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Regression

Regression

Large fraction of statistical analyses dealing with representation of
dependences between several variables, rather than marginal
distribution of each variable
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Regression

Pine processionary caterpillars

Pine processionary caterpillar
colony size influenced by

x1 altitude

x2 slope (in degrees)

x3 number of pines in the area

x4 height of the central tree

x5 diameter of the central tree

x6 index of the settlement density

x7 orientation of the area (from 1
[southbound] to 2)

x8 height of the dominant tree

x9 number of vegetation strata

x10 mix settlement index (from 1 if not
mixed to 2 if mixed)
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Regression

Pine processionary caterpillars

x1 x2 x3

x4 x5 x6

x7 x8 x9
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Regression

Goal of a regression model

From a statistical point of view, find a proper representation of the
distribution, f(y|θ, x), of an observable variable y given a vector of
observables x, based on a sample of (x, y)i’s.
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Regression

Linear regression

Linear regression: one of the most widespread tools of Statistics
for analysing (linear) influence of some variables or some factors on
others
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Regression and variable selection

Regression

Linear regression

Linear regression: one of the most widespread tools of Statistics
for analysing (linear) influence of some variables or some factors on
others

Aim

To uncover explanatory and predictive patterns
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Regression

Regressors and response

Variable of primary interest, y, called the response or the outcome
variable [assumed here to be continuous]

E.g., number of Pine processionary caterpillar colonies
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Regressors and response

Variable of primary interest, y, called the response or the outcome
variable [assumed here to be continuous]

E.g., number of Pine processionary caterpillar colonies

Covariates x = (x1, . . . , xk) called explanatory variables [may be
discrete, continuous or both]
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Regression

Regressors and response

Variable of primary interest, y, called the response or the outcome
variable [assumed here to be continuous]

E.g., number of Pine processionary caterpillar colonies

Covariates x = (x1, . . . , xk) called explanatory variables [may be
discrete, continuous or both]

Distribution of y given x typically studied in the context of a set of
units or experimental subjects, i = 1, . . . , n, for instance patients in
an hospital ward, on which both yi and xi1, . . . , xik are measured.
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Regression

Regressors and response cont’d

Dataset made of the conjunction of the vector of outcomes

y = (y1, . . . , yn)
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Regression

Regressors and response cont’d

Dataset made of the conjunction of the vector of outcomes

y = (y1, . . . , yn)

and of the n× (k + 1) matrix of explanatory variables

X =





1 x11 x12 . . . x1k

1 x21 x22 . . . x2k

1 x31 x32 . . . x3k
...

...
...

...
...

1 xn1 xn2 . . . xnk
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Linear models

Linear models

Ordinary normal linear regression model such that

y|β, σ2, X ∼ Nn(Xβ, σ2In)
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Linear models

Linear models

Ordinary normal linear regression model such that

y|β, σ2, X ∼ Nn(Xβ, σ2In)

and thus

E[yi|β, X] = β0 + β1xi1 + . . . + βkxik

V(yi|σ2, X) = σ2

17 / 122



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Regression and variable selection

Linear models

Categorical variables

 There is a difference between finite valued regressors like x7 in
caterpillar [orientation of the area] and categorical variables
(or factors), which are also taking a finite number of values
but whose range has no numerical meaning.
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Linear models

Categorical variables

 There is a difference between finite valued regressors like x7 in
caterpillar [orientation of the area] and categorical variables
(or factors), which are also taking a finite number of values
but whose range has no numerical meaning.

Example

If x is the socio-professional category of an employee, this variable
ranges from 1 to 9 for a rough grid of socio-professional activities,
and from 1 to 89 on a finer grid.

The numerical values are not comparable
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Linear models

Categorical variables (cont’d)

Makes little sense to involve x directly in the regression: replace
the single regressor x [in {1, . . . , m}, say] with m indicator (or
dummy) variables

x1 = I1(x), . . . , xm = Im(x)
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Regression and variable selection

Linear models

Categorical variables (cont’d)

Makes little sense to involve x directly in the regression: replace
the single regressor x [in {1, . . . , m}, say] with m indicator (or
dummy) variables

x1 = I1(x), . . . , xm = Im(x)

Convention

Use of a different constant βi for each class categorical variable
value:

E[yi|β, X] = . . . + β1I1(x) + . . . + βmIm(x) + . . .
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Linear models

Identifiability

Identifiability issue: For dummy variables, sum of the indicators
equal to one.

Convention

Assume that X is of full rank:

rank(X) = k + 1

[X is of full rank if and only if XTX is invertible]
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Regression and variable selection

Linear models

Identifiability

Identifiability issue: For dummy variables, sum of the indicators
equal to one.

