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Capture-recapture experiments

Inference in finite populations

Inference in finite populations

Problem of estimating an unknown population size, N , based on
partial observation of this population: domain of survey sampling

Warning

We do not cover the official Statistics/stratified type of survey
based on a preliminary knowledge of the structure of the population
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Capture-recapture experiments

Inference in finite populations

Numerous applications

Biology & Ecology for estimating the size of herds, of fish or
whale populations, etc.

Sociology & Demography for estimating the size of
populations at risk, including homeless people, prostitutes,
illegal migrants, drug addicts, etc.

official Statistics in the U.S. and French census undercount
procedures

Economics & Finance in credit scoring, defaulting companies,
etc.,

Fraud detection phone, credit card, etc.

Document authentication historical documents, forgery, etc.,

Software debugging
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Capture-recapture experiments

Inference in finite populations

Setup

Size N of the whole population is unknown but samples (with
fixed or random sizes) can be extracted from the population.
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Binomial capture model

The binomial capture model

Simplest model of all: joint capture of n+ individuals from a
population of size N .

Population size N ∈ N
∗ is the parameter of interest, but there

exists a nuisance parameter, the probability p ∈ [0, 1] of capture
[under assumption of independent captures]

Sampling model
n+ ∼ B(N, p)

and corresponding likelihood

ℓ(N, p|n+) =

(
N

n+

)
pn+

(1− p)N−n+
IN≥n+ .
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Binomial capture model

Bayesian inference (1)

Under vague prior

π(N, p) ∝ N−1
IN∗(N)I[0,1](p) ,

posterior distribution of N is

π(N |n+) ∝ N !

(N − n+)!
N−1

IN≥n+IN∗(N)

∫ 1

0

pn+

(1− p)N−n+

dp

∝ (N − 1)!

(N − n+)!

(N − n+)!

(N + 1)!
IN≥n+∨1

=
1

N(N + 1)
IN≥n+∨1 .

where n+ ∨ 1 = max(n+, 1)

241 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Capture-recapture experiments

Binomial capture model

Bayesian inference (2)

If we use the uniform prior

π(N, p) ∝ I{1,...,S}(N)I[0,1](p) ,

the posterior distribution of N is

π(N |n+) ∝ 1

N + 1
I{n+∨1,...,S}(N) .
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Binomial capture model

Capture-recapture data

European dippers

Birds closely dependent on streams,
feeding on underwater invertebrates
Capture-recapture data on dippers
over years 1981–1987 in 3 zone of
200 km2 in eastern France with
markings and recaptures of breeding
adults each year, during the breeding
period from early March to early
June.
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Binomial capture model

eurodip

Each row of 7 digits corresponds to a capture-recapture story: 0
stands for absence of capture and, else, 1, 2 or 3 represents the
zone of capture.

E.g.

1 0 0 0 0 0 0

1 3 0 0 0 0 0

0 2 2 2 1 2 2

means: first dipper only captured the first year [in zone 1], second
dipper captured in years 1981–1982 and moved from zone 1 to
zone 3 between those years, third dipper captured in years
1982–1987 in zone 2
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Two-stage capture-recapture

The two-stage capture-recapture experiment

Extension to the above with two capture periods plus a marking
stage:

1 n1 individuals from a population of size N captured [sampled
without replacement]

2 captured individuals marked and released

3 n2 individuals captured during second identical sampling
experiment

4 m2 individuals out of the n2’s bear the identification mark
[captured twice]
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Capture-recapture experiments

Two-stage capture-recapture

The two-stage capture-recapture model

For closed populations [fixed population size N throughout
experiment, constant capture probability p for all individuals, and
independence between individuals/captures], binomial models:

n1 ∼ B(N, p) , m2|n1 ∼ B(n1, p) and

n2 −m2|n1,m2 ∼ B(N − n1, p) .
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Two-stage capture-recapture

The two-stage capture-recapture likelihood

Corresponding likelihood ℓ(N, p|n1, n2,m2)

(
N − n1

n2 −m2

)
pn2−m2(1− p)N−n1−n2+m2I{0,...,N−n1}(n2 −m2)

×
(
n1

m2

)
pm2(1− p)n1−m2

(
N

n1

)
pn1(1− p)N−n1I{0,...,N}(n1)

∝ N !

