Capture-recapture experiments

4) Capture-recapture experiments

- Inference in finite populations
- Binomial capture model
- Two-stage capture-recapture
- Open population
- Accept-Reject methods
- Arnason-Schwarz's Model

Inference in finite populations

Problem of estimating an unknown population size, N, based on partial observation of this population: domain of survey sampling

Warning
We do not cover the official Statistics/stratified type of survey based on a preliminary knowledge of the structure of the population

Numerous applications

- Biology \& Ecology for estimating the size of herds, of fish or whale populations, etc.
- Sociology \& Demography for estimating the size of populations at risk, including homeless people, prostitutes, illegal migrants, drug addicts, etc.
- official Statistics in the U.S. and French census undercount procedures
- Economics \& Finance in credit scoring, defaulting companies, etc.,
- Fraud detection phone, credit card, etc.
- Document authentication historical documents, forgery, etc.,
- Software debugging

Capture-recapture experiments
Inference in finite populations

Setup

Size N of the whole population is unknown but samples (with fixed or random sizes) can be extracted from the population.

The binomial capture model

Simplest model of all: joint capture of n^{+}individuals from a population of size N.

Population size $N \in \mathbb{N}^{*}$ is the parameter of interest, but there exists a nuisance parameter, the probability $p \in[0,1]$ of capture [under assumption of independent captures]

Sampling model

$$
n^{+} \sim \mathscr{B}(N, p)
$$

and corresponding likelihood

$$
\ell\left(N, p \mid n^{+}\right)=\binom{N}{n^{+}} p^{n^{+}}(1-p)^{N-n^{+}} \mathbb{I}_{N \geq n^{+}}
$$

Bayesian inference (1)

Under vague prior

$$
\pi(N, p) \propto N^{-1} \mathbb{I}_{\mathbb{N}^{*}}(N) \mathbb{I}_{[0,1]}(p),
$$

posterior distribution of N is

$$
\begin{aligned}
\pi\left(N \mid n^{+}\right) & \propto \frac{N!}{\left(N-n^{+}\right)!} N^{-1} \mathbb{I}_{N \geq n^{+}} \mathbb{I}_{\mathbb{N}^{*}}(N) \int_{0}^{1} p^{n^{+}}(1-p)^{N-n^{+}} d p \\
& \propto \frac{(N-1)!}{\left(N-n^{+}\right)!} \frac{\left(N-n^{+}\right)!}{(N+1)!} \mathbb{I}_{N \geq n^{+} \mathrm{V} 1} \\
& =\frac{1}{N(N+1)} \mathbb{I}_{N \geq n^{+} \mathrm{V} 1} .
\end{aligned}
$$

where $n^{+} \vee 1=\max \left(n^{+}, 1\right)$

Bayesian inference (2)

If we use the uniform prior

$$
\pi(N, p) \propto \mathbb{I}_{\{1, \ldots, S\}}(N) \mathbb{I}_{[0,1]}(p),
$$

the posterior distribution of N is

$$
\pi\left(N \mid n^{+}\right) \propto \frac{1}{N+1} \mathbb{I}_{\left\{n^{+} \vee 1, \ldots, S\right\}}(N) .
$$

Capture-recapture data

European dippers

Birds closely dependent on streams, feeding on underwater invertebrates Capture-recapture data on dippers over years 1981-1987 in 3 zone of $200 \mathrm{~km}^{2}$ in eastern France with markings and recaptures of breeding adults each year, during the breeding period from early March to early
 June.

eurodip

Each row of 7 digits corresponds to a capture-recapture story: 0 stands for absence of capture and, else, 1, 2 or 3 represents the zone of capture.
E.g.

1000000
1300000
0222122
means: first dipper only captured the first year [in zone 1], second dipper captured in years 1981-1982 and moved from zone 1 to zone 3 between those years, third dipper captured in years 1982-1987 in zone 2

The two-stage capture-recapture experiment

Extension to the above with two capture periods plus a marking stage:
(1) n_{1} individuals from a population of size N captured [sampled without replacement]
(2) captured individuals marked and released
(3) n_{2} individuals captured during second identical sampling experiment
(4) m_{2} individuals out of the n_{2} 's bear the identification mark [captured twice]

The two-stage capture-recapture model

For closed populations [fixed population size N throughout experiment, constant capture probability p for all individuals, and independence between individuals/captures], binomial models:

$$
\begin{gathered}
n_{1} \sim \mathscr{B}(N, p), \quad m_{2} \mid n_{1} \sim \mathscr{B}\left(n_{1}, p\right) \quad \text { and } \\
n_{2}-m_{2} \mid n_{1}, m_{2} \sim \mathscr{B}\left(N-n_{1}, p\right)
\end{gathered}
$$

