Mixture models

(5) Mixture models

- Mixture models
- MCMC approaches
- Label switching
- MCMC for variable dimension models

Missing variable models

Complexity of a model may originate from the fact that some piece of information is missing

Example

Arnason-Schwarz model with missing zones
Probit model with missing normal variate

Generic representation

$$
f(\mathbf{x} \mid \theta)=\int_{\mathscr{Z}} g(\mathbf{x}, \mathbf{z} \mid \theta) \mathrm{d} \mathbf{z}
$$

Mixture models

Models of mixtures of distributions:

$$
x \sim f_{j} \text { with probability } p_{j},
$$

for $j=1,2, \ldots, k$, with overall density

$$
p_{1} f_{1}(x)+\cdots+p_{k} f_{k}(x) .
$$

Usual case: parameterised components

$$
\sum_{i=1}^{k} p_{i} f\left(x \mid \theta_{i}\right)
$$

where weights p_{i} 's are distinguished from other parameters

Motivations

- Dataset made of several latent/missing/unobserved strata/subpopulations. Mixture structure due to the missing origin/allocation of each observation to a specific subpopulation/stratum. Inference on either the allocations (clustering) or on the parameters $\left(\theta_{i}, p_{i}\right)$ or on the number of groups
- Semiparametric perspective where mixtures are basis approximations of unknown distributions

License

Dataset derived from license plate image Grey levels concentrated on 256 values later jittered

Likelihood

For a sample of independent random variables $\left(x_{1}, \cdots, x_{n}\right)$, likelihood

$$
\prod_{i=1}^{n}\left\{p_{1} f_{1}\left(x_{i}\right)+\cdots+p_{k} f_{k}\left(x_{i}\right)\right\}
$$

Expanding this product involves

$$
k^{n}
$$

elementary terms: prohibitive to compute in large samples. But likelihood still computable [pointwise] in $\mathrm{O}(k n)$ time.

Normal mean benchmark

Normal mixture

$$
p \mathscr{N}\left(\mu_{1}, 1\right)+(1-p) \mathscr{N}\left(\mu_{2}, 1\right)
$$

with only unknown means (2-D representation possible)

Identifiability

Parameters μ_{1} and μ_{2} identifiable: μ_{1} cannot be confused with μ_{2} when p is different from 0.5.
Presence of a spurious mode, understood by letting p go to 0.5

Bayesian Inference

For any prior $\pi(\boldsymbol{\theta}, \mathbf{p})$, posterior distribution of $(\boldsymbol{\theta}, \mathbf{p})$ available up to a multiplicative constant

$$
\pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}) \propto\left[\prod_{i=1}^{n} \sum_{j=1}^{k} p_{j} f\left(x_{i} \mid \theta_{j}\right)\right] \pi(\boldsymbol{\theta}, \mathbf{p})
$$

at a cost of order $\mathrm{O}(k n)$

Difficulty
Despite this, derivation of posterior characteristics like posterior expectations only possible in an exponential time of order $\mathrm{O}\left(k^{n}\right)$!

Missing variable representation

Associate to each x_{i} a missing/latent variable z_{i} that indicates its component:

$$
z_{i} \mid \mathbf{p} \sim \mathscr{M}_{k}\left(p_{1}, \ldots, p_{k}\right)
$$

and

$$
x_{i} \mid z_{i}, \boldsymbol{\theta} \sim f\left(\cdot \mid \theta_{z_{i}}\right) .
$$

Completed likelihood

$$
\ell(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}, \mathbf{z})=\prod_{i=1}^{n} p_{z_{i}} f\left(x_{i} \mid \theta_{z_{i}}\right),
$$

and

$$
\pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}, \mathbf{z}) \propto\left[\prod_{i=1}^{n} p_{z_{i}} f\left(x_{i} \mid \theta_{z_{i}}\right)\right] \pi(\boldsymbol{\theta}, \mathbf{p})
$$

where $\mathbf{z}=\left(z_{1}, \ldots, z_{n}\right)$.

Partition sets

Denote by $\mathcal{Z}=\{1, \ldots, k\}^{n}$ set of the k^{n} possible vectors \mathbf{z}. \mathcal{Z} decomposed into a partition of sets

$$
\mathcal{Z}=\cup_{j=1}^{\mathfrak{r}} \mathcal{Z}_{j}
$$

For a given allocation size vector $\left(n_{1}, \ldots, n_{k}\right)$, where $n_{1}+\ldots+n_{k}=n$, partition sets

$$
\mathcal{Z}_{j}=\left\{\mathbf{z}: \sum_{i=1}^{n} \mathbb{I}_{z_{i}=1}=n_{1}, \ldots, \sum_{i=1}^{n} \mathbb{I}_{z_{i}=k}=n_{k}\right\}
$$

for all allocations with the given allocation size $\left(n_{1}, \ldots, n_{k}\right)$ and where labels $j=j\left(n_{1}, \ldots, n_{k}\right)$ defined by lexicographical ordering on the $\left(n_{1}, \ldots, n_{k}\right)$'s.

