Dynamic models

6 Dynamic models

- Dependent data
- The $\operatorname{AR}(p)$ model
- The MA (q) model
- Hidden Markov models

Dependent data

Huge portion of real-life data involving dependent datapoints

Example (Capture-recapture)

- capture histories
- capture sizes

Eurostoxx 50

First four stock indices of of the financial index Eurostoxx 50

Markov chain

Stochastic process $\left(x_{t}\right)_{t \in \mathcal{T}}$ where distribution of x_{t} given the past values $\mathbf{x}_{0:(t-1)}$ only depends on x_{t-1}. Homogeneity: distribution of x_{t} given the past constant in $t \in \mathcal{T}$.

Corresponding likelihood

$$
\ell\left(\theta \mid \mathbf{x}_{0: T}\right)=f_{0}\left(x_{0} \mid \theta\right) \prod_{t=1}^{T} f\left(x_{t} \mid x_{t-1}, \theta\right)
$$

[Homogeneity means f independent of t]

LDependent data

Stationarity constraints

Difference with the independent case: stationarity and causality constraints put restrictions on the parameter space

Stationarity processes

Definition (Stationary stochastic process)
$\left(x_{t}\right)_{t \in \mathcal{T}}$ is stationary if the joint distributions of $\left(x_{1}, \ldots, x_{k}\right)$ and $\left(x_{1+h}, \ldots, x_{k+h}\right)$ are the same for all h, k 's.
It is second-order stationary if, given the autocovariance function

$$
\gamma_{x}(r, s)=\mathbb{E}\left[\left\{x_{r}-\mathbb{E}\left(x_{r}\right)\right\}\left\{x_{s}-\mathbb{E}\left(x_{s}\right)\right\}\right], \quad r, s \in \mathcal{T},
$$

then

$$
\mathbb{E}\left(x_{t}\right)=\mu \quad \text { and } \quad \gamma_{x}(r, s)=\gamma_{x}(r+t, s+t) \equiv \gamma_{x}(r-s)
$$

for all $r, s, t \in \mathcal{T}$.

$\left\llcorner_{\text {Dynamic models }}\right.$

$L_{\text {Dependent data }}$

Imposing or not imposing stationarity

Bayesian inference on a non-stationary process can be [formaly] conducted

Debate

From a Bayesian point of view, to impose the stationarity condition is objectionable:stationarity requirement on finite datasets artificial and/or datasets themselves should indicate whether the model is stationary
Reasons for imposing stationarity:asymptotics (Bayes estimators are not necessarily convergent in non-stationary settings) causality, identifiability and ... common practice.
$L_{\text {Dependent data }}$

Unknown stationarity constraints

Practical difficulty: for complex models, stationarity constraints get quite involved to the point of being unknown in some cases

The $\operatorname{AR}(1)$ model

Case of linear Markovian dependence on the last value

$$
x_{t}=\mu+\varrho\left(x_{t-1}-\mu\right)+\epsilon_{t}, \epsilon_{t} \stackrel{\text { i.i.d. }}{\sim} \mathscr{N}\left(0, \sigma^{2}\right)
$$

If $|\varrho|<1,\left(x_{t}\right)_{t \in \mathbb{Z}}$ can be written as

$$
x_{t}=\mu+\sum_{j=0}^{\infty} \varrho^{j} \epsilon_{t-j}
$$

and this is a stationary representation.

Stationary but...

If $|\varrho|>1$, alternative stationary representation

$$
x_{t}=\mu-\sum_{j=1}^{\infty} \varrho^{-j} \epsilon_{t+j} .
$$

This stationary solution is criticized as artificial because x_{t} is correlated with future white noises $\left(\epsilon_{t}\right)_{s>t}$, unlike the case when $|\varrho|<1$.
Non-causal representation...

Standard constraint

(C) Customary to restrict $\operatorname{AR}(1)$ processes to the case $|\varrho|<1$

Thus use of a uniform prior on $[-1,1]$ for ϱ
Exclusion of the case $|\varrho|=1$ that leads to a random walk because the process is then a random walk [no stationary solution]

The $\operatorname{AR}(p)$ model

Conditional model

$$
x_{t} \mid x_{t-1}, \ldots \sim \mathcal{N}\left(\mu+\sum_{i=1}^{p} \varrho_{i}\left(x_{t-i}-\mu\right), \sigma^{2}\right)
$$

- Generalisation of $\operatorname{AR}(1)$
- Among the most commonly used models in dynamic settings
- More challenging than the static models (stationarity constraints)
- Different models depending on the processing of the starting value x_{0}

Stationarity+causality

Stationarity constraints in the prior as a restriction on the values of θ.