The two-stage capture-recapture likelihood

Corresponding likelihood $\ell\left(N, p \mid n_{1}, n_{2}, m_{2}\right)$

$$
\begin{aligned}
\binom{N-n_{1}}{n_{2}-m_{2}} & p^{n_{2}-m_{2}}(1-p)^{N-n_{1}-n_{2}+m_{2}} \mathbb{I}_{\left\{0, \ldots, N-n_{1}\right\}}\left(n_{2}-m_{2}\right) \\
& \times\binom{ n_{1}}{m_{2}} p^{m_{2}}(1-p)^{n_{1}-m_{2}}\binom{N}{n_{1}} p^{n_{1}}(1-p)^{N-n_{1}} \mathbb{I}_{\{0, \ldots, N\}}\left(n_{1}\right) \\
& \propto \frac{N!}{\left(N-n_{1}-n_{2}+m_{2}\right)!} p^{n_{1}+n_{2}}(1-p)^{2 N-n_{1}-n_{2}} \mathbb{I}_{N \geq n^{+}} \\
& \propto\binom{N}{n^{+}} p^{n^{c}}(1-p)^{2 N-n^{c}} \mathbb{I}_{N \geq n^{+}}
\end{aligned}
$$

where $n^{c}=n_{1}+n_{2}$ and $n^{+}=n_{1}+\left(n_{2}-m_{2}\right)$ are total number of captures/captured individuals over both periods

Bayesian inference (1)

Under prior $\pi(N, p)=\pi(N) \pi(p)$ where $\pi(p)$ is $\mathscr{U}([0,1])$, conditional posterior distribution on p is

$$
\pi\left(p \mid N, n_{1}, n_{2}, m_{2}\right)=\pi\left(p \mid N, n^{c}\right) \propto p^{n^{c}}(1-p)^{2 N-n^{c}}
$$

that is,

$$
p \mid N, n^{c} \sim \mathscr{B} e\left(n^{c}+1,2 N-n^{c}+1\right) .
$$

Marginal posterior distribution of N more complicated. If $\pi(N)=\mathbb{I}_{\mathbb{N}^{*}}(N)$,

$$
\pi\left(N \mid n_{1}, n_{2}, m_{2}\right) \propto\binom{N}{n^{+}} B\left(n^{c}+1,2 N-n^{c}+1\right) \mathbb{I}_{N \geq n^{+} \vee 1}
$$

[Beta-Pascal distribution]

Bayesian inference (2)

Same problem if $\pi(N)=N^{-1} \mathbb{I}_{\mathbb{N}^{*}}(N)$.

Computations

Since $N \in \mathbb{N}$, always possible to approximate the missing normalizing factor in $\pi\left(N \mid n_{1}, n_{2}, m_{2}\right)$ by summing in N. Approximation errors become a problem when N and n^{+}are large.

Under proper uniform prior,

$$
\pi(N) \propto \mathbb{I}_{\{1, \ldots, S\}}(N)
$$

posterior distribution of N proportional to

$$
\pi\left(N \mid n^{+}\right) \propto\binom{N}{n^{+}} \frac{\Gamma\left(2 N-n^{c}+1\right)}{\Gamma(2 N+2)} \mathbb{I}_{\left\{n^{+} \vee 1, \ldots, S\right\}}(N) .
$$

and can be computed with no approximation error.

The Darroch model

Simpler version of the above: conditional on both samples sizes n_{1} and n_{2},

$$
m_{2} \mid n_{1}, n_{2} \sim \mathscr{H}\left(N, n_{2}, n_{1} / N\right) .
$$

Under uniform prior on $N \sim \mathscr{U}(\{1, \ldots, S\})$, posterior distribution of N

$$
\pi\left(N \mid m_{2}\right) \propto\binom{n_{1}}{m_{2}}\binom{N-n_{1}}{n_{2}-m_{2}} /\binom{N}{n_{2}} \mathbb{I}_{\{n+\vee 1, \ldots, S\}}(N)
$$

and posterior expectations computed numerically by simple summations.

eurodip

For the two first years and $S=400$, posterior distribution of N for the Darroch model given by
$\pi\left(N \mid m_{2}\right) \propto\left(n-n_{1}\right)!\left(N-n_{2}\right)!/\left\{\left(n-n_{1}-n_{2}+m_{2}\right)!N!\right\} \mathbb{I}_{\{71, \ldots, 400\}}(N)$,
with inverse normalization factor

$$
\sum_{k=71}^{400}\left(k-n_{1}\right)!\left(k-n_{2}\right)!/\left\{\left(k-n_{1}-n_{2}+m_{2}\right)!k!\right\}
$$