(N − n1 − n2 +m2)!
pn1+n2(1− p)2N−n1−n2IN≥n+

∝
(
N

n+

)
pnc

(1− p)2N−nc

IN≥n+

where nc = n1 + n2 and n+ = n1 + (n2 −m2) are total number of
captures/captured individuals over both periods
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Two-stage capture-recapture

Bayesian inference (1)

Under prior π(N, p) = π(N)π(p) where π(p) is U ([0, 1]),
conditional posterior distribution on p is

π(p|N,n1, n2,m2) = π(p|N,nc) ∝ pnc
(1− p)2N−nc

,

that is,
p|N,nc ∼ Be(nc + 1, 2N − nc + 1).

Marginal posterior distribution of N more complicated. If
π(N) = IN∗(N),

π(N |n1, n2,m2) ∝
(
N

n+

)
B(nc + 1, 2N − nc + 1)IN≥n+∨1

[Beta-Pascal distribution]
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Two-stage capture-recapture

Bayesian inference (2)
Same problem if π(N) = N−1

IN∗(N).

Computations

Since N ∈ N, always possible to approximate the missing
normalizing factor in π(N |n1, n2,m2) by summing in N .
Approximation errors become a problem when N and n+ are large.

Under proper uniform prior,

π(N) ∝ I{1,...,S}(N) ,

posterior distribution of N proportional to

π(N |n+) ∝
(
N

n+

)
Γ(2N − nc + 1)

Γ(2N + 2)
I{n+∨1,...,S}(N) .

and can be computed with no approximation error.
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Two-stage capture-recapture

The Darroch model

Simpler version of the above: conditional on both samples sizes n1

and n2,
m2|n1, n2 ∼ H (N,n2, n1/N) .

Under uniform prior on N ∼ U ({1, . . . , S}), posterior distribution
of N

π(N |m2) ∝
(
n1

m2

)(
N − n1

n2 −m2

)/(
N

n2

)
I{n+∨1,...,S}(N)

and posterior expectations computed numerically by simple
summations.
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Two-stage capture-recapture

eurodip

For the two first years and S = 400, posterior distribution of N for
the Darroch model given by

π(N |m2) ∝ (n−n1)!(N−n2)!
/
{(n−n1−n2+m2)!N !} I{71,...,400}(N) ,

with inverse normalization factor

400∑

k=71

(k − n1)!(k − n2)!
/
{(k − n1 − n2 +m2)!k!} .

Influence of prior hyperparameter S (for m2 = 11):

S 100 150 200 250 300 350 400 450 500
E[N |m2] 95 125 141 148 151 151 152 152 152
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Two-stage capture-recapture

Gibbs sampler for 2-stage capture-recapture

If n+ > 0, both conditional posterior distributions are standard,
since

p|nc, N ∼ Be(nc + 1, 2N − nc + 1)

N − n+|n+, p ∼ N eg(n+, 1− (1− p)2) .

Therefore, joint distribution of (N, p) can be approximated by a
Gibbs sampler
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Two-stage capture-recapture

T -stage capture-recapture model
Further extension to the two-stage capture-recapture model: series
of T consecutive captures.
nt individuals captured at period 1 ≤ t ≤ T , and mt recaptured
individuals (with the convention that m1 = 0)

n1 ∼ B(N, p)

and, conditional on earlier captures/recaptures (2 ≤ j ≤ T ),

mj ∼ B

(
j−1∑

t=1

(nt −mt), p

)
and

nj −mj ∼ B

(
N −

j−1∑

t=1

(nt −mt), p

)
.
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Two-stage capture-recapture

T -stage capture-recapture likelihood

Likelihood ℓ(N, p|n1, n2,m2 . . . , nT ,mT ) given by

(
N

n1

)
pn1(1− p)N−n1

T∏

j=2

[(
N −∑j−1

t=1 (nt −mt)

nj −mj

)
pnj−mj

× (1− p)N−
Pj

t=1(nt−mt)

(∑j−1
t=1 (nt −mt)

mj

)

× pmj (1− p)
Pj−1

t=1 (nt−mt)−mj

]
.
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Two-stage capture-recapture

Sufficient statistics

Simplifies into

ℓ(N, p|n1, n2,m2 . . . , nT ,mT ) ∝ N !