Theorem

$A R(p)$ model second-order stationary and causal iff the roots of the polynomial

$$
\mathcal{P}(x)=1-\sum_{i=1}^{p} \varrho_{i} x^{i}
$$

are all outside the unit circle

$\left\llcorner_{\text {Dynamic models }}\right.$

LThe $\operatorname{AR}(p)$ model

Initial conditions

Unobserved initial values can be processed in various ways
(1) All \mathbf{x}_{-i} 's $(i>0)$ set equal to μ, for computational convenience
(2) Under stationarity and causality constraints, $\left(x_{t}\right)_{t \in \mathbb{Z}}$ has a stationary distribution: Assume $\mathbf{x}_{-p:-1}$ distributed from stationary $\mathscr{N}_{p}\left(\mu \mathbf{1}_{p}, \mathbf{A}\right)$ distribution Corresponding marginal likelihood

$$
\begin{gathered}
\int \sigma^{-T} \prod_{t=0}^{T} \exp \left\{\frac{-1}{2 \sigma^{2}}\left(x_{t}-\mu-\sum_{i=1}^{p} \varrho_{i}\left(x_{t-i}-\mu\right)\right)^{2}\right\} \\
f\left(\mathbf{x}_{-p:-1} \mid \mu, \mathbf{A}\right) \mathbf{d} \mathbf{x}_{-p:-1}
\end{gathered}
$$

Initial conditions (cont'd)

(3) Condition instead on the initial observed values $\mathbf{x}_{0:(p-1)}$

$$
\begin{aligned}
& \ell^{c}\left(\mu, \varrho_{1}, \ldots, \varrho_{p}, \sigma \mid \mathbf{x}_{p: T}, \mathbf{x}_{0:(p-1)}\right) \propto \\
& \quad \sigma^{-T} \prod_{t=p}^{T} \exp \left\{-\left(x_{t}-\mu-\sum_{i=1}^{p} \varrho_{i}\left(x_{t-i}-\mu\right)\right)^{2} / 2 \sigma^{2}\right\}
\end{aligned}
$$

Prior selection

For $A R(1)$ model, Jeffreys' prior associated with the stationary representation is

$$
\pi_{1}^{J}\left(\mu, \sigma^{2}, \varrho\right) \propto \frac{1}{\sigma^{2}} \frac{1}{\sqrt{1-\varrho^{2}}}
$$

Extension to higher orders quite complicated (ϱ part)!

Natural conjugate prior for $\theta=\left(\mu, \varrho_{1}, \ldots, \varrho_{p}, \sigma^{2}\right)$: normal distribution on ($\mu, \varrho_{1}, \ldots, \varrho_{p}$) and inverse gamma distribution on σ^{2}
... and for constrained ϱ 's?

Stationarity constraints

Under stationarity constraints, complex parameter space: each value of ϱ needs to be checked for roots of corresponding polynomial with modulus less than 1
E.g., for an $\operatorname{AR}(2)$ process with autoregressive polynomial $\mathcal{P}(u)=1-\varrho_{1} u-\varrho_{2} u^{2}$, constraint is

$$
\varrho_{1}+\varrho_{2}<1, \quad \varrho_{1}-\varrho_{2}<1 \quad \text { and } \quad\left|\varrho_{2}\right|<1 .
$$

A first useful reparameterisation

Durbin-Levinson recursion proposes a reparametrisation from the parameters ϱ_{i} to the partial autocorrelations

$$
\psi_{i} \in[-1,1]
$$

which allow for a uniform prior on the hypercube.
Partial autocorrelation defined as

$$
\begin{aligned}
\psi_{i}=\operatorname{corr} & \left(x_{t}-\mathbb{E}\left[x_{t} \mid x_{t+1}, \ldots, x_{t+i-1}\right]\right. \\
& \left.x_{t+i}-\mathbb{E}\left[x_{t+1} \mid x_{t+1}, \ldots, x_{t+i-1}\right]\right)
\end{aligned}
$$

[see also Yule-Walker equations]

Durbin-Levinson recursion

Transform

(1) Define $\varphi^{i i}=\psi_{i}$ and $\varphi^{i j}=\varphi^{(i-1) j}-\psi_{i} \varphi^{(i-1)(i-j)}$, for $i>1$ and $j=1, \cdots, i-1$.
(2) Take $\varrho_{i}=\varphi^{p i}$ for $i=1, \cdots, p$.

Stationarity \& priors

For AR(1) model, Jeffreys' prior associated with the stationary representation is

$$
\pi_{1}^{J}\left(\mu, \sigma^{2}, \varrho\right) \propto \frac{1}{\sigma^{2}} \frac{1}{\sqrt{1-\varrho^{2}}}
$$

Within the non-stationary region $|\varrho|>1$, Jeffreys' prior is

$$
\pi_{2}^{J}\left(\mu, \sigma^{2}, \varrho\right) \propto \frac{1}{\sigma^{2}} \frac{1}{\sqrt{\left|1-\varrho^{2}\right|}} \sqrt{\left|1-\frac{1-\varrho^{2 T}}{T\left(1-\varrho^{2}\right)}\right|}
$$

The dominant part of the prior is the non-stationary region!