Influence of prior hyperparameter S (for $m_{2}=11$):

S	100	150	200	250	300	350	400	450	500
$\mathbb{E}\left[N \mid m_{2}\right]$	95	125	141	148	151	151	152	152	152

Gibbs sampler for 2-stage capture-recapture

If $n^{+}>0$, both conditional posterior distributions are standard, since

$$
\begin{aligned}
p \mid n^{c}, N & \sim \mathscr{B} e\left(n^{c}+1,2 N-n^{c}+1\right) \\
N-n^{+} \mid n^{+}, p & \sim \mathscr{N} e g\left(n^{+}, 1-(1-p)^{2}\right) .
\end{aligned}
$$

Therefore, joint distribution of (N, p) can be approximated by a Gibbs sampler

T-stage capture-recapture model

Further extension to the two-stage capture-recapture model: series of T consecutive captures.
n_{t} individuals captured at period $1 \leq t \leq T$, and m_{t} recaptured individuals (with the convention that $m_{1}=0$)

$$
n_{1} \sim \mathscr{B}(N, p)
$$

and, conditional on earlier captures/recaptures $(2 \leq j \leq T)$,

$$
\begin{array}{r}
m_{j} \sim \mathscr{B}\left(\sum_{t=1}^{j-1}\left(n_{t}-m_{t}\right), p\right) \text { and } \\
n_{j}-m_{j} \sim \mathscr{B}\left(N-\sum_{t=1}^{j-1}\left(n_{t}-m_{t}\right), p\right) .
\end{array}
$$

$\left\llcorner_{\text {Capture-recapture experiments }}\right.$
Two-stage capture-recapture

T-stage capture-recapture likelihood

Likelihood $\ell\left(N, p \mid n_{1}, n_{2}, m_{2} \ldots, n_{T}, m_{T}\right)$ given by

$$
\begin{aligned}
& \binom{N}{n_{1}} p^{n_{1}}(1-p)^{N-n_{1}} \prod_{j=2}^{T}\left[\binom{N-\sum_{t=1}^{j-1}\left(n_{t}-m_{t}\right)}{n_{j}-m_{j}} p^{n_{j}-m_{j}}\right. \\
& \quad \times(1-p)^{N-\sum_{t=1}^{j}\left(n_{t}-m_{t}\right)\binom{\sum_{t=1}^{j-1}\left(n_{t}-m_{t}\right)}{m_{j}}} \\
& \left.\quad \times p^{m_{j}}(1-p)^{\sum_{t=1}^{j-1}\left(n_{t}-m_{t}\right)-m_{j}}\right]
\end{aligned}
$$

Sufficient statistics

Simplifies into
$\ell\left(N, p \mid n_{1}, n_{2}, m_{2} \ldots, n_{T}, m_{T}\right) \propto \frac{N!}{\left(N-n^{+}\right)!} p^{n^{c}}(1-p)^{T N-n^{c}} \mathbb{I}_{N \geq n^{+}}$ with the sufficient statistics

$$
n^{+}=\sum_{t=1}^{T}\left(n_{t}-m_{t}\right) \quad \text { and } \quad n^{c}=\sum_{t=1}^{T} n_{t}
$$

total number of captured individuals/captures over the T periods

Bayesian inference (1)

Under noninformative prior $\pi(N, p)=1 / N$, joint posterior

$$
\pi\left(N, p \mid n^{+}, n^{c}\right) \propto \frac{(N-1)!}{\left(N-n^{+}\right)!} p^{n^{c}}(1-p)^{T N-n^{c}} \mathbb{I}_{N \geq n^{+} \vee 1}
$$

leads to conditional posterior

$$
p \mid N, n^{+}, n^{c} \sim \mathscr{B} e\left(n^{c}+1, T N-n^{c}+1\right)
$$

and marginal posterior

$$
\pi\left(N \mid n^{+}, n^{c}\right) \propto \frac{(N-1)!}{\left(N-n^{+}\right)!} \frac{\left(T N-n^{c}\right)!}{(T N+1)!} \mathbb{I}_{N \geq n^{+}, \mathrm{v} 1}
$$

which is computable [under previous provisions].
Alternative Gibbs sampler also available.