(N − n+)!
pnc

(1−p)TN−nc
IN≥n+

with the sufficient statistics

n+ =
T∑

t=1

(nt −mt) and nc =
T∑

t=1

nt ,

total number of captured individuals/captures over the T periods
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Two-stage capture-recapture

Bayesian inference (1)

Under noninformative prior π(N, p) = 1/N , joint posterior

π(N, p|n+, nc) ∝ (N − 1)!

(N − n+)!
pnc

(1− p)TN−nc

IN≥n+∨1 .

leads to conditional posterior

p|N,n+, nc ∼ Be(nc + 1, TN − nc + 1)

and marginal posterior

π(N |n+, nc) ∝ (N − 1)!

(N − n+)!

(TN − nc)!

(TN + 1)!
IN≥n+∨1

which is computable [under previous provisions].

Alternative Gibbs sampler also available.
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Two-stage capture-recapture

Bayesian inference (2)

Under prior N ∼ U ({1, . . . , S}) and p ∼ U ([0, 1]),

π(N |n+) ∝
(
N

n+

)
(TN − nc)!

(TN + 1)!
I{n+∨1,...,S}(N).

eurodip

For the whole set of observations, T = 7, n+ = 294 and nc = 519.
For S = 400, the posterior expectation of N is equal to 372.89.
For S = 2500, it is 373.99.
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Two-stage capture-recapture

Computational difficulties

E.g., heterogeneous capture–recapture model where individuals are
captured at time 1 ≤ t ≤ T with probability pt with both N and
the pt’s are unknown.

Corresponding likelihood

ℓ(N, p1, . . . , pT |n1, n2,m2 . . . , nT ,mT )

∝ N !

(N − n+)!

T∏

t=1

pnt
t (1− pt)

N−nt .
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Two-stage capture-recapture

Computational difficulties (cont’d)

Associated prior N ∼ P(λ) and

αt = log
(
pt

/
1− pt

)
∼ N (µt, σ

2),

where the µt’s and σ are known.
Posterior

π(α1, . . . , αT , N |, n1, . . . , nT ) ∝ N !

(N − n+)!

λN

N !

T∏

t=1

(1 + eαt)−N

×
T∏

t=1

exp

{
αtnt −

1

2σ2
(αt − µt)

2

}
.

much less manageable computationally.
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Open population

Open populations

More realistically, population size does not remain fixed over time:
probability q for each individual to leave the population at each
time [or between each capture episode]

First occurrence of missing variable model.

Simplified version where only individuals captured during the first
experiment are marked and their subsequent recaptures are
registered.
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Open population

Working example

Three successive capture experiments with

n1 ∼ B(N, p),

r1|n1 ∼ B(n1, q),

c2|n1, r1 ∼ B(n1 − r1, p),

r2|n1, r1 ∼ B(n1 − r1, q)

c3|n1, r1, r2 ∼ B(n1 − r1 − r2, p)

where only n1, c2 and c3 are observed.

Variables r1 and r2 not available and therefore part of unknowns
like parameters N , p and q.
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Open population

Bayesian inference

Likelihood
(
N

n1

)
pn1(1− p)N−n1

(
n1

r1

)
qr1(1− q)n1−r1

(
n1 − r1
c2

)
pc2(1− p)n1−r1−c2

(
n1 − r1
r2

)
qr2(1− q)n1−r1−r2

(
n1 − r1 − r2

c3

)
pc3(1− p)n1−r1−r2−c3

and prior
π(N, p, q) = N−1

I[0,1](p)I[0,1](q)
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Open population

Full conditionals for Gibbs sampling

π(p|N, q,D∗) ∝ pn+(1− p)u+

π(q|N, p,D∗) ∝ qc1+c2(1− q)2n1−2r1−r2

π(N |p, q,D∗) ∝ (N − 1)!

(N − n1)!
(1− p)N

IN≥n1

π(r1|p, q, n1, c2, c3, r2) ∝
(n1 − r1)! q

r1(1− q)−2r1(1− p)−2r1

r1!(n1 − r1 − r2 − c3)!(n1 − c2 − r1)!