Alternative prior

The reference prior π_{1}^{J} is only defined when the stationary constraint holds.
Idea Symmetrise to the region $|\varrho|>1$

$$
\pi^{B}\left(\mu, \sigma^{2}, \varrho\right) \propto \frac{1}{\sigma^{2}} \begin{cases}1 / \sqrt{1-\varrho^{2}} & \text { if }|\varrho|<1 \\ 1 /|\varrho| \sqrt{\varrho^{2}-1} & \text { if }|\varrho|>1\end{cases}
$$

MCMC consequences

When devising an MCMC algorithm, use the Durbin-Levinson recursion to end up with single normal simulations of the ψ_{i} 's since the ϱ_{j} 's are linear functions of the ψ_{i} 's

Root parameterisation

- Skip Durbin back Lag polynomial representation

$$
\left(\mathrm{Id}-\sum_{i=1}^{p} \varrho_{i} B^{i}\right) x_{t}=\epsilon_{t}
$$

with (inverse) roots

$$
\prod_{i=1}^{p}\left(\mathrm{Id}-\lambda_{i} B\right) x_{t}=\epsilon_{t}
$$

Closed form expression of the likelihood as a function of the (inverse) roots

Uniform prior under stationarity

Stationarity The λ_{i} 's are within the unit circle if in \mathbb{C} [complex numbers] and within $[-1,1]$ if in \mathbb{R} [real numbers]

Naturally associated with a flat prior on either the unit circle or $[-1,1]$

$$
\frac{1}{\lfloor k / 2\rfloor+1} \prod_{\lambda_{i} \in \mathbb{R}} \frac{1}{2} \mathbb{I}_{\left|\lambda_{i}\right|<1} \prod_{\lambda_{i} \notin \mathbb{R}} \frac{1}{\pi} \mathbb{I}_{\left|\lambda_{i}\right|<1}
$$

where $\lfloor k / 2\rfloor+1$ number of possible cases

2 Term $\lfloor k / 2\rfloor+1$ is important for reversible jump applications

MCMC consequences

In a Gibbs sampler, each $\lambda_{i^{*}}$ can be simulated conditionaly on the others since

$$
\prod_{i=1}^{p}\left(\operatorname{ld}-\lambda_{i} B\right) x_{t}=y_{t}-\lambda_{i^{*}} y_{t-1}=\epsilon_{t}
$$

where

$$
Y_{t}=\prod_{i \neq i^{*}}\left(\mathrm{Id}-\lambda_{i} B\right) x_{t}
$$

Metropolis-Hastings implementation

(1) use the prior π itself as a proposal on (he (inverse) roots of \mathcal{P}, selecting one or several roots of \mathcal{P} to be simulated from π;
(2) acceptance ratio is likelihood ratio
(3) need to watch out for real/complex dichotomy

$\left\llcorner_{\text {Dynamic models }}\right.$

LThe $\operatorname{AR}(p)$ model

A [paradoxical] reversible jump implementation

- Define "model" $\mathfrak{M}_{2 k}(0 \leq k \leq\lfloor p / 2\rfloor)$ as corresponding to a number $2 k$ of complex roots $o \leq k \leq\lfloor p / 2\rfloor$)
- Moving from model $\mathfrak{M}_{2 k}$ to model $\mathfrak{M}_{2 k+2}$ means that two real roots have been replaced by two conjugate complex roots.
- Propose jump from $\mathfrak{M}_{2 k}$ to $\mathfrak{M}_{2 k+2}$ with probability $1 / 2$ and from $\mathfrak{M}_{2 k}$ to $\mathfrak{M}_{2 k-2}$ with probability $1 / 2$ [boundary exceptions]
- accept move from $\mathfrak{M}_{2 k}$ to $\mathfrak{M}_{2 k+\text { or }-2}$ with probability

$$
\frac{\ell^{c}\left(\mu, \varrho_{1}^{\star}, \ldots, \varrho_{p}^{\star}, \sigma \mid \mathbf{x}_{p: T}, \mathbf{x}_{0:(p-1)}\right)}{\ell^{c}\left(\mu, \varrho_{1}, \ldots, \varrho_{p}, \sigma \mid \mathbf{x}_{p: T}, \mathbf{x}_{0:(p-1)}\right)} \wedge 1,
$$

Checking your code

Try with no data and recover the prior

LDynamic models
-The AR (p) model

Checking your code

Try with no data and recover the prior

Order estimation

Typical setting for model choice: determine order p of $A R(p)$ model
Roots [may] change drastically from one p to the other. No difficulty from the previous perspective: recycle above reversible jump algorithm

$A R(?)$ reversible jump algorithm

Use (purely birth-and-death) proposals based on the uniform prior

- $k \rightarrow k+1 \quad$ [Creation of real root]
- $k \rightarrow k+2$ [Creation of complex root]
- $\mathrm{k} \rightarrow \mathrm{k}-1$ [Deletion of real root]
- $\mathrm{k} \rightarrow \mathrm{k}-2 \quad$ [Deletion of complex root]

LDynamic models $^{\text {D }}$

Reversible jump output

$A R(3)$ simulated dataset of 530 points (upper left) with true parameters α_{i} $(-0.1,0.3,-0.4)$ and $\sigma=1$. First histogram associated with p, following histograms with the α_{i} 's, for different values of p, and of σ^{2}. Final graph: scatterplot of the complex roots. One before last: evolution of $\alpha_{1}, \alpha_{2}, \alpha_{3}$.

