Capture-recapture experiments

Capture-recapture experiments

4 Capture-recapture experiments

- Two-stage capture-recapture

- Arnason–Schwarz's Model

Capture-recapture experiments

Inference in finite populations

Inference in finite populations

Problem of estimating an unknown population size, N, based on partial observation of this population: domain of *survey sampling*

Warning

We do not cover the official Statistics/stratified type of survey based on a preliminary knowledge of the structure of the population

Capture-recapture experiments

Inference in finite populations

Numerous applications

- Biology & Ecology for estimating the size of herds, of fish or whale populations, etc.
- Sociology & Demography for estimating the size of populations at risk, including homeless people, prostitutes, illegal migrants, drug addicts, etc.
- official Statistics in the U.S. and French census undercount procedures
- Economics & Finance in credit scoring, defaulting companies, etc.,
- Fraud detection phone, credit card, etc.
- Document authentication historical documents, forgery, etc.,
- Software debugging

Capture-recapture experiments

Inference in finite populations

Setup

Size N of the whole population is unknown but samples (with fixed or random sizes) can be extracted from the population.

Capture-recapture experiments

-Binomial capture model

The binomial capture model

Simplest model of all: joint capture of n^+ individuals from a population of size N.

Population size $N \in \mathbb{N}^*$ is the parameter of interest, but there exists a nuisance parameter, the probability $p \in [0, 1]$ of capture [under assumption of independent captures]

Sampling model

$$n^+ \sim \mathscr{B}(N, p)$$

and corresponding likelihood

$$\ell(N, p|n^+) = \binom{N}{n^+} p^{n^+} (1-p)^{N-n^+} \mathbb{I}_{N \ge n^+}.$$

Capture-recapture experiments

Binomial capture model

Bayesian inference (1)

Under vague prior

$$\pi(N,p) \propto N^{-1} \mathbb{I}_{\mathbb{N}^*}(N) \mathbb{I}_{[0,1]}(p) ,$$

posterior distribution of \boldsymbol{N} is

$$\pi(N|n^{+}) \propto \frac{N!}{(N-n^{+})!} N^{-1} \mathbb{I}_{N \ge n^{+}} \mathbb{I}_{\mathbb{N}^{*}}(N) \int_{0}^{1} p^{n^{+}} (1-p)^{N-n^{+}} dp$$

$$\propto \frac{(N-1)!}{(N-n^{+})!} \frac{(N-n^{+})!}{(N+1)!} \mathbb{I}_{N \ge n^{+} \lor 1}$$

$$= \frac{1}{N(N+1)} \mathbb{I}_{N \ge n^{+} \lor 1}.$$

where $n^+ \lor 1 = \max(n^+, 1)$

Capture-recapture experiments

Binomial capture model

Bayesian inference (2)

If we use the uniform prior

$$\pi(N,p) \propto \mathbb{I}_{\{1,\ldots,S\}}(N)\mathbb{I}_{[0,1]}(p)\,,$$

the posterior distribution of \boldsymbol{N} is

$$\pi(N|n^+) \propto \frac{1}{N+1} \mathbb{I}_{\{n^+ \lor 1, \dots, S\}}(N).$$

Capture-recapture experiments

-Binomial capture model

Capture-recapture data

European dippers

Birds closely dependent on streams, feeding on underwater invertebrates Capture-recapture data on dippers over years 1981–1987 in 3 zone of 200 km² in eastern France with markings and recaptures of breeding adults each year, during the breeding period from early March to early June.

Capture-recapture experiments

Binomial capture model

eurodip

Each row of 7 digits corresponds to a capture-recapture story: 0 stands for absence of capture and, else, 1,2 or 3 represents the zone of capture.