Bayesian inference (2)

Under prior $N \sim \mathscr{U}(\{1, \ldots, S\})$ and $p \sim \mathscr{U}([0,1])$,

$$
\pi\left(N \mid n^{+}\right) \propto\binom{N}{n^{+}} \frac{\left(T N-n^{c}\right)!}{(T N+1)!} \mathbb{I}_{\left\{n^{+} \vee 1, \ldots, S\right\}}(N)
$$

eurodip

For the whole set of observations, $T=7, n^{+}=294$ and $n^{c}=519$.
For $S=400$, the posterior expectation of N is equal to 372.89 .
For $S=2500$, it is 373.99 .

Computational difficulties

E.g., heterogeneous capture-recapture model where individuals are captured at time $1 \leq t \leq T$ with probability p_{t} with both N and the p_{t} 's are unknown.

Corresponding likelihood

$$
\begin{aligned}
& \ell\left(N, p_{1}, \ldots, p_{T} \mid n_{1}, n_{2}, m_{2} \ldots, n_{T}, m_{T}\right) \\
& \\
& \propto \frac{N!}{\left(N-n^{+}\right)!} \prod_{t=1}^{T} p_{t}^{n_{t}}\left(1-p_{t}\right)^{N-n_{t}} .
\end{aligned}
$$

Computational difficulties (cont'd)

Associated prior $N \sim \mathscr{P}(\lambda)$ and

$$
\alpha_{t}=\log \left(p_{t} / 1-p_{t}\right) \sim \mathscr{N}\left(\mu_{t}, \sigma^{2}\right)
$$

where the μ_{t} 's and σ are known.
Posterior

$$
\begin{aligned}
\pi\left(\alpha_{1}, \ldots, \alpha_{T}, N \mid, n_{1}, \ldots, n_{T}\right) \propto & \frac{N!}{\left(N-n^{+}\right)!} \frac{\lambda^{N}}{N!} \prod_{t=1}^{T}\left(1+e^{\alpha_{t}}\right)^{-N} \\
& \times \prod_{t=1}^{T} \exp \left\{\alpha_{t} n_{t}-\frac{1}{2 \sigma^{2}}\left(\alpha_{t}-\mu_{t}\right)^{2}\right\}
\end{aligned}
$$

much less manageable computationally.

Open populations

More realistically, population size does not remain fixed over time: probability q for each individual to leave the population at each time [or between each capture episode]

First occurrence of missing variable model.
Simplified version where only individuals captured during the first experiment are marked and their subsequent recaptures are registered.

Working example

Three successive capture experiments with

$$
\begin{aligned}
n_{1} & \sim \mathscr{B}(N, p), \\
r_{1} \mid n_{1} & \sim \mathscr{B}\left(n_{1}, q\right), \\
c_{2} \mid n_{1}, r_{1} & \sim \mathscr{B}\left(n_{1}-r_{1}, p\right), \\
r_{2} \mid n_{1}, r_{1} & \sim \mathscr{B}\left(n_{1}-r_{1}, q\right) \\
c_{3} \mid n_{1}, r_{1}, r_{2} & \sim \mathscr{B}\left(n_{1}-r_{1}-r_{2}, p\right)
\end{aligned}
$$

where only n_{1}, c_{2} and c_{3} are observed.
Variables r_{1} and r_{2} not available and therefore part of unknowns like parameters N, p and q.

Bayesian inference

Likelihood

$$
\begin{gathered}
\binom{N}{n_{1}} p^{n_{1}}(1-p)^{N-n_{1}}\binom{n_{1}}{r_{1}} q^{r_{1}}(1-q)^{n_{1}-r_{1}}\binom{n_{1}-r_{1}}{c_{2}} p^{c_{2}}(1-p)^{n_{1}-r_{1}-c_{2}} \\
\binom{n_{1}-r_{1}}{r_{2}} q^{r_{2}}(1-q)^{n_{1}-r_{1}-r_{2}}\binom{n_{1}-r_{1}-r_{2}}{c_{3}} p^{c_{3}}(1-p)^{n_{1}-r_{1}-r_{2}-c_{3}}
\end{gathered}
$$