π(r2|p, q, n1, c2, c3, r1) ∝
qr2 [(1− p)(1− q)]−r2

r2!(n1 − r1 − r2 − c3)!

where

D∗ = (n1, c2, c3, r1, r2)

u1 = N − n1, u2 = n1 − r1 − c2, u3 = n1 − r1 − r2 − c3

n+ = n1 + c2 + c3, u+ = u1 + u2 + u3
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Open population

Full conditionals (2)

Therefore,

p|N, q,D∗ ∼ Be(n+ + 1, u+ + 1)

q|N, p,D∗ ∼ Be(r1 + r2 + 1, 2n1 − 2r1 − r2 + 1)

N − n1|p, q,D∗ ∼ N eg(n1, p)

r2|p, q, n1, c2, c3, r1 ∼ B
(
n1 − r1 − c3,

q

1 + (1− q)(1− p)

)

r1 has a less conventional distribution, but, since n1 not extremely
large, possible to compute the probability that r1 is equal to one of
the values in {0, 1, . . . ,min(n1 − r2 − c3, n1 − c2)}.
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Open population

eurodip

n1 = 22, c2 = 11 and c3 = 6
MCMC approximations to the
posterior expectations of N and
p equal to 57 and 0.40
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Open population

eurodip

n1 = 22, c2 = 11 and c3 = 6
MCMC approximations to the
posterior expectations of N and
p equal to 57 and 0.40

0 1 2 3 4 5

0
1

2
3

4
5

6

r1

r 2

266 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Capture-recapture experiments

Accept-Reject methods

Accept-Reject methods

Many distributions from which it is difficult, or even
impossible, to directly simulate.

Technique that only require us to know the functional form of
the target π of interest up to a multiplicative constant.

Key to this method is to use a proposal density g [as in
Metropolis-Hastings]
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Accept-Reject methods

Principle

Given a target density π, find a density g and a constant M such
that

π(x) ≤Mg(x)

on the support of π.

Accept-Reject algorithm is then

1 Generate X ∼ g, U ∼ U[0,1] ;

2 Accept Y = X if U ≤ f(X)
Mg(X) ;

3 Return to 1. otherwise.
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Accept-Reject methods

Validation of Accept-Reject

This algorithm produces a variable Y
distributed according to f

Fundamental theorem of simulation

Simulating
X ∼ f(x)

is equivalent to simulating

(X,U) ∼ U{(x, u) : 0 < u < π(x)} −2 0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

269 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Capture-recapture experiments

Accept-Reject methods

Two interesting properties:

◦ First, Accept-Reject provides a generic method to simulate
from any density π that is known up to a multiplicative factor
Particularly important for Bayesian calculations since

π(θ|x) ∝ π(θ) f(x|θ) .

is specified up to a normalizing constant

◦ Second, the probability of acceptance in the algorithm is
1/M , e.g., expected number of trials until a variable is
accepted is M
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Accept-Reject methods

Application to the open population model

Since full conditional distribution of r1 non-standard, rather than
using exhaustive enumeration of all probabilities
P(m1 = k) = π(k) and then sampling from this distribution, try to
use a proposal based on a binomial upper bound.

Take g equal to the binomial B(n1, q1) with

q1 = q/(1− q)2(1− p)2
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Accept-Reject methods

Proposal bound

π(k)/g(k) proportional to
`

n1−c2
k

´
(1− q1)

k
`

n1−k
r2+c3

´
`

n1
k

´ =
(n1 − c2)!

(r2 + c3)!n1!

((n1 − k)!)2(1− q1)
k

(n1 − c2 − k)!(n1 − r2 − c3 − k)!

decreasing in k, therefore bounded by

(n1 − c2)!

(r2 + c3)!

n1!

(n1 − c2)!(n1 − r2 − c3)!
=

(
n1

r2 + c3

)
.

 This is not the constant M because of unnormalised densities
[M may also depend on q1]. Therefore the average
acceptance rate is undetermined and requires an extra Monte
Carlo experiment
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Arnason–Schwarz’s Model

Arnason–Schwarz Model

Representation of a capture
recapture experiment as a collection
of individual histories: for each
individual captured at least once,
individual characteristics of interest
(location, weight, social status,
&tc.) registered at each capture.