Convention

Assume that X is of full rank:

rank(X) = k + 1

[X is of full rank if and only if XTX is invertible]

E.g., for dummy variables, this means eliminating one class
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Linear models

Likelihood function & estimator

The likelihood of the ordinary normal linear model is

ℓ
(
β, σ2|y, X

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(y −Xβ)T(y −Xβ)

]
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Linear models

Likelihood function & estimator

The likelihood of the ordinary normal linear model is

ℓ
(
β, σ2|y, X

)
=
(
2πσ2

)−n/2
exp

[
− 1

2σ2
(y −Xβ)T(y −Xβ)

]

The MLE of β is solution of the least squares minimisation problem

min
β

(y −Xβ)T(y −Xβ) = min
β

n∑

i=1

(yi − β0 − β1xi1 − . . .− βkxik)
2

,

namely
β̂ = (XTX)−1XTy
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Linear models

Least square estimator

β̂ is an unbiased estimator of β.

V(β̂|σ2, X) = σ2(XTX)−1

β̂ is the best linear unbiased estimator of β: for all a ∈ R
k+1,

V(aTβ̂|σ2, X) ≤ V(aTβ̃|σ2, X)

for any unbiased linear estimator β̃ of β.

Unbiased estimator of σ2

σ̂2 =
1

n− k − 1
(y −Xβ̂)T(y −Xβ̂) =

s2

n− k − 1
,
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Linear models

Pine processionary caterpillars

Residuals: Min 1Q Median 3Q Max

-1.6989 -0.2731 -0.0003 0.3246 1.7305

Coefficients:

Estimate Std. Error t value Pr(>|t|)

intercept 10.998412 3.060272 3.594 0.00161 **

XV1 -0.004431 0.001557 -2.846 0.00939 **

XV2 -0.053830 0.021900 -2.458 0.02232 *

XV3 0.067939 0.099472 0.683 0.50174

XV4 -1.293636 0.563811 -2.294 0.03168 *

XV5 0.231637 0.104378 2.219 0.03709 *

XV6 -0.356800 1.566464 -0.228 0.82193

XV7 -0.237469 1.006006 -0.236 0.81558

XV8 0.181060 0.236724 0.765 0.45248

XV9 -1.285316 0.864847 -1.486 0.15142

XV10 -0.433106 0.734869 -0.589 0.56162

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Zellner’s informative G-prior

Conjugate priors
If [conditional prior]

β|σ2, X ∼ Nk+1(β̃, σ2M−1) ,

where M (k + 1, k + 1) positive definite symmetric matrix, and

σ2|X ∼ I G (a, b), a, b > 0,

28 / 122



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Regression and variable selection

Zellner’s informative G-prior

Conjugate priors
If [conditional prior]

β|σ2, X ∼ Nk+1(β̃, σ2M−1) ,

where M (k + 1, k + 1) positive definite symmetric matrix, and

σ2|X ∼ I G (a, b), a, b > 0,

then

β|σ2,y,X ∼ Nk+1

(
(M + XTX)−1{(XTX)β̂ + Mβ̃}, σ2(M + XTX)−1

)

and

σ2|y,X ∼ I G

(
n

2
+ a, b +

s2

2
+

(β̃ − β̂)T
(
M−1 + (XTX)−1

)
−1

(β̃ − β̂)

2

)
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Zellner’s informative G-prior

Experimenter dilemma

Problem of the choice of M or of c if M = Ik+1/c
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Zellner’s informative G-prior

Experimenter dilemma

Problem of the choice of M or of c if M = Ik+1/c

Example (Processionary caterpillar)

No precise prior information about β̃, M , a and b. Take a = 2.1
and b = 2, i.e. prior mean and prior variance of σ2 equal to 1.82
and 33.06, and β̃ = 0k+1.
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Regression and variable selection

Zellner’s informative G-prior

Experimenter dilemma

Problem of the choice of M or of c if M = Ik+1/c

Example (Processionary caterpillar)

No precise prior information about β̃, M , a and b. Take a = 2.1
and b = 2, i.e. prior mean and prior variance of σ2 equal to 1.82
and 33.06, and β̃ = 0k+1.
Lasting influence of c:

c E
π(σ2|y,X) E

π(β0|y,X) V
π(β0|y,X)

.1 1.0044 0.1251 0.0988
1 0.8541 0.9031 0.7733

10 0.6976 4.7299 3.8991
100 0.5746 9.6626 6.8355

1000 0.5470 10.8476 7.3419
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Zellner’s informative G-prior

Zellner’s informative G-prior

Constraint

Allow the experimenter to introduce information about the
location parameter of the regression while bypassing the most
difficult aspects of the prior specification, namely the derivation of
the prior correlation structure.
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Regression and variable selection

Zellner’s informative G-prior

Zellner’s informative G-prior

Constraint

Allow the experimenter to introduce information about the
location parameter of the regression while bypassing the most
difficult aspects of the prior specification, namely the derivation of
the prior correlation structure.

Zellner’s prior corresponds to

β|σ2, X ∼ Nk+1(β̃, cσ2(XTX)−1)

σ2 ∼ π(σ2|X) ∝ σ−2 .

[Special conjugate]
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Zellner’s informative G-prior

Prior selection

Experimental prior determination restricted to the choices of β̃ and
of the constant c.