Posterior closed form representations

$$
\pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x})=\sum_{i=1}^{\mathfrak{r}} \sum_{\mathbf{z} \in \mathcal{Z}_{i}} \omega(\mathbf{z}) \pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}, \mathbf{z})
$$

where $\omega(\mathbf{z})$ represents marginal posterior probability of the allocation \mathbf{z} conditional on \mathbf{x} [derived by integrating out the parameters $\boldsymbol{\theta}$ and \mathbf{p}]

Bayes estimator of $(\boldsymbol{\theta}, \mathbf{p})$

$$
\sum_{i=1}^{\mathfrak{r}} \sum_{\mathbf{z} \in \mathcal{Z}_{i}} \omega(\mathbf{z}) \mathbb{E}^{\pi}[\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}, \mathbf{z}]
$$

(C) Too costly: 2^{n} terms

General Gibbs sampling for mixture models

Take advantage of the missing data structure:

Algorithm

- Initialization: choose $\mathbf{p}^{(0)}$ and $\boldsymbol{\theta}^{(0)}$ arbitrarily
- Step t. For $t=1, \ldots$
(1) Generate $z_{i}^{(t)}(i=1, \ldots, n)$ from $(j=1, \ldots, k)$

$$
\mathbb{P}\left(z_{i}^{(t)}=j \mid p_{j}^{(t-1)}, \theta_{j}^{(t-1)}, x_{i}\right) \propto p_{j}^{(t-1)} f\left(x_{i} \mid \theta_{j}^{(t-1)}\right)
$$

(2) Generate $\mathbf{p}^{(t)}$ from $\pi\left(\mathbf{p} \mid \mathbf{z}^{(t)}\right)$,
(3) Generate $\boldsymbol{\theta}^{(t)}$ from $\pi\left(\boldsymbol{\theta} \mid \mathbf{z}^{(t)}, \mathbf{x}\right)$.

Exponential families

When

$$
f(x \mid \theta)=h(x) \exp (R(\theta) \cdot T(x)>-\psi(\theta))
$$

simulation of both \mathbf{p} and $\boldsymbol{\theta}$ usually straightforward:
Conjugate prior on θ_{j} given byBack to definition

$$
\pi_{j}(\theta) \propto \exp \left(R(\theta) \cdot \alpha_{j}-\beta_{j} \psi(\theta)\right)
$$

where $\alpha_{j} \in \mathbb{R}^{k}$ and $\beta_{j}>0$ are hyperparameters and

$$
\mathbf{p} \sim \mathscr{D}\left(\gamma_{1}, \ldots, \gamma_{k}\right)
$$

[Dirichlet distribution]

Gibbs sampling for exponential family mixtures

Algorithm

- Initialization. Choose $\mathbf{p}^{(0)}$ and $\boldsymbol{\theta}^{(0)}$,
- Step \mathbf{t}. For $t=1, \ldots$
(1) Generate $z_{i}^{(t)}(i=1, \ldots, n, j=1, \ldots, k)$ from

$$
\mathbb{P}\left(z_{i}^{(t)}=j \mid p_{j}^{(t-1)}, \theta_{j}^{(t-1)}, x_{i}\right) \propto p_{j}^{(t-1)} f\left(x_{i} \mid \theta_{j}^{(t-1)}\right)
$$

(2) Compute $n_{j}^{(t)}=\sum_{i=1}^{n} \mathbb{I}_{z_{i}^{(t)}=j}, s_{j}^{(t)}=\sum_{i=1}^{n} \mathbb{I}_{z_{i}^{(t)}=j} t\left(x_{i}\right)$
(3) Generate $\mathbf{p}^{(t)}$ from $\mathscr{D}\left(\gamma_{1}+n_{1}, \ldots, \gamma_{k}+n_{k}\right)$,
(4) Generate $\theta_{j}^{(t)}(j=1, \ldots, k)$ from

$$
\pi\left(\theta_{j} \mid \mathbf{z}^{(t)}, \mathbf{x}\right) \propto \exp \left(R\left(\theta_{j}\right) \cdot\left(\alpha+s_{j}^{(t)}\right)-\psi\left(\theta_{j}\right)\left(n_{j}+\beta\right)\right)
$$