E.g.

means: first dipper only captured the first year [in zone 1], second dipper captured in years 1981–1982 and moved from zone 1 to zone 3 between those years, third dipper captured in years 1982–1987 in zone 2

Capture-recapture experiments

└─ Two-stage capture-recapture

The two-stage capture-recapture experiment

Extension to the above with two capture periods plus a marking stage:

- In individuals from a population of size N captured [sampled without replacement]
- 2 captured individuals marked and released
- 3 n_2 individuals captured during second identical sampling experiment
- ④ m_2 individuals out of the n_2 's bear the identification mark [captured twice]

Capture-recapture experiments

└─ Two-stage capture-recapture

The two-stage capture-recapture model

For *closed populations* [fixed population size N throughout experiment, constant capture probability p for all individuals, and independence between individuals/captures], binomial models:

$$n_1 \sim \mathscr{B}(N,p), \quad m_2 | n_1 \sim \mathscr{B}(n_1,p)$$
 and

$$n_2 - m_2 | n_1, m_2 \sim \mathscr{B}(N - n_1, p)$$
.

Capture-recapture experiments

└─ Two-stage capture-recapture

The two-stage capture-recapture likelihood

Corresponding likelihood $\ell(N, p|n_1, n_2, m_2)$

$$\binom{N-n_1}{n_2-m_2} p^{n_2-m_2} (1-p)^{N-n_1-n_2+m_2} \mathbb{I}_{\{0,\dots,N-n_1\}} (n_2-m_2) \\ \times \binom{n_1}{m_2} p^{m_2} (1-p)^{n_1-m_2} \binom{N}{n_1} p^{n_1} (1-p)^{N-n_1} \mathbb{I}_{\{0,\dots,N\}} (n_1) \\ \propto \frac{N!}{(N-n_1-n_2+m_2)!} p^{n_1+n_2} (1-p)^{2N-n_1-n_2} \mathbb{I}_{N \ge n^+} \\ \propto \binom{N}{n^+} p^{n^c} (1-p)^{2N-n^c} \mathbb{I}_{N \ge n^+}$$

where $n^c = n_1 + n_2$ and $n^+ = n_1 + (n_2 - m_2)$ are total number of captures/captured individuals over both periods

└─ Capture-recapture experiments

— Two-stage capture-recapture

Bayesian inference (1)

Under prior $\pi(N,p) = \pi(N)\pi(p)$ where $\pi(p)$ is $\mathscr{U}([0,1])$, conditional posterior distribution on p is

$$\pi(p|N, n_1, n_2, m_2) = \pi(p|N, n^c) \propto p^{n^c} (1-p)^{2N-n^c},$$

that is,

$$p|N, n^c \sim \mathscr{B}e(n^c+1, 2N-n^c+1).$$

Marginal posterior distribution of N more complicated. If $\pi(N) = \mathbb{I}_{\mathbb{N}^*}(N),$

$$\pi(N|n_1, n_2, m_2) \propto {N \choose n^+} B(n^c + 1, 2N - n^c + 1) \mathbb{I}_{N \ge n^+ \vee 1}$$

[Beta-Pascal distribution]

Capture-recapture experiments

└─ Two-stage capture-recapture

Bayesian inference (2)

Same problem if $\pi(N) = N^{-1} \mathbb{I}_{\mathbb{N}^*}(N).$

Computations

Since $N \in \mathbb{N}$, always possible to approximate the missing normalizing factor in $\pi(N|n_1, n_2, m_2)$ by summing in N. Approximation errors become a problem when N and n^+ are large.

Under proper uniform prior,

$$\pi(N) \propto \mathbb{I}_{\{1,\dots,S\}}(N) \,,$$

posterior distribution of \boldsymbol{N} proportional to

$$\pi(N|n^+) \propto \binom{N}{n^+} \frac{\Gamma(2N-n^c+1)}{\Gamma(2N+2)} \mathbb{I}_{\{n^+ \lor 1, \dots, S\}}(N) \,.$$

and can be computed with no approximation error.

Capture-recapture experiments

└─ Two-stage capture-recapture

The Darroch model

Simpler version of the above: conditional on both samples sizes n_1 and n_2 ,

$$m_2|n_1,n_2\sim \mathscr{H}(N,n_2,n_1/N)$$
.