and prior

$$
\pi(N, p, q)=N^{-1} \mathbb{I}_{[0,1]}(p) \mathbb{I}_{[0,1]}(q)
$$

Full conditionals for Gibbs sampling

$$
\begin{aligned}
& \pi\left(p \mid N, q, \mathcal{D}^{*}\right) \propto p^{n_{+}}(1-p)^{u_{+}} \\
& \pi\left(q \mid N, p, \mathcal{D}^{*}\right) \propto q^{c_{1}+c_{2}}(1-q)^{2 n_{1}-2 r_{1}-r_{2}} \\
& \pi\left(N \mid p, q, \mathcal{D}^{*}\right) \propto \frac{(N-1)!}{\left(N-n_{1}\right)!}(1-p)^{N} \mathbb{I}_{N \geq n_{1}} \\
& \pi\left(r_{1} \mid p, q, n_{1}, c_{2}, c_{3}, r_{2}\right) \propto \frac{\left(n_{1}-r_{1}\right)!q^{r_{1}}(1-q)^{-2 r_{1}}(1-p)^{-2 r_{1}}}{r_{1}!\left(n_{1}-r_{1}-r_{2}-c_{3}\right)!\left(n_{1}-c_{2}-r_{1}\right)!} \\
& \pi\left(r_{2} \mid p, q, n_{1}, c_{2}, c_{3}, r_{1}\right) \propto \frac{q^{r_{2}[(1-p)(1-q)]^{-r_{2}}}}{r_{2}!\left(n_{1}-r_{1}-r_{2}-c_{3}\right)!} \\
& \text { where }
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{D}^{*} & =\left(n_{1}, c_{2}, c_{3}, r_{1}, r_{2}\right) \\
u_{1} & =N-n_{1}, u_{2}=n_{1}-r_{1}-c_{2}, u_{3}=n_{1}-r_{1}-r_{2}-c_{3} \\
n_{+} & =n_{1}+c_{2}+c_{3}, u_{+}=u_{1}+u_{2}+u_{3}
\end{aligned}
$$

Full conditionals (2)

Therefore,

$$
\begin{aligned}
p \mid N, q, \mathcal{D}^{*} & \sim \mathcal{B} e\left(n_{+}+1, u_{+}+1\right) \\
q \mid N, p, \mathcal{D}^{*} & \sim \mathcal{B} e\left(r_{1}+r_{2}+1,2 n_{1}-2 r_{1}-r_{2}+1\right) \\
N-n_{1} \mid p, q, \mathcal{D}^{*} & \sim \mathcal{N} e g\left(n_{1}, p\right) \\
r_{2} \mid p, q, n_{1}, c_{2}, c_{3}, r_{1} & \sim \mathcal{B}\left(n_{1}-r_{1}-c_{3}, \frac{q}{1+(1-q)(1-p)}\right)
\end{aligned}
$$

r_{1} has a less conventional distribution, but, since n_{1} not extremely large, possible to compute the probability that r_{1} is equal to one of the values in $\left\{0,1, \ldots, \min \left(n_{1}-r_{2}-c_{3}, n_{1}-c_{2}\right)\right\}$.

Capture-recapture experiments
Open population

eurodip

$n_{1}=22, c_{2}=11$ and $c_{3}=6$ MCMC approximations to the posterior expectations of N and p equal to 57 and 0.40

Capture-recapture experiments
Open population

eurodip

$n_{1}=22, c_{2}=11$ and $c_{3}=6$ MCMC approximations to the posterior expectations of N and p equal to 57 and 0.40

Accept-Reject methods

- Many distributions from which it is difficult, or even impossible, to directly simulate.
- Technique that only require us to know the functional form of the target π of interest up to a multiplicative constant.
- Key to this method is to use a proposal density g [as in Metropolis-Hastings]

Principle

Given a target density π, find a density g and a constant M such that

$$
\pi(x) \leq M g(x)
$$

on the support of π.

Accept-Reject algorithm is then
(1) Generate $X \sim g, U \sim \mathcal{U}_{[0,1]}$;
(2) Accept $Y=X$ if $U \leq \frac{f(X)}{M g(X)}$;
(3) Return to 1 . otherwise.

Validation of Accept-Reject

This algorithm produces a variable Y distributed according to f

Fundamental theorem of simulation

Simulating

$$
X \sim f(x)
$$

is equivalent to simulating

$$
(X, U) \sim \mathcal{U}\{(x, u): 0<u<\pi(x)\}
$$

Two interesting properties:

- First, Accept-Reject provides a generic method to simulate from any density π that is known up to a multiplicative factor Particularly important for Bayesian calculations since

$$
\pi(\theta \mid x) \propto \pi(\theta) f(x \mid \theta)
$$

is specified up to a normalizing constant

- Second, the probability of acceptance in the algorithm is $1 / M$, e.g., expected number of trials until a variable is accepted is M

Application to the open population model

Since full conditional distribution of r_{1} non-standard, rather than using exhaustive enumeration of all probabilities
$\mathbb{P}\left(m_{1}=k\right)=\pi(k)$ and then sampling from this distribution, try to use a proposal based on a binomial upper bound.