Normal mean example

For mixture of two normal distributions with unknown means,

$$
p \mathcal{N}\left(\mu, \tau^{2}\right)+(1-p) \mathcal{N}\left(\theta, \sigma^{2}\right)
$$

and a normal prior $\mathscr{N}(\delta, 1 / \lambda)$ on μ_{1} and μ_{2},

Normal mean example (cont'd)

Algorithm

- Initialization. Choose $\mu_{1}^{(0)}$ and $\mu_{2}^{(0)}$,
- Step t. For $t=1, \ldots$
(1) Generate $z_{i}^{(t)}(i=1, \ldots, n)$ from
$\mathbb{P}\left(z_{i}^{(t)}=1\right)=1-\mathbb{P}\left(z_{i}^{(t)}=2\right) \propto p \exp \left(-\frac{1}{2}\left(x_{i}-\mu_{1}^{(t-1)}\right)^{2}\right)$
(2) Compute $n_{j}^{(t)}=\sum_{i=1}^{n} \mathbb{I}_{z_{i}^{(t)}=j}$ and $\left(s_{j}^{x}\right)^{(t)}=\sum_{i=1}^{n} \mathbb{I}_{z_{i}^{(t)}=j} x_{i}$
(3) Generate $\mu_{j}^{(t)}(j=1,2)$ from $\mathscr{N}\left(\frac{\lambda \delta+\left(s_{j}^{x}\right)^{(t)}}{\lambda+n_{j}^{(t)}}, \frac{1}{\lambda+n_{j}^{(t)}}\right)$.
$L_{\text {Mixture models }}$
$L_{\text {MCMC approaches }}$

Normal mean example (cont'd)

(a) initialised at random

(b) initialised close to the lower mode

License

Consider $k=3$ components, a $\mathscr{D}_{3}(1 / 2,1 / 2,1 / 2)$ prior for the weights, a $\mathscr{N}\left(\bar{x}, \hat{\sigma}^{2} / 3\right)$ prior on the means μ_{i} and a $\mathscr{G} a\left(10, \hat{\sigma}^{2}\right)$ prior on the precisions σ_{i}^{-2}, where \bar{x} and $\hat{\sigma}^{2}$ are the empirical mean and variance of License
[Empirical Bayes]

Metropolis-Hastings alternative

For the Gibbs sampler, completion of \mathbf{z} increases the dimension of the simulation space and reduces the mobility of the parameter chain.

Metropolis-Hastings algorithm available since posterior available in closed form, as long as q provides a correct exploration of the posterior surface, since

$$
\frac{\pi\left(\boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime} \mid \mathbf{x}\right)}{\pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x})} \frac{q\left(\boldsymbol{\theta}, \mathbf{p} \mid \boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime}\right)}{q\left(\boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime} \mid \boldsymbol{\theta}, \mathbf{p}\right)} \wedge 1
$$

computable in $\mathbf{O}(k n)$ time

Random walk Metropolis-Hastings

Proposal distribution for the new value

$$
\widetilde{\theta_{j}}=\theta_{j}^{(t-1)}+u_{j} \text { where } u_{j} \sim \mathscr{N}\left(0, \zeta^{2}\right)
$$

In mean mixture case, Gaussian random walk proposal is

$$
\begin{aligned}
& \widetilde{\mu_{1}} \sim \mathscr{N}\left(\mu_{1}^{(t-1)}, \zeta^{2}\right) \quad \text { and } \\
& \widetilde{\mu_{2}} \sim \mathscr{N}\left(\mu_{2}^{(t-1)}, \zeta^{2}\right)
\end{aligned}
$$

Random walk Metropolis-Hastings for means

Algorithm

- Initialization:

Choose $\mu_{1}^{(0)}$ and $\mu_{2}^{(0)}$

- Iteration $t(t \geq 1)$:
(1) Generate $\widetilde{\mu_{1}}$ from $\mathscr{N}\left(\mu_{1}^{(t-1)}, \zeta^{2}\right)$,
(2) Generate $\widetilde{\mu_{2}}$ from $\mathscr{N}\left(\mu_{2}^{(t-1)}, \zeta^{2}\right)$,
(3) Compute

$$
r=\pi\left(\widetilde{\mu_{1}}, \widetilde{\mu_{2}} \mid x\right) / \pi\left(\mu_{1}^{(t-1)}, \mu_{2}^{(t-1)} \mid x\right)
$$

(4) Generate $u \sim \mathscr{U}_{[0,1]}$: if $u<r$, then $\left(\mu_{1}^{(t)}, \mu_{2}^{(t)}\right)=\left(\widetilde{\mu_{1}}, \widetilde{\mu_{2}}\right)$ else $\left(\mu_{1}^{(t)}, \mu_{2}^{(t)}\right)=\left(\mu_{1}^{(t-1)}, \mu_{2}^{(t-1)}\right)$.