The MA(q) model

Alternative type of time series

$$
x_{t}=\mu+\epsilon_{t}-\sum_{j=1}^{q} \vartheta_{j} \epsilon_{t-j}, \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Stationary but, for identifiability considerations, the polynomial

$$
\mathcal{Q}(x)=1-\sum_{j=1}^{q} \vartheta_{j} x^{j}
$$

must have all its roots outside the unit circle.

Identifiability

Example

For the MA(1) model, $x_{t}=\mu+\epsilon_{t}-\vartheta_{1} \epsilon_{t-1}$,

$$
\operatorname{var}\left(x_{t}\right)=\left(1+\vartheta_{1}^{2}\right) \sigma^{2}
$$

can also be written

$$
x_{t}=\mu+\tilde{\epsilon}_{t-1}-\frac{1}{\vartheta_{1}} \tilde{\epsilon}_{t}, \quad \tilde{\epsilon} \sim \mathcal{N}\left(0, \vartheta_{1}^{2} \sigma^{2}\right)
$$

Both pairs $\left(\vartheta_{1}, \sigma\right) \&\left(1 / \vartheta_{1}, \vartheta_{1} \sigma\right)$ lead to alternative representations of the same model.

LThe MA(q) model

Properties of MA models

- Non-Markovian model (but special case of hidden Markov)
- Autocovariance $\gamma_{x}(s)$ is null for $|s|>q$

Representations

$\mathbf{x}_{1: T}$ is a normal random variable with constant mean μ and covariance matrix

$$
\Sigma=\left(\begin{array}{ccccccccc}
\sigma^{2} & \gamma_{1} & \gamma_{2} & \ldots & \gamma_{q} & 0 & \ldots & 0 & 0 \\
\gamma_{1} & \sigma^{2} & \gamma_{1} & \ldots & \gamma_{q-1} & \gamma_{q} & \ldots & 0 & 0 \\
& & & \ddots & & & & & \\
0 & 0 & 0 & \ldots & 0 & 0 & \ldots & \gamma_{1} & \sigma^{2}
\end{array}\right)
$$

with $(|s| \leq q)$

$$
\gamma_{s}=\sigma^{2} \sum_{i=0}^{q-|s|} \vartheta_{i} \vartheta_{i+|s|}
$$

Not manageable in practice [large T 's]

Representations (contd.)

Conditional on past $\left(\epsilon_{0}, \ldots, \epsilon_{-q+1}\right)$,

$$
\begin{aligned}
& L\left(\mu, \vartheta_{1}, \ldots, \vartheta_{q}, \sigma \mid x_{1: T}, \epsilon_{0}, \ldots, \epsilon_{-q+1}\right) \propto \\
& \quad \sigma^{-T} \prod_{t=1}^{T} \exp \left\{-\left(x_{t}-\mu+\sum_{j=1}^{q} \vartheta_{j} \hat{\epsilon}_{t-j}\right)^{2} / 2 \sigma^{2}\right\}
\end{aligned}
$$

where $(t>0)$

$$
\hat{\epsilon}_{t}=x_{t}-\mu+\sum_{j=1}^{q} \vartheta_{j} \hat{\epsilon}_{t-j}, \hat{\epsilon}_{0}=\epsilon_{0}, \ldots, \hat{\epsilon}_{1-q}=\epsilon_{1-q}
$$

Recursive definition of the likelihood, still costly $\mathrm{O}(T \times q)$

Recycling the AR algorithm

Same algorithm as in the $\operatorname{AR}(p)$ case when modifying the likelihood

Simulation of the past noises $\epsilon_{-i}(i=1, \ldots, q)$ done via a Metropolis-Hastings step with target

$$
f\left(\epsilon_{0}, \ldots, \epsilon_{-q+1} \mid \mathbf{x}_{1: T}, \mu, \sigma, \boldsymbol{\vartheta}\right) \propto \prod_{i=-q+1}^{0} e^{-\epsilon_{i}^{2} / 2 \sigma^{2}} \prod_{t=1}^{T} e^{-\widehat{\epsilon}_{t}^{2} / 2 \sigma^{2}}
$$

Representations (contd.)

Encompassing approach for general time series models

State-space representation

$$
\begin{align*}
\mathbf{x}_{t} & =G \mathbf{y}_{t}+\boldsymbol{\varepsilon}_{t}, \tag{1}\\
\mathbf{y}_{t+1} & =F \mathbf{y}_{t}+\xi_{t}, \tag{2}
\end{align*}
$$

(1) is the observation equation and (2) is the state equation

Note
As seen below, this is a special case of hidden Markov model

MA(q) state-space representation

For the $\mathrm{MA}(q)$ model, take

$$
\mathbf{y}_{t}=\left(\epsilon_{t-q}, \ldots, \epsilon_{t-1}, \epsilon_{t}\right)^{\prime}
$$

and then

$$
\begin{aligned}
\mathbf{y}_{t+1} & =\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & \ldots & \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \mathbf{y}_{t}+\epsilon_{t+1}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) \\
x_{t} & =\mu-\left(\begin{array}{lllll}
\vartheta_{q} & \vartheta_{q-1} & \ldots & \vartheta_{1} & -1
\end{array}\right) \mathbf{y}_{t} .
\end{aligned}
$$