Possibility that individuals vanish from the [open] population
between two capture experiments.
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Capture-recapture experiments

Arnason–Schwarz’s Model

Parameters of interest

Study the movements of individuals between zones/strata rather
than estimating population size.

Two types of variables associated with each individual i = 1, . . . , n

1 a variable for its location [partly observed],

zi = (z(i,t), t = 1, .., τ)

where τ is the number of capture periods,

2 a binary variable for its capture history [completely observed],

xi = (x(i,t), t = 1, .., τ) .
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Arnason–Schwarz’s Model

Migration & deaths

z(i,t) = r when individual i is alive in stratum r at time t and
denote z(i,t) = † for the case when it is dead at time t.

Variable zi sometimes called migration process of individual i as
when animals moving between geographical zones.

E.g.,

xi = 1 1 0 1 1 1 0 0 0 and zi = 1 2 · 3 1 1 · · ·

for which a possible completed zi is

zi = 1 2 1 3 1 1 2 † †

meaning that animal died between 7th and 8th captures
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Arnason–Schwarz’s Model

No tag recovery

We assume that

† is absorbing

z(i,t) = † always corresponds to x(i,t) = 0.

the (xi, zi)’s (i = 1, . . . , n) are independent

each vector zi is a Markov chain on K ∪ {†} with uniform
initial probability on K.
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Arnason–Schwarz’s Model

Reparameterisation

Parameters of the Arnason–Schwarz model are

1 capture probabilities

pt(r) = P
(
x(i,t) = 1|z(i,t) = r

)

2 transition probabilities

qt(r, s) = P
(
z(i,t+1) = s|z(i,t) = r

)
r ∈ K, s ∈ K∪{†}, qt(†, †) = 1

3 survival probabilities φt(r) = 1− qt(r, †)
4 inter-strata movement probabilities ψt(r, s) such that

qt(r, s) = φt(r)× ψt(r, s) r ∈ K, s ∈ K .
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Arnason–Schwarz’s Model

Modelling

Likelihood

ℓ((x1, z1), . . . , (xn, zn)) ∝
n∏

i=1

[
τ∏

t=1

pt(z(i,t))
x(i,t)(1− pt(z(i,t)))

1−x(i,t)×

τ−1∏

t=1

qt(z(i,t), z(i,t+1))

]
.
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Arnason–Schwarz’s Model

Conjugate priors

Capture and survival parameters

pt(r) ∼ Be(at(r), bt(r)) , φt(r) ∼ Be(αt(r), βt(r)) ,

where at(r), . . . depend on both time t and location r,
For movement probabilities/Markov transitions
ψt(r) = (ψt(r, s); s ∈ K),

ψt(r) ∼ Dir(γt(r)) ,

since ∑

s∈K

ψt(r, s) = 1 ,

where γt(r) = (γt(r, s); s ∈ K).
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Arnason–Schwarz’s Model

lizards

Capture–recapture experiment on the migrations of lizards between
three adjacent zones, with are six capture episodes.

Prior information provided by biologists on pt (which are assumed
to be zone independent) and φt(r), in the format of prior
expectations and prior confidence intervals.

Differences in prior on pt due to differences in capture efforts
differences between episodes 1, 3, 5 and 2, 4 due to different
mortality rates over winter.
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Prior information

Episode 2 3 4 5 6

pt Mean 0.3 0.4 0.5 0.2 0.2
95% int. [0.1,0.5] [0.2,0.6] [0.3,0.7] [0.05,0.4] [0.05,0.4]

Site A B,C
Episode t=1,3,5 t=2,4 t=1,3,5 t=2,4

φt(r) Mean 0.7 0.65 0.7 0.7
95% int. [0.4,0.95] [0.35,0.9] [0.4,0.95] [0.4,0.95]
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Prior equivalence

Prior information that can be translated in a collection of beta
priors

Episode 2 3 4 5 6

Dist. Be(6, 14) Be(8, 12) Be(12, 12) Be(3.5, 14) Be(3.5, 14)

Site A B
Episode t=1,3,5 t=2,4 t=1,3,5 t=2,4

Dist. Be(6.0, 2.5) Be(6.5, 3.5) Be(6.0, 2.5) Be(6.0, 2.5)

282 / 459



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Capture-recapture experiments

Arnason–Schwarz’s Model

eurodip

Prior belief that the capture and survival rates should be constant
over time

pt(r) = p(r) and φt(r) = φ(r)

Assuming in addition that movement probabilities are
time-independent,

ψt(r) = ψ(r)

we are left with 3[p(r)] + 3[φ(r)] + 3× 2[φt(r)] = 12 parameters.