Random walk extensions

Difficulties with constrained parameters, like \mathbf{p} such that

$$
\sum_{i=1}^{k} p_{k}=1
$$

Resolution by overparameterisation

$$
p_{j}=w_{j} / \sum_{l=1}^{k} w_{l}, \quad w_{j}>0
$$

and proposed move on the w_{j} 's

$$
\log \left(\widetilde{w_{j}}\right)=\log \left(w_{j}^{(t-1)}\right)+u_{j} \text { where } u_{j} \sim \mathscr{N}\left(0, \zeta^{2}\right)
$$

2. Watch out for the Jacobian in the log transform

Identifiability

A mixture model is invariant under permutations of the indices of the components.
E.g., mixtures

$$
0.3 \mathscr{N}(0,1)+0.7 \mathscr{N}(2.3,1)
$$

and

$$
0.7 \mathscr{N}(2.3,1)+0.3 \mathscr{N}(0,1)
$$

are exactly the same!
(C) The component parameters θ_{i} are not identifiable marginally since they are exchangeable

Connected difficulties

(1) Number of modes of the likelihood of order $\mathrm{O}(k!)$: (c) Maximization and even [MCMC] exploration of the posterior surface harder
(2) Under exchangeable priors on $(\boldsymbol{\theta}, \mathbf{p})$ [prior invariant under permutation of the indices], all posterior marginals are identical:
(C) Posterior expectation of θ_{1} equal to posterior expectation of θ_{2}.

License

Since Gibbs output does not produce exchangeability, the Gibbs sampler has not explored the whole parameter space: it lacks energy to switch simultaneously enough component allocations at once

Label switching paradox

We should observe the exchangeability of the components [label switching] to conclude about convergence of the Gibbs sampler.

If we observe it, then we do not know how to estimate the parameters.

If we do not, then we are uncertain about the convergence!!!

Constraints

Usual reply to lack of identifiability: impose constraints like $\mu_{1} \leq \ldots \leq \mu_{k}$ in the prior

Mostly incompatible with the topology of the posterior surface: posterior expectations then depend on the choice of the constraints.

Computational detail

The constraint does not need to be imposed during the simulation but can instead be imposed after simulation, by reordering the MCMC output according to the constraint. This avoids possible negative effects on convergence.

Relabeling towards the mode

Selection of one of the k ! modal regions of the posterior once simulation is over, by computing the approximate MAP

$$
(\boldsymbol{\theta}, \mathbf{p})^{\left(i^{*}\right)} \quad \text { with } \quad i^{*}=\arg \max _{i=1, \ldots, M} \pi\left\{(\boldsymbol{\theta}, \mathbf{p})^{(i)} \mid \mathbf{x}\right\}
$$

Pivotal Reordering

At iteration $i \in\{1, \ldots, M\}$,
(1) Compute the optimal permutation

$$
\tau_{i}=\arg \min _{\tau \in \mathfrak{S}_{k}} d\left(\tau\left\{\left(\boldsymbol{\theta}^{(i)}, \mathbf{p}^{(i)}\right),\left(\boldsymbol{\theta}^{\left(i^{*}\right)}, \mathbf{p}^{\left(i^{*}\right)}\right)\right\}\right)
$$

where $d(\cdot, \cdot)$ distance in the parameter space.
(2) Set $\left(\boldsymbol{\theta}^{(i)}, \mathbf{p}^{(i)}\right)=\tau_{i}\left(\left(\boldsymbol{\theta}^{(i)}, \mathbf{p}^{(i)}\right)\right)$.

Re-ban on improper priors

Difficult to use improper priors in the setting of mixtures because independent improper priors,

$$
\pi(\boldsymbol{\theta})=\prod_{i=1}^{k} \pi_{i}\left(\theta_{i}\right), \quad \text { with } \quad \int \pi_{i}\left(\theta_{i}\right) \mathrm{d} \theta_{i}=\infty
$$

end up, for all n 's, with the property

$$
\int \pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x}) \mathrm{d} \boldsymbol{\theta} \mathrm{~d} \mathbf{p}=\infty
$$

Reason

There are $(k-1)^{n}$ terms among the k^{n} terms in the expansion that allocate no observation at all to the i-th component.