Under uniform prior on $N\sim \mathscr{U}(\{1,\ldots,S\}),$ posterior distribution of N

$$\pi(N|m_2) \propto \binom{n_1}{m_2} \binom{N-n_1}{n_2-m_2} / \binom{N}{n_2} \mathbb{I}_{\{n^+ \lor 1, \dots, S\}}(N)$$

and posterior expectations computed numerically by simple summations.

Capture-recapture experiments

└─ Two-stage capture-recapture

eurodip

For the two first years and ${\cal S}=400,$ posterior distribution of ${\cal N}$ for the Darroch model given by

 $\pi(N|m_2) \propto (n-n_1)! (N-n_2)! \big/ \{(n-n_1-n_2+m_2)!N!\} \mathbb{I}_{\{71,\dots,400\}}(N) \,,$

with inverse normalization factor

$$\sum_{k=71}^{400} (k-n_1)!(k-n_2)!/\{(k-n_1-n_2+m_2)!k!\}.$$

Influence of prior hyperparameter S (for $m_2 = 11$):

S									
$\mathbb{E}[N m_2]$	95	125	141	148	151	151	152	152	152

Capture-recapture experiments

└─ Two-stage capture-recapture

Gibbs sampler for 2-stage capture-recapture

If $n^+ > 0, \mbox{ both conditional posterior distributions are standard, since$

$$p|n^c, N \sim \mathscr{B}e(n^c+1, 2N-n^c+1)$$

 $N-n^+|n^+, p \sim \mathscr{N}eg(n^+, 1-(1-p)^2).$

Therefore, joint distribution of $\left(N,p\right)$ can be approximated by a Gibbs sampler

Capture-recapture experiments

└─ Two-stage capture-recapture

T-stage capture-recapture model

Further extension to the two-stage capture-recapture model: series of T consecutive captures.

 n_t individuals captured at period $1 \le t \le T$, and m_t recaptured individuals (with the convention that $m_1 = 0$)

$$n_1 \sim \mathscr{B}(N, p)$$

and, conditional on earlier captures/recaptures ($2 \le j \le T$),

$$\begin{split} m_j \sim \mathscr{B}\left(\sum_{t=1}^{j-1}(n_t-m_t),p\right) \quad \text{and} \\ n_j - m_j \sim \mathscr{B}\left(N - \sum_{t=1}^{j-1}(n_t-m_t),p\right). \end{split}$$

Capture-recapture experiments

L Two-stage capture-recapture

T-stage capture-recapture likelihood

Likelihood $\ell(N,p|n_1,n_2,m_2\ldots,n_T,m_T)$ given by

$$\binom{N}{n_1} p^{n_1} (1-p)^{N-n_1} \prod_{j=2}^T \left[\binom{N - \sum_{t=1}^{j-1} (n_t - m_t)}{n_j - m_j} p^{n_j - m_j} \right]$$

$$\times (1-p)^{N - \sum_{t=1}^j (n_t - m_t)} \binom{\sum_{t=1}^{j-1} (n_t - m_t)}{m_j}$$

$$\times p^{m_j} (1-p)^{\sum_{t=1}^{j-1} (n_t - m_t) - m_j} \right].$$

Capture-recapture experiments

└─ Two-stage capture-recapture

Sufficient statistics

Simplifies into

$$\ell(N, p|n_1, n_2, m_2, \dots, n_T, m_T) \propto \frac{N!}{(N-n^+)!} p^{n^c} (1-p)^{TN-n^c} \mathbb{I}_{N \ge n^+}$$

with the sufficient statistics

$$n^+ = \sum_{t=1}^T (n_t - m_t)$$
 and $n^c = \sum_{t=1}^T n_t$,

total number of captured individuals/captures over the T periods

Capture-recapture experiments

— Two-stage capture-recapture

Bayesian inference (1)

Under noninformative prior $\pi(N,p)=1/N$, joint posterior

$$\pi(N,p|n^+,n^c) \propto \frac{(N-1)!}{(N-n^+)!} p^{n^c} (1-p)^{TN-n^c} \mathbb{I}_{N \ge n^+ \lor 1}.$$

leads to conditional posterior

$$p|N, n^+, n^c \sim \mathscr{B}e(n^c + 1, TN - n^c + 1)$$

and marginal posterior

$$\pi(N|n^+, n^c) \propto \frac{(N-1)!}{(N-n^+)!} \frac{(TN-n^c)!}{(TN+1)!} \mathbb{I}_{N \ge n^+ \lor 1}$$

which is computable [under previous provisions].