MA(q) state-space representation (cont'd)

Example

For the $\mathrm{MA}(1)$ model, observation equation

$$
x_{t}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \mathbf{y}_{t}
$$

with

$$
\mathbf{y}_{t}=\left(\begin{array}{ll}
y_{1 t} & y_{2 t}
\end{array}\right)^{\prime}
$$

directed by the state equation

$$
\mathbf{y}_{t+1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \mathbf{y}_{t}+\epsilon_{t+1}\binom{1}{\vartheta_{1}}
$$

ARMA extension

$\operatorname{ARMA}(p, q)$ model

$$
x_{t}-\sum_{i=1}^{p} \varrho_{i} x_{t-1}=\mu+\epsilon_{t}-\sum_{j=1}^{q} \vartheta_{j} \epsilon_{t-j}, \quad \epsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Identical stationarity and identifiability conditions for both groups $\left(\varrho_{1}, \ldots, \varrho_{p}\right)$ and $\left(\vartheta_{1}, \ldots, \vartheta_{q}\right)$

Reparameterisation

Identical root representations

$$
\prod_{i=1}^{p}\left(\mathrm{Id}-\lambda_{i} B\right) x_{t}=\prod_{i=1}^{q}\left(\mathrm{Id}-\eta_{i} B\right) \epsilon_{t}
$$

State-space representation

$$
\mathbf{x}_{t}=x_{t}=\mu-\left(\begin{array}{lllll}
\vartheta_{r-1} & \vartheta_{r-2} & \ldots & \vartheta_{1} & -1
\end{array}\right) \mathbf{y}_{t}
$$

and

$$
\mathbf{y}_{t+1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & \cdots & \\
0 & 0 & 0 & \cdots & 1 \\
\varrho_{r} & \varrho_{r-1} & \varrho_{r-2} & \cdots & \varrho_{1}
\end{array}\right) \mathbf{y}_{t}+\epsilon_{t+1}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

under the convention that $\varrho_{m}=0$ if $m>p$ and $\vartheta_{m}=0$ if $m>q$.

Bayesian approximation

Quasi-identical MCMC implementation:
(1) Simulate $\left(\varrho_{1}, \ldots, \varrho_{p}\right)$ conditional on $\left(\vartheta_{1}, \ldots, \vartheta_{q}\right)$ and μ
(2) Simulate $\left(\vartheta_{1}, \ldots, \vartheta_{q}\right)$ conditional on $\left(\varrho_{1}, \ldots, \varrho_{p}\right)$ and μ
(3) Simulate (μ, σ) conditional on $\left(\varrho_{1}, \ldots, \varrho_{p}\right)$ and $\left(\vartheta_{1}, \ldots, \vartheta_{q}\right)$
(c) Code can be recycled almost as is!

Hidden Markov models

Generalisation both of a mixture and of a state space model.

Example

Extension of a mixture model with Markov dependence

$$
\begin{aligned}
& x_{t} \mid z, x_{j} j \neq t \sim \mathcal{N}\left(\mu_{z_{t}}, \sigma_{z_{t}}^{2}\right), \quad P\left(z_{t}=u \mid z_{j}, j<t\right)=p_{z_{t-1} u} \\
& (u=1, \ldots, k)
\end{aligned}
$$

2 Label switching also strikes in this model!

L Hidden Markov models

Generic dependence graph

$$
\left(x_{t}, y_{t}\right) \mid \mathbf{x}_{0:(t-1)}, \mathbf{y}_{0:(t-1)} \sim f\left(y_{t} \mid y_{t-1}\right) f\left(x_{t} \mid y_{t}\right)
$$

Definition

Observable series $\left\{\mathbf{x}_{t}\right\}_{t \geq 1}$ associated with a second process $\left\{y_{t}\right\}_{t \geq 1}$, with a finite set of N possible values such that
(1) indicators Y_{t} have an homogeneous Markov dynamic

$$
p\left(y_{t} \mid \mathbf{y}_{1: t-1}\right)=p\left(y_{t} \mid y_{t-1}\right)=\mathbb{P}_{y_{t-1} y_{t}}
$$

where $\mathbf{y}_{1: t-1}$ denotes the sequence $\left\{y_{1}, y_{2}, \ldots, y_{t-1}\right\}$.
(2.) Observables x_{t} are independent conditionally on the indicators y_{t}

$$
p\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid y_{t}\right)
$$

Dnadataset

DNA sequence [made of A, C, G, and T 's] corresponding to a complete HIV genome where A, C, G, and T have been recoded as $1, \ldots, 4$.

Possible modeling by a two-state hidden Markov model with

$$
\mathscr{Y}=\{1,2\} \quad \text { and } \quad \mathscr{X}=\{1,2,3,4\}
$$

Parameterization

- For the Markov bit, transition matrix

$$
\mathbb{P}=\left[p_{i j}\right] \quad \text { where } \quad \sum_{j=1}^{N} p_{i j}=1
$$

and initial distribution

$$
\varrho=\varrho \mathbb{P}
$$

- for the observables,

$$
f_{i}\left(x_{t}\right)=p\left(x_{t} \mid y_{t}=i\right)=f\left(x_{t} \mid \theta_{i}\right)
$$

usually within the same parametrized class of distributions.