Take g equal to the binomial $\mathscr{B}\left(n_{1}, q_{1}\right)$ with

$$
q_{1}=q /(1-q)^{2}(1-p)^{2}
$$

Proposal bound

$\pi(k) / g(k)$ proportional to

$$
\frac{\binom{n_{1}-c_{2}}{k}\left(1-q_{1}\right)^{k}\binom{n_{1}-k}{r_{2}+c_{3}}}{\binom{n_{1}}{k}}=\frac{\left(n_{1}-c_{2}\right)!}{\left(r_{2}+c_{3}\right)!n_{1}!} \frac{\left(\left(n_{1}-k\right)!\right)^{2}\left(1-q_{1}\right)^{k}}{\left(n_{1}-c_{2}-k\right)!\left(n_{1}-r_{2}-c_{3}-k\right)!}
$$

decreasing in k, therefore bounded by

$$
\frac{\left(n_{1}-c_{2}\right)!}{\left(r_{2}+c_{3}\right)!} \frac{n_{1}!}{\left(n_{1}-c_{2}\right)!\left(n_{1}-r_{2}-c_{3}\right)!}=\binom{n_{1}}{r_{2}+c_{3}}
$$

This is not the constant M because of unnormalised densities [M may also depend on q_{1}]. Therefore the average acceptance rate is undetermined and requires an extra Monte Carlo experiment

Arnason-Schwarz Model

Representation of a capture recapture experiment as a collection of individual histories: for each individual captured at least once, individual characteristics of interest (location, weight, social status, \&tc.) registered at each capture.

Possibility that individuals vanish from the [open] population between two capture experiments.

Parameters of interest

Study the movements of individuals between zones/strata rather than estimating population size.

Two types of variables associated with each individual $i=1, \ldots, n$
(1) a variable for its location [partly observed],

$$
\mathbf{z}_{i}=\left(z_{(i, t)}, t=1, . ., \tau\right)
$$

where τ is the number of capture periods,
(2) a binary variable for its capture history [completely observed],

$$
\mathbf{x}_{i}=\left(x_{(i, t)}, t=1, . ., \tau\right)
$$

Migration \& deaths

$z_{(i, t)}=r$ when individual i is alive in stratum r at time t and denote $z_{(i, t)}=\dagger$ for the case when it is dead at time t.

Variable \mathbf{z}_{i} sometimes called migration process of individual i as when animals moving between geographical zones.
E.g.,

$$
\mathbf{x}_{i}=110111000 \quad \text { and } \quad \mathbf{z}_{i}=12 \cdot 311 \cdots
$$

for which a possible completed \mathbf{z}_{i} is

$$
\mathbf{z}_{i}=1213112 \dagger \dagger
$$

meaning that animal died between 7th and 8th captures

Capture-recapture experiments

- Arnason-Schwarz's Model

No tag recovery

We assume that

- \dagger is absorbing
- $z_{(i, t)}=\dagger$ always corresponds to $x_{(i, t)}=0$.
- the $\left(\mathbf{x}_{i}, \mathbf{z}_{i}\right)$'s $(i=1, \ldots, n)$ are independent
- each vector \mathbf{z}_{i} is a Markov chain on $\mathfrak{K} \cup\{\dagger\}$ with uniform initial probability on \mathfrak{K}.

Reparameterisation

Parameters of the Arnason-Schwarz model are
(1) capture probabilities

$$
p_{t}(r)=\mathbb{P}\left(x_{(i, t)}=1 \mid z_{(i, t)}=r\right)
$$

(2) transition probabilities

$$
q_{t}(r, s)=\mathbb{P}\left(z_{(i, t+1)}=s \mid z_{(i, t)}=r\right) \quad r \in \mathfrak{K}, s \in \mathfrak{K} \cup\{\dagger\}, \quad q_{t}(\dagger, \dagger)=1
$$

(3) survival probabilities $\phi_{t}(r)=1-q_{t}(r, \dagger)$
(4) inter-strata movement probabilities $\psi_{t}(r, s)$ such that

$$
q_{t}(r, s)=\phi_{t}(r) \times \psi_{t}(r, s) \quad r \in \mathfrak{K}, s \in \mathfrak{K} .
$$

Capture-recapture experiments
LArnason-Schwarz's Model

Modelling

Likelihood

$$
\begin{aligned}
\ell\left(\left(\mathbf{x}_{1}, \mathbf{z}_{1}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{z}_{n}\right)\right) \propto & \prod_{i=1}^{n}\left[\prod_{t=1}^{\tau} p_{t}\left(z_{(i, t)}\right)^{x_{(i, t)}}\left(1-p_{t}\left(z_{(i, t)}\right)\right)^{1-x_{(i, t)} \times}\right. \\
& \left.\prod_{t=1}^{\tau-1} q_{t}\left(z_{(i, t)}, z_{(i, t+1)}\right)\right]
\end{aligned}
$$