Alternative Gibbs sampler also available.

Capture-recapture experiments

└─ Two-stage capture-recapture

Bayesian inference (2)

Under prior
$$N \sim \mathscr{U}(\{1, \dots, S\})$$
 and $p \sim \mathscr{U}([0, 1])$,
$$\pi(N|n^+) \propto \binom{N}{n^+} \frac{(TN - n^c)!}{(TN + 1)!} \mathbb{I}_{\{n^+ \lor 1, \dots, S\}}(N).$$

eurodip

For the whole set of observations, T = 7, $n^+ = 294$ and $n^c = 519$. For S = 400, the posterior expectation of N is equal to 372.89. For S = 2500, it is 373.99.

Capture-recapture experiments

└─ Two-stage capture-recapture

Computational difficulties

E.g., heterogeneous capture-recapture model where individuals are captured at time $1 \le t \le T$ with probability p_t with both N and the p_t 's are unknown.

Corresponding likelihood

$$\ell(N, p_1, \dots, p_T | n_1, n_2, m_2, \dots, n_T, m_T)$$

$$\propto \frac{N!}{(N - n^+)!} \prod_{t=1}^T p_t^{n_t} (1 - p_t)^{N - n_t}$$

Capture-recapture experiments

└─ Two-stage capture-recapture

Computational difficulties (cont'd)

Associated prior $N\sim \mathscr{P}(\lambda)$ and

$$\alpha_t = \log \left(p_t / 1 - p_t \right) \sim \mathcal{N}(\mu_t, \sigma^2),$$

where the $\mu_t{\rm 's}$ and σ are known. Posterior

$$\pi(\alpha_1, \dots, \alpha_T, N|, n_1, \dots, n_T) \propto \frac{N!}{(N-n^+)!} \frac{\lambda^N}{N!} \prod_{t=1}^T (1+e^{\alpha_t})^{-N} \\ \times \prod_{t=1}^T \exp\left\{\alpha_t n_t - \frac{1}{2\sigma^2} (\alpha_t - \mu_t)^2\right\}.$$

much less manageable computationally.

Capture-recapture experiments

-Open population

Open populations

More realistically, population size does not remain fixed over time: probability q for each individual to leave the population at each time [or between each capture episode]

First occurrence of missing variable model.

Simplified version where only individuals captured during the first experiment are marked and their subsequent recaptures are registered.

Capture-recapture experiments

Open population

Working example

Three successive capture experiments with

$$n_1 \sim \mathcal{B}(N, p),$$

$$r_1 | n_1 \sim \mathcal{B}(n_1, q),$$

$$c_2 | n_1, r_1 \sim \mathcal{B}(n_1 - r_1, p),$$

$$r_2 | n_1, r_1 \sim \mathcal{B}(n_1 - r_1, q)$$

$$c_3 | n_1, r_1, r_2 \sim \mathcal{B}(n_1 - r_1 - r_2, p)$$

where only n_1 , c_2 and c_3 are observed.

Variables r_1 and r_2 not available and therefore part of unknowns like parameters N, p and q.

Capture-recapture experiments

└─Open population

Bayesian inference

Likelihood

$$\binom{N}{n_1} p^{n_1} (1-p)^{N-n_1} \binom{n_1}{r_1} q^{r_1} (1-q)^{n_1-r_1} \binom{n_1-r_1}{c_2} p^{c_2} (1-p)^{n_1-r_1-c_2} \binom{n_1-r_1}{r_2} q^{r_2} (1-q)^{n_1-r_1-r_2} \binom{n_1-r_1-r_2}{c_3} p^{c_3} (1-p)^{n_1-r_1-r_2-c_3}$$