Finite case

When both hidden and observed chains are finite, with
$\mathscr{Y}=\{1, \ldots, \kappa\}$ and $\mathscr{X}=\{1, \ldots, k\}$, parameter θ made up of p probability vectors $\mathbf{q}^{1}=\left(q_{1}^{1}, \ldots, q_{k}^{1}\right), \ldots, \mathbf{q}^{\kappa}=\left(q_{1}^{\kappa}, \ldots, q_{k}^{\kappa}\right)$ Joint distribution of $\left(x_{t}, y_{t}\right)_{0 \leq t \leq T}$

$$
\varrho_{y_{0}} q_{x_{0}}^{y_{0}} \prod_{t=1}^{T} p_{y_{t-1} y_{t}} q_{x_{t}}^{y_{t}}
$$

Bayesian inference in the finite case

Posterior of (θ, \mathbb{P}) given $\left(x_{t}, y_{t}\right)_{t}$ factorizes as

$$
\pi(\theta, \mathbb{P}) \varrho_{y_{0}} \prod_{i=1}^{\kappa} \prod_{j=1}^{k}\left(q_{j}^{i}\right)^{n_{i j}} \times \prod_{i=1}^{\kappa} \prod_{j=1}^{p} p_{i j}^{m_{i j}}
$$

where $n_{i j} \#$ of visits to state j by the x_{t} 's when the corresponding y_{t} 's are equal to i and $m_{i j} \#$ of transitions from state i to state j on the hidden chain $\left(y_{t}\right)_{t \in \mathbb{N}}$

Under a flat prior on $p_{i j}$'s and q_{j}^{i} 's, posterior distributions are [almost] Dirichlet [initial distribution side effect]

MCMC implementation

Finite State HMM Gibbs Sampler

Initialization:

(1) Generate random values of the $p_{i j}$'s and of the q_{j}^{i} 's
(2) Generate the hidden Markov chain $\left(y_{t}\right)_{0 \leq t \leq T}$ by $(i=1,2)$

$$
\mathbb{P}\left(y_{t}=i\right) \propto \begin{cases}p_{i i} q_{x_{0}}^{i} & \text { if } t=0 \\ p_{y_{t-1} i} q_{x_{t}}^{i} & \text { if } t>0\end{cases}
$$

and compute the corresponding sufficient statistics

MCMC implementation (cont'd)

Finite State HMM Gibbs Sampler

Iteration $m(m \geq 1)$:
(1) Generate

$$
\begin{aligned}
\left(p_{i 1}, \ldots, p_{i \kappa}\right) & \sim \mathscr{D}\left(1+n_{i 1}, \ldots, 1+n_{i \kappa}\right) \\
\left(q_{1}^{i}, \ldots, q_{k}^{i}\right) & \sim \mathscr{D}\left(1+m_{i 1}, \ldots, 1+m_{i k}\right)
\end{aligned}
$$

and correct for missing initial probability by a MH step with acceptance probability $\varrho_{y_{0}}^{\prime} / \varrho_{y_{0}}$
(2) Generate successively each $y_{t}(0 \leq t \leq T)$ by

$$
\mathbb{P}\left(y_{t}=i \mid x_{t}, y_{t-1}, y_{t+1}\right) \propto \begin{cases}p_{i i} q_{x_{1}}^{i} p_{i y_{1}} & \text { if } t=0, \\ p_{y_{t-1} i} q_{x_{t}}^{i} p_{i y_{t+1}} & \text { if } t>0,\end{cases}
$$

and compute corresponding sufficient statistics

Bayesian Core:A Practical Approach to Computational Bayesian Statistics
LDynamic models

L Hidden Markov models

Dnadataset

LHidden Markov models

Forward-Backward formulae

Existence of a (magical) recurrence relation that provides the observed likelihood function in manageable computing time Called forward-backward or Baum-Welch formulas

Observed likelihood computation

Likelihood of the complete model simple:

$$
\ell^{c}(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y})=\prod_{t=2}^{T} p_{y_{t-1} y_{t}} f\left(x_{t} \mid \theta_{y_{t}}\right)
$$

but likelihood of the observed model is not:

$$
\ell(\boldsymbol{\theta} \mid \mathbf{x})=\sum_{\mathbf{y} \in\{1, \ldots, \kappa\}^{T}} \ell^{c}(\boldsymbol{\theta} \mid \mathbf{x}, \mathbf{y})
$$

$$
\begin{array}{|l|}
\hline \text { C } \mathrm{O}\left(\kappa^{T}\right) \text { complexity } \\
\hline
\end{array}
$$

L Hidden Markov models

Forward-Backward paradox

It is possible to express the (observed) likelihood $L^{O}(\boldsymbol{\theta} \mid \mathbf{x})$ in

$$
\mathrm{O}\left(T^{2} \times \kappa\right)
$$

computations, based on the Markov property of the pair $\left(x_{t}, y_{t}\right)$.

