δ, δ])

ABC gives ‘exact’ inference under a different model!
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A general error structure
Suppose ǫ is distributed with density πǫ(·). We can modify the ABC
rejection algorithm to give perform inference from the model
D = η(θ) + ǫ where we now control the distribution of the error.

R.D. Wilkinson (University of Sheffield) The Error in ABC Paris 2009 8 / 15



A general error structure
Suppose ǫ is distributed with density πǫ(·). We can modify the ABC
rejection algorithm to give perform inference from the model
D = η(θ) + ǫ where we now control the distribution of the error.

Generalized ABC

Draw θ ∼ π(θ)

Simulate X from model X ∼ η(θ)

Accept θ with probability r = πǫ(D−X )
c

Here, c is a constant chosen to maximise the acceptance probability, and
guarantee r ≤ 1. Typically, c = πe(0) is the best we can do.
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Accept θ with probability r = πǫ(D−X )
c

Here, c is a constant chosen to maximise the acceptance probability, and
guarantee r ≤ 1. Typically, c = πe(0) is the best we can do.

Proposition

Accepted θ are samples from the posterior distribution π(θ|D, ǫ ∼ πǫ)
where D = η(θ) + ǫ.
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Suppose ǫ is distributed with density πǫ(·). We can modify the ABC
rejection algorithm to give perform inference from the model
D = η(θ) + ǫ where we now control the distribution of the error.

Generalized ABC

Draw θ ∼ π(θ)

Simulate X from model X ∼ η(θ)

Accept θ with probability r = πǫ(D−X )
c

Here, c is a constant chosen to maximise the acceptance probability, and
guarantee r ≤ 1. Typically, c = πe(0) is the best we can do.

Proposition

Accepted θ are samples from the posterior distribution π(θ|D, ǫ ∼ πǫ)
where D = η(θ) + ǫ.

This imples that using a 0-1 cutoff corresponds to assuming a uniformly
distributed error term.
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Proof
Let

I =

{

1 if θ is accepted

0 otherwise.
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Proof
Let

I =

{

1 if θ is accepted

0 otherwise.

Then, P(I = 1|θ) =

∫

P(I = 1|η(θ) = x , θ)π(x |θ)dx

=

∫

πǫ(D − x)

c
π(x |θ)dx .
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∫

P(I = 1|η(θ) = x , θ)π(x |θ)dx

=

∫

πǫ(D − x)

c
π(x |θ)dx .

So the distribution of accepted θ is

π(θ|I = 1) =
π(θ)

∫

πǫ(D − x)π(x |θ)dx
∫

π(θ)
∫

πǫ(D − x)π(x |θ)dxdθ
.

Conversely, assuming D = η(θ) + ǫ, calculate the posterior directly:

π(D|θ) =

∫

π(D|η(θ) = x , θ)π(x |θ)dx =

∫

πǫ(D − x)π(x |θ)dx .

Consequently, π(θ|D) =
π(θ)

∫

πǫ(D − x)π(x |θ)dx
∫

π(θ)
∫

πǫ(D − x)π(x |θ)dxdθ
.
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Choosing discrepancies

How can we choose a distribution for ǫ?
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Choosing discrepancies

How can we choose a distribution for ǫ?

Let ǫ be measurement error on D - unlikely to be large sufficient. NB
this may be built into models already and can be removed and dealt
with analytically.
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How can we choose a distribution for ǫ?

Let ǫ be measurement error on D - unlikely to be large sufficient. NB
this may be built into models already and can be removed and dealt
with analytically.

Let ǫ be the discrepancy between the model and reality
◮ In a deterministic model setting, Goldstein and Rougier 2008 (amongst

others), have offered advice about thinking about discrepancies.
◮ In a stochastic model setting, what the model error is is much less

clear. (Rougier 2008 gives a Bayes Linear approach in a simple model)
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Choosing discrepancies

How can we choose a distribution for ǫ?

Let ǫ be measurement error on D - unlikely to be large sufficient. NB
this may be built into models already and can be removed and dealt
with analytically.