and prior

$$\pi(N, p, q) = N^{-1} \mathbb{I}_{[0,1]}(p) \mathbb{I}_{[0,1]}(q)$$

Capture-recapture experiments

Open population

Full conditionals for Gibbs sampling

$$\begin{aligned} \pi(p|N,q,\mathcal{D}^*) &\propto p^{n_+}(1-p)^{u_+} \\ \pi(q|N,p,\mathcal{D}^*) &\propto q^{c_1+c_2}(1-q)^{2n_1-2r_1-r_2} \\ \pi(N|p,q,\mathcal{D}^*) &\propto \frac{(N-1)!}{(N-n_1)!}(1-p)^N \mathbb{I}_{N \ge n_1} \\ \pi(r_1|p,q,n_1,c_2,c_3,r_2) &\propto \frac{(n_1-r_1)! q^{r_1}(1-q)^{-2r_1}(1-p)^{-2r_1}}{r_1!(n_1-r_1-r_2-c_3)!(n_1-c_2-r_1)!} \\ \pi(r_2|p,q,n_1,c_2,c_3,r_1) &\propto \frac{q^{r_2}[(1-p)(1-q)]^{-r_2}}{r_2!(n_1-r_1-r_2-c_3)!} \end{aligned}$$

where

$$\mathcal{D}^* = (n_1, c_2, c_3, r_1, r_2)$$

$$u_1 = N - n_1, u_2 = n_1 - r_1 - c_2, u_3 = n_1 - r_1 - r_2 - c_3$$

$$n_+ = n_1 + c_2 + c_3, u_+ = u_1 + u_2 + u_3$$

Capture-recapture experiments

-Open population

Full conditionals (2)

Therefore,

$$p|N, q, \mathcal{D}^* \sim \mathcal{B}e(n_+ + 1, u_+ + 1)$$

$$q|N, p, \mathcal{D}^* \sim \mathcal{B}e(r_1 + r_2 + 1, 2n_1 - 2r_1 - r_2 + 1)$$

$$N - n_1|p, q, \mathcal{D}^* \sim \mathcal{N}eg(n_1, p)$$

$$r_2|p, q, n_1, c_2, c_3, r_1 \sim \mathcal{B}\left(n_1 - r_1 - c_3, \frac{q}{1 + (1 - q)(1 - p)}\right)$$

 r_1 has a less conventional distribution, but, since n_1 not extremely large, possible to compute the probability that r_1 is equal to one of the values in $\{0, 1, \ldots, \min(n_1 - r_2 - c_3, n_1 - c_2)\}$.

Capture-recapture experiments

-Open population

eurodip

 $n_1 = 22$, $c_2 = 11$ and $c_3 = 6$ MCMC approximations to the posterior expectations of N and p equal to 57 and 0.40

Capture-recapture experiments

-Open population

eurodip

 $n_1 = 22$, $c_2 = 11$ and $c_3 = 6$ MCMC approximations to the posterior expectations of N and p equal to 57 and 0.40

Capture-recapture experiments

-Accept-Reject methods

Accept-Reject methods

- Many distributions from which it is difficult, or even impossible, to directly simulate.
- Technique that only require us to know the functional form of the target π of interest up to a multiplicative constant.
- Key to this method is to use a proposal density *g* [as in *Metropolis-Hastings*]

Capture-recapture experiments

Accept-Reject methods

Principle

Given a target density $\pi,$ find a density g and a constant M such that

$$\pi(x) \le Mg(x)$$

on the support of π .

Accept-Reject algorithm is then

- 1) Generate $X \sim g$, $U \sim \mathcal{U}_{[0,1]}$;
- 2 Accept Y = X if $U \leq \frac{f(X)}{Mg(X)}$;
- 3 Return to 1. otherwise.