- Direct to backward smoothing

Conditional distributions

We have

$$
p\left(\mathbf{y}_{1: t} \mid \mathbf{x}_{1: t}\right)=\frac{f\left(x_{t} \mid y_{t}\right) p\left(\mathbf{y}_{1: t} \mid \mathbf{x}_{1:(t-1)}\right)}{p\left(x_{t} \mid \mathbf{x}_{1:(t-1)}\right)}
$$

[Smoothing/Bayes]
and

$$
p\left(\mathbf{y}_{1: t} \mid \mathbf{x}_{1:(t-1)}\right)=k\left(y_{t} \mid \mathbf{y}_{t-1}\right) p\left(\mathbf{y}_{1:(t-1)} \mid \mathbf{x}_{1:(t-1)}\right)
$$

[Prediction]
where $k\left(y_{t} \mid y_{t-1}\right)=p_{y_{t-1} y_{t}}$ associated with the matrix \mathbb{P} and

$$
f\left(x_{t} \mid y_{t}\right)=f\left(x_{t} \mid \theta_{y_{t}}\right)
$$

Update of predictive

Therefore

$$
\begin{aligned}
p\left(\mathbf{y}_{1: t} \mid \mathbf{x}_{1: t}\right) & =\frac{p\left(y_{t} \mid \mathbf{x}_{1:(t-1)}\right) f\left(x_{t} \mid y_{t}\right)}{p\left(x_{t} \mid \mathbf{x}_{1:(t-1)}\right)} \\
& =\frac{f\left(x_{t} \mid y_{t}\right) k\left(y_{t} \mid \mathbf{y}_{t-1}\right)}{p\left(x_{t} \mid \mathbf{x}_{1:(t-1)}\right)} p\left(\mathbf{y}_{1:(t-1)} \mid \mathbf{x}_{1:(t-1)}\right)
\end{aligned}
$$

with the same order of complexity for $p\left(\mathbf{y}_{1: t} \mid \mathbf{x}_{1: t}\right)$ as for $p\left(x_{t} \mid \mathbf{x}_{1:(t-1)}\right)$

Propagation and actualization equations

$$
p\left(y_{t} \mid \mathbf{x}_{1:(t-1)}\right)=\sum_{\mathbf{y}_{1:(t-1)}} p\left(\mathbf{y}_{1:(t-1)} \mid \mathbf{x}_{1:(t-1)}\right) k\left(y_{t} \mid y_{t-1}\right)
$$

[Propagation]
and

$$
p\left(y_{t} \mid x_{1: t}\right)=\frac{p\left(y_{t} \mid \mathbf{x}_{1:(t-1)}\right) f\left(x_{t} \mid y_{t}\right)}{p\left(x_{t} \mid \mathbf{x}_{1:(t-1)}\right)} .
$$

[Actualization]

Forward-backward equations (1)

Evaluation of

$$
p\left(y_{t} \mid \mathbf{x}_{1: T}\right) \quad t \leq T
$$

by forward-backward algorithm
Denote $t \leq T$

$$
\begin{aligned}
\gamma_{t}(i) & =P\left(y_{t}=i \mid x_{1: T}\right) \\
\alpha_{t}(i) & =p\left(\mathbf{x}_{1: t}, y_{t}=i\right) \\
\beta_{t}(i) & =p\left(\mathbf{x}_{t+1: T} \mid y_{t}=i\right)
\end{aligned}
$$

Recurrence relations

Then

$$
\left\{\begin{array}{l}
\alpha_{1}(i)=f\left(x_{1} \mid y_{t}=i\right) \varrho_{i} \\
\alpha_{t+1}(j)=f\left(x_{t+1} \mid y_{t+1}=j\right) \sum_{i=1}^{\kappa} \alpha_{t}(i) p_{i j}
\end{array}\right.
$$

[Forward]

$$
\left\{\begin{array}{l}
\beta_{T}(i)=1 \\
\beta_{t}(i)=\sum_{j=1}^{\kappa} p_{i j} f\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j)
\end{array}\right.
$$

[Backward]
and

$$
\gamma_{t}(i)=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j=1}^{\kappa} \alpha_{t}(j) \beta_{t}(j)}
$$

Extension of the recurrence relations

For

$$
\xi_{t}(i, j)=P\left(y_{t}=i, y_{t+1}=j \mid \mathbf{x}_{1: T}\right) \quad i, j=1, \ldots, \kappa,
$$

we also have

$$
\xi_{t}(i, j)=\frac{\alpha_{t}(i) \mathbb{P}_{i j} f\left(x_{t+1} \mid y_{t}=j\right) \beta_{t+1}(j)}{\sum_{i=1}^{\kappa} \sum_{j=1}^{\kappa} \alpha_{t}(i) \mathbb{P}_{i j} f\left(x_{t+1} \mid y_{t+1}=j\right) \beta_{t+1}(j)}
$$