Tempering

Facilitate exploration of π by flattening the target: simulate from $\pi_{\alpha}(x) \propto \pi(x)^{\alpha}$ for $\alpha>0$ large enough

- Determine where the modal regions of π are (possibly with parallel versions using different α 's)
- Recycle simulations from $\pi(x)^{\alpha}$ into simulations from π by importance sampling
- Simple modification of the Metropolis-Hastings algorithm, with new acceptance

$$
\left\{\left(\frac{\pi\left(\boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime} \mid \mathbf{x}\right)}{\pi(\boldsymbol{\theta}, \mathbf{p} \mid \mathbf{x})}\right)^{\alpha} \frac{q\left(\boldsymbol{\theta}, \mathbf{p} \mid \boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime}\right)}{q\left(\boldsymbol{\theta}^{\prime}, \mathbf{p}^{\prime} \mid \boldsymbol{\theta}, \mathbf{p}\right)}\right\} \wedge 1
$$

Tempering with the mean mixture

MCMC for variable dimension models

One of the things we do not know is
the number of things we
do not know
-P. Green, 1996-

Example

- the number of components in a mixture
- the number of covariates in a regression model
- the number of different capture probabilities in a capture-recapture model
- the number of lags in a time-series model

Variable dimension models

Variable dimension model defined as a collection of models $(k=1 \ldots, K)$,

$$
\mathfrak{M}_{k}=\left\{f\left(\cdot \mid \theta_{k}\right) ; \quad \theta_{k} \in \Theta_{k}\right\},
$$

associated with a collection of priors on the parameters of these models,

$$
\pi_{k}\left(\theta_{k}\right)
$$

and a prior distribution on the indices of these models,

$$
\{\varrho(k), k=1, \ldots, K\} .
$$

Global notation:

$$
\pi\left(\mathfrak{M}_{k}, \theta_{k}\right)=\varrho(k) \pi_{k}\left(\theta_{k}\right)
$$

Bayesian inference for variable dimension models

Two perspectives:
(1) consider the variable dimension model as a whole and estimate quantities meaningful for the whole like predictives

$$
\sum_{k} \operatorname{Pr}\left(\mathfrak{M}_{k} \mid x_{1}, \ldots, x_{n}\right) \int f_{k}\left(x \mid \theta_{k}\right) \mathrm{d} x \pi_{k}\left(\theta_{k} \mid x_{1}, \ldots, x_{n}\right) \mathrm{d} \theta
$$

\& quantities only meaningful for submodels (like moments of $\left.\theta_{k}\right)$, computed from $\pi_{k}\left(\theta_{k} \mid x_{1}, \ldots, x_{n}\right)$. [Usual setup]
(2) resort to testing by choosing the best submodel via

$$
p\left(\mathfrak{M}_{i} \mid x\right)=\frac{p_{i} \int_{\Theta_{i}} f_{i}\left(x \mid \theta_{i}\right) \pi_{i}\left(\theta_{i}\right) d \theta_{i}}{\sum_{j} p_{j} \int_{\Theta_{j}} f_{j}\left(x \mid \theta_{j}\right) \pi_{j}\left(\theta_{j}\right) d \theta_{j}}
$$

Green's reversible jumps

Computational burden in exploring [possibly infinite] complex parameter space: Green's method set up a proper measure-theoretic framework for designing moves between models/spaces $\mathfrak{M}_{k} / \Theta_{k}$ of varying dimensions [no one-to-one correspondence]

Create a reversible kernel \mathfrak{K} on $\mathfrak{H}=\bigcup_{k}\{k\} \times \Theta_{k}$ such that

$$
\int_{A} \int_{B} \mathfrak{K}(x, d y) \pi(x) d x=\int_{B} \int_{A} \mathfrak{K}(y, d x) \pi(y) d y
$$

for the invariant density π [x is of the form $\left(k, \theta^{(k)}\right)$] and for all sets A, B [un-detailed balance]

Green's reversible kernel

Since Markov kernel \mathfrak{K} necessarily of the form [either stay at the same value or move to one of the states]

$$
\mathfrak{K}(x, B)=\sum_{m=1}^{\infty} \int \rho_{m}(x, y) \mathfrak{q}_{m}(x, d y)+\omega(x) \mathbb{I}_{B}(x)
$$

where $\mathfrak{q}_{m}(x, d y)$ transition measure to model \mathfrak{M}_{m} and $\rho_{m}(x, y)$ corresponding acceptance probability, only need to consider proposals between two models, \mathfrak{M}_{1} and \mathfrak{M}_{2}, say.

Green's reversibility constraint

If transition kernels between those models are $\mathfrak{K}_{1 \rightarrow 2}\left(\theta_{1}, d \theta\right)$ and $\mathfrak{K}_{2 \rightarrow 1}\left(\theta_{2}, d \theta\right)$, formal use of the detailed balance condition

$$
\pi\left(d \theta_{1}\right) \mathfrak{K}_{1 \rightarrow 2}\left(\theta_{1}, d \theta\right)=\pi\left(d \theta_{2}\right) \mathfrak{K}_{2 \rightarrow 1}\left(\theta_{2}, d \theta\right),
$$

\Varangle To preserve stationarity, necessary symmetry between moves/proposals from \mathfrak{M}_{1} to \mathfrak{M}_{2} and from \mathfrak{M}_{2} to \mathfrak{M}_{1}

Two-model transitions

How to move from model \mathfrak{M}_{1} to \mathfrak{M}_{2}, with Markov chain being in state $\theta_{1} \in \mathfrak{M}_{1}[$ i.e. $k=1]$?