Capture-recapture experiments

-Accept-Reject methods

Validation of Accept-Reject

This algorithm produces a variable \boldsymbol{Y} distributed according to \boldsymbol{f}

Fundamental theorem of simulation Simulating

 $X \sim f(x)$

is equivalent to simulating

 $(X,U) \sim \mathcal{U}\{(x,u) : 0 < u < \pi(x)\}$

Capture-recapture experiments

Accept-Reject methods

Two interesting properties:

• First, Accept-Reject provides a generic method to simulate from any density π that is known *up to a multiplicative factor* Particularly important for Bayesian calculations since

$$\pi(\theta|x) \propto \pi(\theta) f(x|\theta)$$
.

is specified up to a normalizing constant

 $\circ~$ Second, the probability of acceptance in the algorithm is 1/M, e.g., expected number of trials until a variable is accepted is M

Capture-recapture experiments

Accept-Reject methods

Application to the open population model

Since full conditional distribution of r_1 non-standard, rather than using exhaustive enumeration of all probabilities $\mathbb{P}(m_1 = k) = \pi(k)$ and then sampling from this distribution, try to use a proposal based on a binomial upper bound.

Take g equal to the binomial $\mathscr{B}(n_1, q_1)$ with

$$q_1 = q/(1-q)^2(1-p)^2$$

Capture-recapture experiments

-Accept-Reject methods

Proposal bound

$\frac{\pi(k)/g(k) \text{ proportional to}}{\binom{\binom{n_1-c_2}{k}(1-q_1)^k\binom{n_1-k}{r_2+c_3}}{\binom{\binom{n_1}{k}}} = \frac{(n_1-c_2)!}{(r_2+c_3)!n_1!} \frac{((n_1-k)!)^2(1-q_1)^k}{(n_1-c_2-k)!(n_1-r_2-c_3-k)!}$

decreasing in k, therefore bounded by

$$\frac{(n_1 - c_2)!}{(r_2 + c_3)!} \frac{n_1!}{(n_1 - c_2)!(n_1 - r_2 - c_3)!} = \binom{n_1}{r_2 + c_3}$$

 \oint This is *not* the constant M because of unnormalised densities $[M \text{ may also depend on } q_1]$. Therefore the average acceptance rate is undetermined and requires an extra Monte Carlo experiment

Capture-recapture experiments

Arnason-Schwarz's Model

Arnason–Schwarz Model

Representation of a capture recapture experiment as a collection of individual histories: for each individual captured at least once, individual characteristics of interest (location, weight, social status, &tc.) registered at each capture.

0	•	•	0	0	•	•
•	•	•	0	0	•	0
•	0	•	0	•	0	•
•	•	•	0	0	•	•
0	0	•	0	•	•	•

Possibility that individuals vanish from the *[open]* population between two capture experiments.

Capture-recapture experiments

Arnason–Schwarz's Model

Parameters of interest

Study the movements of individuals between zones/strata rather than estimating population size.

Two types of variables associated with each individual $i = 1, \ldots, n$

1 a variable for its location [partly observed],

$$\mathbf{z}_i = (z_{(i,t)}, t = 1, ..., \tau)$$

where au is the number of capture periods,

2 a binary variable for its capture history [completely observed],

$$\mathbf{x}_i = (x_{(i,t)}, t = 1, ..., \tau).$$

Capture-recapture experiments

Arnason–Schwarz's Model

Migration & deaths

 $z_{(i,t)} = r$ when individual i is alive in stratum r at time t and denote $z_{(i,t)} = \dagger$ for the case when it is dead at time t.

Variable z_i sometimes called *migration* process of individual i as when animals moving between geographical zones.

E.g.,

$$\mathbf{x}_i = 1\ 1\ 0\ 1\ 1\ 1\ 0\ 0\ 0$$
 and $\mathbf{z}_i = 1\ 2\ \cdot\ 3\ 1\ 1\ \cdot\ \cdot$

for which a possible completed \mathbf{z}_i is

$$\mathbf{z}_i = 1\ 2\ 1\ 3\ 1\ 1\ 2\ \dagger\ \dagger$$

meaning that animal died between 7th and 8th captures

Capture-recapture experiments

Arnason–Schwarz's Model

No tag recovery

We assume that

- † is absorbing
- $z_{(i,t)} = \dagger$ always corresponds to $x_{(i,t)} = 0$.
- the $(\mathbf{x}_i, \mathbf{z}_i)$'s $(i = 1, \dots, n)$ are independent
- each vector \mathbf{z}_i is a Markov chain on $\mathfrak{K} \cup \{\dagger\}$ with uniform initial probability on \mathfrak{K} .