Use non-informative priors with

a(r) = b(r) = α(r) = β(r) = γ(r, s) = 1
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Gibbs sampling

Needs to account for the missing parts in the zi’s, in order to
simulate the parameters from the full conditional distributions

π(θ|x, z) ∝ ℓ(θ|x, z)× π(θ) ,

where x and z are the collections of the vectors of capture
indicators and locations.

Particular case of data augmentation, where the missing data z is
simulated at each step t in order to reconstitute a complete sample
(x, z(t)) with two steps:

Parameter simulation

Missing location simulation
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Arnason–Schwarz Gibbs sampler

Algorithm

Iteration l (l ≥ 1)

1 Parameter simulation
simulate θ(l) ∼ π(θ|z(l−1),x) as (t = 1, . . . , τ)

p
(l)
t (r)|x, z(l−1) ∼ Be

(
at(r) + ut(r), bt(r) + v

(l)
t (r)

)

φ
(l)
t (r)|x, z(l−1) ∼ Be


αt(r) +

∑

j∈K

w
(l)
t (r, j), βt(r) + w

(l)
t (r, †)




ψ
(l)
t (r)|x, z(l−1) ∼ Dir

(
γt(r, s) + w

(l)
t (r, s); s ∈ K

)
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Arnason–Schwarz Gibbs sampler (cont’d)

where

w
(l)
t (r, s) =

n∑

i=1

I
(z

(l−1)
(i,t)

=r,z
(l−1)
(i,t+1)

=s)

u
(l)
t (r) =

n∑

i=1

I
(x(i,t)=1,z

(l−1)
(i,t)

=r)

v
(l)
t (r) =

n∑

i=1

I
(x(i,t)=0,z

(l−1)
(i,t)

=r)
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Arnason–Schwarz Gibbs sampler (cont’d)

2 Missing location simulation

generate the unobserved z
(l)
(i,t)’s from the full conditional

distributions

P(z
(l)

(i,1) = s|x(i,1), z
(l−1)

(i,2) , θ(l)) ∝ q
(l)
1 (s, z

(l−1)

(i,2) )(1− p
(l)
1 (s)) ,

P(z
(l)

(i,t) = s|x(i,t), z
(l)

(i,t−1), z
(l−1)

(i,t+1), θ
(l)) ∝ q

(l)
t−1(z

(l)

(i,t−1), s)

× qt(s, z
(l−1)

(i,t+1))(1− p
(l)
t (s)) ,

P(z
(l)

(i,τ) = s|x(i,τ), z
(l)

(i,τ−1), θ
(l)) ∝ q

(l)
τ−1(z

(l)

(i,τ−1), s)(1− pτ (s)(l)) .
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Gibbs sampler illustrated

Take K = {1, 2}, n = 4, m = 8 and ,for x,

1 1 1 · · 1 · · ·
2 1 · 1 · 1 · 2 1
3 2 1 · 1 2 · · 1
4 1 · · 1 2 1 1 2

Take all hyperparameters equal to 1
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Gibbs sampler illust’d (cont’d)

One instance of simulated z is

1 1 1 2 1 1 2 †
1 1 1 2 1 1 1 2
2 1 2 1 2 1 1 1
1 2 1 1 2 1 1 2

which leads to the simulation of the parameters:

p
(l)
4 (1)|x, z(l−1) ∼ Be(1 + 2, 1 + 0)

φ
(l)
7 (2)|x, z(l−1) ∼ Be(1 + 0, 1 + 1)

ψ
(l)
2 (1, 2)|x, z(l−1) ∼ Be(1 + 1, 1 + 2)

in the Gibbs sampler.
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Fast convergence
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