Most often \mathfrak{M}_{1} and \mathfrak{M}_{2} are of different dimensions, e.g.

$$
\operatorname{dim}\left(\mathfrak{M}_{2}\right)>\operatorname{dim}\left(\mathfrak{M}_{1}\right)
$$

In that case, need to supplement both spaces $\Theta_{k_{1}}$ and $\Theta_{k_{2}}$ with adequate artificial spaces to create a one-to-one mapping between them, most often by augmenting the space of the smaller model.

L MCMC for variable dimension models

Two-model completions

E.g., move from $\theta_{2} \in \Theta_{2}$ to Θ_{1} chosen to be a deterministic transform of θ_{2}

$$
\theta_{1}=\Psi_{2 \rightarrow 1}\left(\theta_{2}\right),
$$

Reverse proposal expressed as

$$
\theta_{2}=\Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)
$$

where $v_{1 \rightarrow 2}$ r.v. of dimension $\operatorname{dim}\left(\mathfrak{M}_{2}\right)-\operatorname{dim}\left(\mathfrak{M}_{1}\right)$, generated as

$$
v_{1 \rightarrow 2} \sim \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)
$$

L MCMC for variable dimension models

Two-model acceptance probability

In this case, θ_{2} has density [under stationarity]

$$
\mathfrak{q}_{1 \rightarrow 2}\left(\theta_{2}\right)=\pi_{1}\left(\theta_{1}\right) \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right|^{-1}
$$

by the Jacobian rule.
To make it $\pi_{2}\left(\theta_{2}\right)$ we thus need to accept this value with probability

$$
\alpha\left(\theta_{1}, v_{1 \rightarrow 2}\right)=1 \wedge \frac{\pi\left(\mathfrak{M}_{2}, \theta_{2}\right)}{\pi\left(\mathfrak{M}_{1}, \theta_{1}\right) \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)}\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right| .
$$

\& This is restricted to the case when only moves between \mathfrak{M}_{1} and \mathfrak{M}_{2} are considered

Interpretation

The representation puts us back in a fixed dimension setting:

- $\mathfrak{M}_{1} \times \mathfrak{V}_{1 \rightarrow 2}$ and \mathfrak{M}_{2} in one-to-one relation.
- reversibility imposes that θ_{1} is derived as

$$
\left(\theta_{1}, v_{1 \rightarrow 2}\right)=\Psi_{1 \rightarrow 2}^{-1}\left(\theta_{2}\right)
$$

- appears like a regular Metropolis-Hastings move from the couple $\left(\theta_{1}, v_{1 \rightarrow 2}\right)$ to θ_{2} when stationary distributions are $\pi\left(\mathfrak{M}_{1}, \theta_{1}\right) \times \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)$ and $\pi\left(\mathfrak{M}_{2}, \theta_{2}\right)$, and when proposal distribution is deterministic (??)

L MCMC for variable dimension models

Pseudo-deterministic reasoning

Consider the proposals
$\theta_{2} \sim \mathcal{N}\left(\Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right), \varepsilon\right) \quad$ and $\quad \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right) \sim \mathcal{N}\left(\theta_{2}, \varepsilon\right)$
Reciprocal proposal has density

$$
\frac{\exp \left\{-\left(\theta_{2}-\Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)\right)^{2} / 2 \varepsilon\right\}}{\sqrt{2 \pi \varepsilon}} \times\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right|
$$

by the Jacobian rule.
Thus Metropolis-Hastings acceptance probability is

$$
1 \wedge \frac{\pi\left(\mathfrak{M}_{2}, \theta_{2}\right)}{\pi\left(\mathfrak{M}_{1}, \theta_{1}\right) \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)}\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right|
$$