Overflows and underflows

On-line scalings of the $\alpha_{t}(i)$'s and $\beta_{T}(i)$'s for each t by

$$
c_{t}=1 / \sum_{i=1}^{\kappa} \alpha_{t}(i) \quad \text { and } \quad d_{t}=1 / \sum_{i=1}^{\kappa} \beta_{t}(i)
$$

avoid overflows or/and underflows for large datasets

Backward smoothing

Recursive derivation of conditionals
We have

$$
p\left(y_{s} \mid y_{s-1}, \mathbf{x}_{1: t}\right)=p\left(y_{s} \mid y_{s-1}, \mathbf{x}_{s: t}\right)
$$

[Markov property!]
Therefore $(s=T, T-1, \ldots, 1)$

$$
p\left(y_{s} \mid y_{s-1}, \mathbf{x}_{1: T}\right) \propto k\left(y_{s} \mid y_{s-1}\right) f\left(x_{s} \mid y_{s}\right) \sum_{y_{s+1}} p\left(y_{s+1} \mid y_{s}, \mathbf{x}_{1: T}\right)
$$

[Backward equation]
with

$$
p\left(y_{T} \mid y_{T-1}, \mathbf{x}_{1: T}\right) \propto k\left(y_{T} \mid y_{T-1}\right) f\left(x_{T} \mid y_{t}\right) .
$$

End of the backward smoothing

The first term is

$$
p\left(y_{1} \mid \mathbf{x}_{1: t}\right) \propto \pi\left(y_{1}\right) f\left(x_{1} \mid y_{1}\right) \sum_{y_{2}} p\left(y_{2} \mid y_{1}, \mathbf{x}_{1: t}\right)
$$

with π stationary distribution of \mathbb{P}

The conditional for y_{s} needs to be defined for each of the κ values of y_{s-1}

$$
\text { (C) } \mathrm{O}\left(t \times \kappa^{2}\right) \text { operations }
$$

Details

Need to introduce unnormalized version of the conditionals $p\left(y_{t} \mid y_{t-1}, \mathbf{x}_{0: T}\right)$ such that

$$
\begin{aligned}
p_{T}^{\star}\left(y_{T} \mid y_{T-1}, \mathbf{x}_{0: T}\right) & =p_{y_{T-1} y_{T}} f\left(x_{T} \mid y_{T}\right) \\
p_{t}^{\star}\left(y_{t} \mid y_{t-1}, \mathbf{x}_{1: T}\right) & =p_{y_{t-1} y_{t}} f\left(x_{t} \mid y_{t}\right) \sum_{i=1}^{\kappa} p_{t+1}^{\star}\left(i \mid y_{t}, \mathbf{x}_{1: T}\right) \\
p_{0}^{\star}\left(y_{0} \mid \mathbf{x}_{0: T}\right) & =\varrho_{y_{0}} f\left(x_{0} \mid y_{0}\right) \sum_{i=1}^{\kappa} p_{1}^{\star}\left(i \mid y_{0}, \mathbf{x}_{0: t}\right)
\end{aligned}
$$

Likelihood computation

Bayes formula

$$
p\left(\mathbf{x}_{1: T}\right)=\frac{p\left(\mathbf{x}_{1: T} \mid \mathbf{y}_{1: T}\right) p\left(\mathbf{y}_{1: T}\right)}{p\left(\mathbf{y}_{1: T} \mid \mathbf{x}_{1: T}\right)}
$$

gives a representation of the likelihood based on the forward-backward formulae and an arbitrary sequence $\mathbf{x}_{1: T}^{o}$ (since the I.h.s. does not depend on $\mathbf{x}_{1: T}$).

Obtained through the p_{t}^{\star} 's as

$$
p\left(\mathbf{x}_{0: T}\right)=\sum_{i=1}^{\kappa} p_{1}^{\star}\left(i \mid \mathbf{x}_{0: T}\right)
$$

Prediction filter

If

$$
\varphi_{t}(i)=p\left(y_{t}=i \mid \mathbf{x}_{1: t-1}\right)
$$

Forward equations

$$
\begin{aligned}
\varphi_{1}(j) & =p\left(y_{1}=j\right) \\
\varphi_{t+1}(j) & =\frac{1}{c_{t}} \sum_{i=1}^{\kappa} f\left(x_{t} \mid y_{t}=i\right) \varphi_{t}(i) p_{i j} \quad(t \geq 1)
\end{aligned}
$$

where

$$
c_{t}=\sum_{k=1}^{\kappa} f\left(x_{t} \mid y_{t}=k\right) \varphi_{t}(k)
$$

Likelihood computation (2)

Follows the same principle as the backward equations The (log-)likelihood is thus

$$
\begin{aligned}
\log p\left(\mathbf{x}_{1: t}\right) & =\sum_{r=1}^{t} \log \left[\sum_{i=1}^{\kappa} p\left(x_{t}, y_{t}=i \mid \mathbf{x}_{1:(r-1)}\right)\right] \\
& =\sum_{r=1}^{t} \log \left[\sum_{i=1}^{\kappa} f\left(x_{t} \mid y_{t}=i\right) \varphi_{t}(i)\right]
\end{aligned}
$$