Capture-recapture experiments

Arnason–Schwarz's Model

Reparameterisation

Parameters of the Arnason–Schwarz model are

capture probabilities

$$p_t(r) = \mathbb{P}\left(x_{(i,t)} = 1 | z_{(i,t)} = r\right)$$

② transition probabilities

$$q_t(r,s) = \mathbb{P}\left(z_{(i,t+1)} = s | z_{(i,t)} = r\right) \quad r \in \mathfrak{K}, s \in \mathfrak{K} \cup \{\dagger\}, \quad q_t(\dagger, \dagger) = 1$$

- 3 survival probabilities $\phi_t(r) = 1 q_t(r, \dagger)$
- (d) inter-strata movement probabilities $\psi_t(r,s)$ such that

$$q_t(r,s) = \phi_t(r) \times \psi_t(r,s) \quad r \in \mathfrak{K}, s \in \mathfrak{K}$$

Capture-recapture experiments

Arnason-Schwarz's Model

Modelling

Likelihood

$$\ell((\mathbf{x}_1, \mathbf{z}_1), \dots, (\mathbf{x}_n, \mathbf{z}_n)) \propto \prod_{i=1}^n \left[\prod_{t=1}^\tau p_t(z_{(i,t)})^{x_{(i,t)}} (1 - p_t(z_{(i,t)}))^{1 - x_{(i,t)}} \times \prod_{t=1}^{\tau-1} q_t(z_{(i,t)}, z_{(i,t+1)}) \right].$$

Capture-recapture experiments

Arnason–Schwarz's Model

Conjugate priors

Capture and survival parameters

$$p_t(r) \sim \mathscr{B}e(a_t(r), b_t(r)), \qquad \phi_t(r) \sim \mathscr{B}e(\alpha_t(r), \beta_t(r)),$$

where $a_t(r), \ldots$ depend on both time t and location r, For movement probabilities/Markov transitions $\psi_t(r) = (\psi_t(r, s); s \in \mathfrak{K}),$

 $\psi_t(r) \sim \mathscr{D}ir(\gamma_t(r)),$

since

$$\sum_{s \in \mathfrak{K}} \psi_t(r, s) = 1 \,,$$

where $\gamma_t(r) = (\gamma_t(r,s); s \in \mathfrak{K}).$

Capture-recapture experiments

Arnason–Schwarz's Model

lizards

Capture-recapture experiment on the migrations of lizards between three adjacent zones, with are six capture episodes.

Prior information provided by biologists on p_t (which are assumed to be zone independent) and $\phi_t(r)$, in the format of prior expectations and prior confidence intervals.

Differences in prior on p_t due to differences in capture efforts differences between episodes 1, 3, 5 and 2, 4 due to different mortality rates over winter.

Capture-recapture experiments

LArnason-Schwarz's Model

Prior information

Episode		2	3	4	5	6	
p_t	p_t Mean		0.4	0.5	0.2	0.2	
	95% int. [0		[0.2,0.6]	[0.3,0.7]	[0.05,0.4]	[0.05,0.4]	
Site			A			B,C	
Episode		t=1	3,5	t=2,4	t=1,3,5	t=2,4	
$\phi_t(r$) Mean	0.	7	0.65	0.7	0.7	
95% int.		t. [0.4,0).95]	[0.35,0.9]	[0.4,0.95]	[0.4,0.95]	

Capture-recapture experiments

Arnason-Schwarz's Model

Prior equivalence

Prior information that can be translated in a collection of beta priors

Episode	2	3	4	5	6
Dist.	$\mathscr{B}e(6,14)$	$\mathscr{B}e(8,12)$	$\mathscr{B}e(12,1)$	$(12) \mathscr{B}e(3.5, 14)$	$4) \mathscr{B}e(3.5, 14)$
Site		А			В
Episode	t=1,3,5	1	t=2,4	t=1,3,5	t=2,4
Dist.	$\mathscr{B}e(6.0, 2.5)$) Be	(6.5, 3.5)	$\mathscr{B}e(6.0, 2.5)$	$\mathscr{B}e(6.0, 2.5)$