Conjugate priors

Capture and survival parameters

$$
p_{t}(r) \sim \mathscr{B} e\left(a_{t}(r), b_{t}(r)\right), \quad \phi_{t}(r) \sim \mathscr{B} e\left(\alpha_{t}(r), \beta_{t}(r)\right),
$$

where $a_{t}(r), \ldots$ depend on both time t and location r, For movement probabilities/Markov transitions $\psi_{t}(r)=\left(\psi_{t}(r, s) ; s \in \mathfrak{K}\right)$,

$$
\psi_{t}(r) \sim \mathscr{D} i r\left(\gamma_{t}(r)\right),
$$

since

$$
\sum_{s \in \mathfrak{K}} \psi_{t}(r, s)=1
$$

where $\gamma_{t}(r)=\left(\gamma_{t}(r, s) ; s \in \mathfrak{K}\right)$.

lizards

Capture-recapture experiment on the migrations of lizards between three adjacent zones, with are six capture episodes.

Prior information provided by biologists on p_{t} (which are assumed to be zone independent) and $\phi_{t}(r)$, in the format of prior expectations and prior confidence intervals.

Differences in prior on p_{t} due to differences in capture efforts differences between episodes $1,3,5$ and 2,4 due to different mortality rates over winter.

Capture-recapture experiments
Arnason-Schwarz's Model

Prior information

	Episode	2	3	4	5	6
p_{t}	Mean	$\begin{gathered} 0.3 \\ {[0.1,0.5]} \end{gathered}$	0.4	0.5	0.2	0.2
	95\% int.		[0.2,0.6]	[0.3,0.7]	[0.05, 0.4]	[0.05, 0.4]
	Site Episode		A			B, C
		$\mathrm{t}=1,3,5$		$\mathrm{t}=2,4$	$\mathrm{t}=1,3,5$	$\mathrm{t}=2,4$
$\phi_{t}(r)$	Mean	0.7		0.65	0.7	0.7
	95% int.	[0.4,0.95]		[0.35,0.9]	[0.4, 0.95]	[0.4,0.95]

Capture-recapture experiments

- Arnason-Schwarz's Model

Prior equivalence

Prior information that can be translated in a collection of beta priors

Episode	2	3	4		5	6
Dist.	$\mathscr{B} e(6,14)$	$\mathscr{B} e(8,12)$	$e(12,12)$	$\mathscr{B} e(3.5,14)$	$\mathscr{B} e(3.5,14)$	
Site						A
$\mathrm{t}=2,4$	$\mathrm{t}=1,3,5$	B	$\mathrm{t}=2,4$			
Episode	$\mathrm{t}=1,3,5$		$\mathrm{t}=2.4$			
Dist.	$\mathscr{B} e(6.0,2.5)$	$e(6.5,3.5)$	$\mathscr{B} e(6.0,2.5)$	$\mathscr{B} e(6.0,2.5)$		

eurodip

Prior belief that the capture and survival rates should be constant over time

$$
p_{t}(r)=p(r) \quad \text { and } \quad \phi_{t}(r)=\phi(r)
$$

Assuming in addition that movement probabilities are time-independent,

$$
\psi_{t}(r)=\psi(r)
$$

we are left with $3[p(r)]+3[\phi(r)]+3 \times 2\left[\phi_{t}(r)\right]=12$ parameters.
Use non-informative priors with

$$
a(r)=b(r)=\alpha(r)=\beta(r)=\gamma(r, s)=1
$$

Gibbs sampling

Needs to account for the missing parts in the \mathbf{z}_{i} 's, in order to simulate the parameters from the full conditional distributions

$$
\pi(\theta \mid \mathbf{x}, \mathbf{z}) \propto \ell(\theta \mid \mathbf{x}, \mathbf{z}) \times \pi(\theta)
$$

where \mathbf{x} and \mathbf{z} are the collections of the vectors of capture indicators and locations.