Let ǫ be the discrepancy between the model and reality
◮ In a deterministic model setting, Goldstein and Rougier 2008 (amongst

others), have offered advice about thinking about discrepancies.
◮ In a stochastic model setting, what the model error is is much less

clear. (Rougier 2008 gives a Bayes Linear approach in a simple model)

NB We may need to compromise on our beliefs about the error structure
in order to achieve an acceptable acceptance rate in the inference.
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Mixture of Normals
Sisson et al. 2007, Beaumont et al. 2008

η(θ) ∼
1

2
N (θ, 1) +

1

2
N (θ,

1

100
), θ ∼ U [−10, 10], D = 0
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The posterior distributions found when using ABC with uniform error
ǫ ∼ U[−δ, δ] (solid line) and ABC with a Gaussian acceptance kernel
ǫ ∼ N(0, δ2/3) (dashed line).
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Generalized ABC-MCMC

Build an exact MCMC scheme for the discrepancy model.

ABC-MCMC I

Suppose we are currently at θ.

1 Propose θ′ from density q(θ, θ′).

2 Simulate X from η(θ′).

3 Accept move with probability

r(θ, θ′) =
πe(D − X ′)

c
min

(

1,
π(θ′)q(θ′, θ)

π(θ)q(θ, θ′)

)

.

Else stay at θ′.
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Generalizes ABC-MCMC II

Or an alternative version is to augment the sample space.

ABC-MCMC II
1 At time t, propose a move from ψt = (θt ,Xt) to ψ′ = (θ′,X ′) with
θ′ drawn from transition kernel q(θt , θ

′), and X ′ simulated from the
model using θ′:

X ′ ∼ η(θ′)

2 Set ψt+1 = (θ′,X ′) with probability

r((θt ,Xt), (θ
′,X ′)) = min

(

1,
πǫ(D − X ′)q(θ′, θt)π(θ′)

πǫ(D − Xt)q(θt , θ′)π(θt)

)

, (1)

otherwise set ψt+1 = ψt .
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Future work

Model error
◮ When should it be included
◮ How to model and think about it
◮ Can we learn the error?

⋆ Dynamic model setting, sequential observations, learn the discrepancy
through time.

⋆ Prior and posterior specification of the error (cf. Ratmann et al. ). Eg
Gaussian processes, t-processes?
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Generalize ABC-SMC methods.

ABC as an conservative method Var(θ|D) ≤ Var(θ|D, ǫ ∼ πǫ)
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Future work

Model error
◮ When should it be included
◮ How to model and think about it
◮ Can we learn the error?

⋆ Dynamic model setting, sequential observations, learn the discrepancy
through time.

⋆ Prior and posterior specification of the error (cf. Ratmann et al. ). Eg
Gaussian processes, t-processes?

When can models be rewritten to take account of known structure.

Generalize ABC-SMC methods.

ABC as an conservative method Var(θ|D) ≤ Var(θ|D, ǫ ∼ πǫ)

Measure of the distance between the desired distribution and the
approximation TVD(π(θ|D), π(θ|D, ǫ ∼ πǫ))

Effect of summary statistics.
◮ We/the modellers believe that certain summaries will be more

accurate than others.
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Conclusions

Approximate Bayesian Computation gives exact inference for the wrong
model!

To move beyond inference conditioned on the truth of model, we
must account for model error.

ABC algorithms can be considered to include an additive noise term.

For a given metric and tolerance, we can interpret the result.

We can generalise ABC algorithms to move beyond the use of
uniform error structures to account for errors closer to our beliefs.
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Conclusions

Approximate Bayesian Computation gives exact inference for the wrong
model!

To move beyond inference conditioned on the truth of model, we
must account for model error.

ABC algorithms can be considered to include an additive noise term.

For a given metric and tolerance, we can interpret the result.

We can generalise ABC algorithms to move beyond the use of
uniform error structures to account for errors closer to our beliefs.

Thank you for listening!
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