Capture-recapture experiments

Arnason–Schwarz's Model

eurodip

Prior belief that the capture and survival rates should be constant over time

$$p_t(r) = p(r)$$
 and $\phi_t(r) = \phi(r)$

Assuming in addition that movement probabilities are time-independent,

$$\psi_t(r) = \psi(r)$$

we are left with $3[p(r)]+3[\phi(r)]+3\times 2[\phi_t(r)]=12$ parameters.

Use non-informative priors with

$$a(r)=b(r)=\alpha(r)=\beta(r)=\gamma(r,s)=1$$

Capture-recapture experiments

Arnason–Schwarz's Model

Gibbs sampling

Needs to account for the missing parts in the z_i 's, in order to simulate the parameters from the full conditional distributions

$$\pi(\theta|\mathbf{x}, \mathbf{z}) \propto \ell(\theta|\mathbf{x}, \mathbf{z}) \times \pi(\theta),$$

where ${\bf x}$ and ${\bf z}$ are the collections of the vectors of capture indicators and locations.

Particular case of *data augmentation*, where the missing data \mathbf{z} is simulated at each step t in order to reconstitute a complete sample $(\mathbf{x}, \mathbf{z}^{(t)})$ with two steps:

- Parameter simulation
- Missing location simulation

Capture-recapture experiments

Arnason–Schwarz's Model

Arnason–Schwarz Gibbs sampler

Algorithm

1

Iteration $l \ (l \ge 1)$

Parameter simulation
simulate
$$\theta^{(l)} \sim \pi(\theta | \mathbf{z}^{(l-1)}, \mathbf{x})$$
 as $(t = 1, ..., \tau)$
 $p_t^{(l)}(r) | \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{B}e\left(a_t(r) + u_t(r), b_t(r) + v_t^{(l)}(r)\right)$
 $\phi_t^{(l)}(r) | \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{B}e\left(\alpha_t(r) + \sum_{j \in \mathfrak{K}} w_t^{(l)}(r, j), \beta_t(r) + w_t^{(l)}(r, \dagger)\right)$
 $\psi_t^{(l)}(r) | \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{D}ir\left(\gamma_t(r, s) + w_t^{(l)}(r, s); s \in \mathfrak{K}\right)$

Capture-recapture experiments

Arnason-Schwarz's Model

Arnason–Schwarz Gibbs sampler (cont'd)

Capture-recapture experiments

Arnason–Schwarz's Model

Arnason–Schwarz Gibbs sampler (cont'd)

② Missing location simulation generate the unobserved $z_{(i,t)}^{(l)}$'s from the full conditional distributions

Capture-recapture experiments

Arnason–Schwarz's Model

Gibbs sampler illustrated

Take all hyperparameters equal to 1

Capture-recapture experiments

Arnason–Schwarz's Model

Gibbs sampler illust'd (cont'd)

One instance of simulated ${\bf z}$ is

1	1	1	2	1	1	2	†
1	1	1	2	1	1	1	2
2	1	2	1	2	1	1	1
1	2	1	1	2	1	1	2

which leads to the simulation of the parameters:

$$\begin{aligned} p_4^{(l)}(1) | \mathbf{x}, \mathbf{z}^{(l-1)} &\sim \mathscr{B}e(1+2, 1+0) \\ \phi_7^{(l)}(2) | \mathbf{x}, \mathbf{z}^{(l-1)} &\sim \mathscr{B}e(1+0, 1+1) \\ \psi_2^{(l)}(1, 2) | \mathbf{x}, \mathbf{z}^{(l-1)} &\sim \mathscr{B}e(1+1, 1+2) \end{aligned}$$

in the Gibbs sampler.

Capture-recapture experiments

Arnason–Schwarz's Model

eurodip