Does not depend on ε : Let ε go to 0

L MCMC for variable dimension models

Generic reversible jump acceptance probability

If several models are considered simultaneously, with probability $\varpi_{1 \rightarrow 2}$ of choosing move to \mathfrak{M}_{2} while in \mathfrak{M}_{1}, as in

$$
\mathfrak{K}(x, B)=\sum_{m=1}^{\infty} \int \rho_{m}(x, y) \mathfrak{q}_{m}(x, d y)+\omega(x) \mathbb{I}_{B}(x)
$$

acceptance probability of $\theta_{2}=\Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)$ is

$$
\alpha\left(\theta_{1}, v_{1 \rightarrow 2}\right)=1 \wedge \frac{\pi\left(\mathfrak{M}_{2}, \theta_{2}\right) \varpi_{2 \rightarrow 1}}{\pi\left(\mathfrak{M}_{1}, \theta_{1}\right) \varpi_{1 \rightarrow 2} \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)}\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right|
$$

while acceptance probability of θ_{1} with $\left(\theta_{1}, v_{1 \rightarrow 2}\right)=\Psi_{1 \rightarrow 2}^{-1}\left(\theta_{2}\right)$ is

$$
\alpha\left(\theta_{1}, v_{1 \rightarrow 2}\right)=1 \wedge \frac{\pi\left(\mathfrak{M}_{1}, \theta_{1}\right) \varpi_{1 \rightarrow 2} \varphi_{1 \rightarrow 2}\left(v_{1 \rightarrow 2}\right)}{\pi\left(\mathfrak{M}_{2}, \theta_{2}\right) \varpi_{2 \rightarrow 1}}\left|\frac{\partial \Psi_{1 \rightarrow 2}\left(\theta_{1}, v_{1 \rightarrow 2}\right)}{\partial\left(\theta_{1}, v_{1 \rightarrow 2}\right)}\right|^{-1}
$$

L MCMC for variable dimension models

Green's sampler

Algorithm

Iteration $t(t \geq 1)$: if $x^{(t)}=\left(m, \theta^{(m)}\right)$,
(1) Select model \mathfrak{M}_{n} with probability $\pi_{m n}$
(2) Generate $u_{m n} \sim \varphi_{m n}(u)$ and set $\left(\theta^{(n)}, v_{n m}\right)=\Psi_{m \rightarrow n}\left(\theta^{(m)}, u_{m n}\right)$
(3) Take $x^{(t+1)}=\left(n, \theta^{(n)}\right)$ with probability

$$
\min \left(\frac{\pi\left(n, \theta^{(n)}\right)}{\pi\left(m, \theta^{(m)}\right)} \frac{\pi_{n m} \varphi_{n m}\left(v_{n m}\right)}{\pi_{m n} \varphi_{m n}\left(u_{m n}\right)}\left|\frac{\partial \Psi_{m \rightarrow n}\left(\theta^{(m)}, u_{m n}\right)}{\partial\left(\theta^{(m)}, u_{m n}\right)}\right|, 1\right)
$$

and take $x^{(t+1)}=x^{(t)}$ otherwise.

Mixture of normal distributions

$$
\mathfrak{M}_{k}=\left\{\left(p_{j k}, \mu_{j k}, \sigma_{j k}\right) ; \sum_{j=1}^{k} p_{j k} \mathcal{N}\left(\mu_{j k}, \sigma_{j k}^{2}\right)\right\}
$$

Restrict moves from \mathfrak{M}_{k} to adjacent models, like \mathfrak{M}_{k+1} and \mathfrak{M}_{k-1}, with probabilities $\pi_{k(k+1)}$ and $\pi_{k(k-1)}$.

Mixture birth

Take $\Psi_{k \rightarrow k+1}$ as a birth step: i.e. add a new normal component in the mixture, by generating the parameters of the new component from the prior distribution

$$
\left(\mu_{k+1}, \sigma_{k+1}\right) \sim \pi(\mu, \sigma) \quad \text { and } \quad p_{k+1} \sim \mathscr{B} e\left(a_{1}, a_{2}+\ldots+a_{k}\right)
$$

if $\left(p_{1}, \ldots, p_{k}\right) \sim \mathscr{M}_{k}\left(a_{1}, \ldots, a_{k}\right)$
Jacobian is $\left(1-p_{k+1}\right)^{k-1}$

Death step then derived from the reversibility constraint by removing one of the k components at random.

Mixture acceptance probability

Birth acceptance probability

$$
\begin{aligned}
& \min \left(\frac{\pi_{(k+1) k}}{\pi_{k(k+1)}} \frac{(k+1)!}{(k+1) k!} \frac{\pi\left(k+1, \theta_{k+1}\right)}{\pi\left(k, \theta_{k}\right)(k+1) \varphi_{k(k+1)}\left(u_{k(k+1)}\right)}, 1\right) \\
& \quad=\min \left(\frac{\pi_{(k+1) k}}{\pi_{k(k+1)}} \frac{\varrho(k+1)}{\varrho(k)} \frac{\ell_{k+1}\left(\theta_{k+1}\right)\left(1-p_{k+1}\right)^{k-1}}{\ell_{k}\left(\theta_{k}\right)}, 1\right),
\end{aligned}
$$

where ℓ_{k} likelihood of the k component mixture model \mathfrak{M}_{k} and $\varrho(k)$ prior probability of model \mathfrak{M}_{k}.
Combinatorial terms: there are $(k+1)$! ways of defining a $(k+1)$ component mixture by adding one component, while, given a $(k+1)$ component mixture, there are $(k+1)$ choices for a component to die and then k ! associated mixtures for the remaining components.