Particular case of data augmentation, where the missing data \mathbf{z} is simulated at each step t in order to reconstitute a complete sample $\left(\mathbf{x}, \mathbf{z}^{(t)}\right)$ with two steps:

- Parameter simulation
- Missing location simulation

Arnason-Schwarz Gibbs sampler

Algorithm

Iteration $l(l \geq 1)$
(1) Parameter simulation
simulate $\theta^{(l)} \sim \pi\left(\theta \mid \mathbf{z}^{(l-1)}, \mathbf{x}\right)$ as $(t=1, \ldots, \tau)$

$$
\begin{aligned}
& p_{t}^{(l)}(r) \mid \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{B} e\left(a_{t}(r)+u_{t}(r), b_{t}(r)+v_{t}^{(l)}(r)\right) \\
& \phi_{t}^{(l)}(r) \mid \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{B} e\left(\alpha_{t}(r)+\sum_{j \in \mathfrak{K}} w_{t}^{(l)}(r, j), \beta_{t}(r)+w_{t}^{(l)}(r, \dagger)\right) \\
& \psi_{t}^{(l)}(r) \mid \mathbf{x}, \mathbf{z}^{(l-1)} \sim \mathscr{D} i r\left(\gamma_{t}(r, s)+w_{t}^{(l)}(r, s) ; s \in \mathfrak{K}\right)
\end{aligned}
$$

Arnason-Schwarz Gibbs sampler (cont'd)

where

$$
\begin{aligned}
w_{t}^{(l)}(r, s) & =\sum_{i=1}^{n} \mathbb{I}_{\left(z_{(i, t)}^{(l-1)}=r, z_{(i, t+1)}^{(l-1)}=s\right)} \\
u_{t}^{(l)}(r) & =\sum_{i=1}^{n} \mathbb{I}_{\left(x_{(i, t)}=1, z_{(i, t)}^{(l-1)}=r\right)} \\
v_{t}^{(l)}(r) & =\sum_{i=1}^{n} \mathbb{I}_{\left(x_{(i, t)}=0, z_{(i, t)}^{(l-1)}=r\right)}
\end{aligned}
$$

Arnason-Schwarz Gibbs sampler (cont'd)

(2) Missing location simulation

generate the unobserved $z_{(i, t)}^{(l)}$'s from the full conditional distributions

$$
\begin{aligned}
\mathbb{P}\left(z_{(i, 1)}^{(l)}=\right. & \left.s \mid x_{(i, 1)}, z_{(i, 2)}^{(l-1)}, \theta^{(l)}\right) \propto q_{1}^{(l)}\left(s, z_{(i, 2)}^{(l-1)}\right)\left(1-p_{1}^{(l)}(s)\right), \\
\mathbb{P}\left(z_{(i, t)}^{(l)}=\right. & \left.s \mid x_{(i, t)}, z_{(i, t-1)}^{(l)}, z_{(i, t+1)}^{(l-1)}, \theta^{(l)}\right) \propto q_{t-1}^{(l)}\left(z_{(i, t-1)}^{(l)}, s\right) \\
& \quad \times q_{t}\left(s, z_{(i, t+1)}^{(l-1)}\right)\left(1-p_{t}^{(l)}(s)\right), \\
\mathbb{P}\left(z_{(i, \tau)}^{(l)}=\right. & \left.s \mid x_{(i, \tau)}, z_{(i, \tau-1)}^{(l)}, \theta^{(l)}\right) \propto q_{\tau-1}^{(l)}\left(z_{(i, \tau-1)}^{(l)}, s\right)\left(1-p_{\tau}(s)^{(l)}\right) .
\end{aligned}
$$

Gibbs sampler illustrated

Take $\mathfrak{K}=\{1,2\}, n=4, m=8$ and ,for \mathbf{x},

1	1	1	.	.	1	.	.	.
2	1	.	1	.	1	.	2	1
3	2	1	.	1	2	.	.	1
4	1	.	.	1	2	1	1	2

Take all hyperparameters equal to 1

Gibbs sampler illust'd (cont'd)

One instance of simulated \mathbf{z} is

1	1	1	2	1	1	2	\dagger
1	1	1	2	1	1	1	2
2	1	2	1	2	1	1	1
1	2	1	1	2	1	1	2

which leads to the simulation of the parameters:

$$
\begin{aligned}
p_{4}^{(l)}(1) \mid \mathbf{x}, \mathbf{z}^{(l-1)} & \sim \mathscr{B} e(1+2,1+0) \\
\phi_{7}^{(l)}(2) \mid \mathbf{x}, \mathbf{z}^{(l-1)} & \sim \mathscr{B} e(1+0,1+1) \\
\psi_{2}^{(l)}(1,2) \mid \mathbf{x}, \mathbf{z}^{(l-1)} & \sim \mathscr{B} e(1+1,1+2)
\end{aligned}
$$

in the Gibbs sampler.
$\left\llcorner_{\text {Capture-recapture experiments }}\right.$
L Arnason-Schwarz's Model

eurodip

Fast convergence