Bayesian Core:A Practical Approach to Computational Bayesian Statistics
LMixture models
MCMC for variable dimension models

License

More coordinated moves

Use of local moves that preserve structure of the original model.

Split move from \mathfrak{M}_{k} to \mathfrak{M}_{k+1} : replaces a random component, say the j th, with two new components, say the j th and the $(j+1)$ th, that are centered at the earlier j th component. And opposite merge move obtained by joining two components together.

L MCMC for variable dimension models

Splitting with moment preservation

Split parameters for instance created under a moment preservation condition:

$$
\begin{array}{ll}
p_{j k} & =p_{j(k+1)}+p_{(j+1)(k+1)} \\
p_{j k} \mu_{j k} & =p_{j(k+1)} \mu_{j(k+1)}+p_{(j+1)(k+1)} \mu_{(j+1)(k+1)} \\
p_{j k} \sigma_{j k}^{2} & =p_{j(k+1)} \sigma_{j(k+1)}^{2}+p_{(j+1)(k+1)} \sigma_{(j+1)(k+1)}^{2}
\end{array}
$$

Opposite merge move obtained by reversibility
 constraint

L MCMC for variable dimension models

Splitting details

Generate the auxiliary variable $u_{k(k+1)}$ as

$$
u_{1}, u_{3} \sim \mathcal{U}(0,1), u_{2} \sim \mathscr{N}\left(0, \tau^{2}\right)
$$

and take

$$
\begin{aligned}
p_{j(k+1)} & =u_{1} p_{j k}, & p_{(j+1)(k+1)} & =\left(1-u_{1}\right) p_{j k}, \\
\mu_{j(k+1)} & =\mu_{j k}+u_{2}, & \mu_{(j+1)(k+1)} & =\mu_{j k}-\frac{p_{j(k+1)} u_{2}}{p_{j k}-p_{j)(k+1)}} \\
\sigma_{j(k+1)}^{2} & =u_{3} \sigma_{j k}^{2}, & \sigma_{(j+1)(k+1)} & =\frac{p_{j k}-p_{j(k+1)} u_{3}}{p_{j k}-p_{j(k+1)}} \sigma_{j k}^{2}
\end{aligned}
$$

$L_{\text {MCMC }}$ for variable dimension models

Jacobian

Corresponding Jacobian

$$
\operatorname{det}\left(\begin{array}{cccccc}
u_{1} & 1-u_{1} & \cdots & \cdots & \cdots & \cdots \\
p_{j k} & -p_{j k} & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 1 & 1 & \cdots & \cdots \\
0 & 0 & 1 & \frac{-p_{j(k+1)}}{p_{j k}-p_{j(k+1)}} & \cdots & \cdots \\
0 & 0 & 0 & 0 & u_{3} & \frac{p_{j k}-p_{j(k+1)} u_{3}}{p_{j k}-p_{j(k+1)}} \\
0 & 0 & 0 & 0 & \sigma_{j k}^{2} & \frac{-p_{j(k+1)}^{p_{j k}-p_{j(k+1)}} \sigma_{j k}^{2}}{0^{2}}
\end{array}\right)=\frac{p_{j k}}{\left(1-u_{1}\right)^{2}} \sigma_{j k}^{2}
$$

Acceptance probability

Corresponding split acceptance probability

$$
\min \left(\frac{\widetilde{\pi}_{(k+1) k}}{\widetilde{\pi}_{k(k+1)}} \frac{\varrho(k+1)}{\varrho(k)} \frac{\pi_{k+1}\left(\theta_{k+1}\right) \ell_{k+1}\left(\theta_{k+1}\right)}{\pi_{k}\left(\theta_{k}\right) \ell_{k}\left(\theta_{k}\right)} \frac{p_{j k}}{\left(1-u_{1}\right)^{2}} \sigma_{j k}^{2}, 1\right)
$$

where $\widetilde{\pi}_{(k+1) k}$ and $\widetilde{\pi}_{k(k+1)}$ denote split and merge probabilities when in models \mathfrak{M}_{k} and \mathfrak{M}_{k+1}

Factorial terms vanish: for a split move there are k possible choices of the split component and then $(k+1)$! possible orderings of the θ_{k+1} vector while, for a merge, there are $(k+1) k$ possible choices for the components to be merged and then k ! ways of ordering the resulting θ_{k}.