Note

c can be interpreted as a measure of the amount of information
available in the prior relative to the sample. For instance, setting
1/c = 0.5 gives the prior the same weight as 50% of the sample.
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Regression and variable selection

Zellner’s informative G-prior

Prior selection

Experimental prior determination restricted to the choices of β̃ and
of the constant c.

Note

c can be interpreted as a measure of the amount of information
available in the prior relative to the sample. For instance, setting
1/c = 0.5 gives the prior the same weight as 50% of the sample.

 There still is a lasting influence of the factor c
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Regression and variable selection

Zellner’s informative G-prior

Posterior structure

With this prior model, the posterior simplifies into

π(β, σ2|y,X) ∝ f(y|β, σ2,X)π(β, σ2|X)

∝
(
σ2
)
−(n/2+1)

exp

[
− 1

2σ2
(y −Xβ̂)T(y −Xβ̂)

− 1

2σ2
(β − β̂)TXTX(β − β̂)

] (
σ2
)
−k/2

× exp

[
− 1

2cσ2
(β − β̃)XTX(β − β̃)

]
,

because XTX used in both prior and likelihood
[G-prior trick]
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Zellner’s informative G-prior

Posterior structure (cont’d)

Therefore,

β|σ2, y, X ∼ Nk+1

(
c

c + 1
(β̃/c + β̂),

σ2c

c + 1
(XTX)−1

)

σ2|y, X ∼ IG
(

n

2
,
s2

2
+

1

2(c + 1)
(β̃ − β̂)TXTX(β̃ − β̂)

)

and

β|y,X ∼ Tk+1

(
n,

c

c + 1

(
β̃

c
+ β̂

)
,

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
(XTX)−1

)
.
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Zellner’s informative G-prior

Bayes estimator

The Bayes estimators of β and σ2 are given by

E
π[β|y, X] =

1

c + 1
(β̃ + cβ̂)

and

E
π[σ2|y, X] =

s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1)

n− 2
.
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Regression and variable selection

Zellner’s informative G-prior

Bayes estimator

The Bayes estimators of β and σ2 are given by

E
π[β|y, X] =

1

c + 1
(β̃ + cβ̂)

and

E
π[σ2|y, X] =

s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1)

n− 2
.

Note: Only when c goes to infinity does the influence of the prior
vanish!
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Zellner’s informative G-prior

Pine processionary caterpillars

βi E
π(βi|y, X) V

π(βi|y, X)

β0 10.8895 6.4094
β1 -0.0044 2e-06
β2 -0.0533 0.0003
β3 0.0673 0.0068
β4 -1.2808 0.2175
β5 0.2293 0.0075
β6 -0.3532 1.6793
β7 -0.2351 0.6926
β8 0.1793 0.0383
β9 -1.2726 0.5119
β10 -0.4288 0.3696

c = 100
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Zellner’s informative G-prior

Pine processionary caterpillars (2)

βi E
π(βi|y, X) V

π(βi|y, X)

β0 10.9874 6.2604
β1 -0.0044 2e-06
β2 -0.0538 0.0003
β3 0.0679 0.0066
β4 -1.2923 0.2125
β5 0.2314 0.0073
β6 -0.3564 1.6403
β7 -0.2372 0.6765
β8 0.1809 0.0375
β9 -1.2840 0.5100
β10 -0.4327 0.3670

c = 1, 000
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Zellner’s informative G-prior

Conjugacy

Moreover,

V
π[β|y,X] =

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
(XTX)−1 .
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Regression and variable selection

Zellner’s informative G-prior

Conjugacy

Moreover,

V
π[β|y,X] =

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
(XTX)−1 .

Convenient tool for translating prior information on β: For
instance, if c = 1, this is equivalent to putting the same weight on
the prior information and on the sample:

E
π(β|y, X) =

(
β̃ + β̂

2

)

average between prior mean and maximum likelihood estimator.
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Regression and variable selection

Zellner’s informative G-prior

Conjugacy

Moreover,

V
π[β|y,X] =

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
(XTX)−1 .

Convenient tool for translating prior information on β: For
instance, if c = 1, this is equivalent to putting the same weight on
the prior information and on the sample:

E
π(β|y, X) =

(
β̃ + β̂

2

)

average between prior mean and maximum likelihood estimator.
If, instead, c = 100, the prior gets a weight of 1% of the sample.
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Regression and variable selection

Zellner’s informative G-prior

Predictive

Prediction of m ≥ 1 future observations from units in which the
explanatory variables X̃—but not the outcome variable

ỹ ∼ Nm(X̃β, σ2Im)

—have been observed
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Regression and variable selection

Zellner’s informative G-prior

Predictive

Prediction of m ≥ 1 future observations from units in which the
explanatory variables X̃—but not the outcome variable

ỹ ∼ Nm(X̃β, σ2Im)

—have been observed

Predictive distribution on ỹ defined as marginal of the joint
posterior distribution on (ỹ, β, σ2). Can be computed analytically
by ∫

π(ỹ|σ2, y, X, X̃)π(σ2|y, X, X̃) dσ2 .
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Regression and variable selection

Zellner’s informative G-prior

Gaussian predictive
Conditional on σ2, the future vector of observations has a Gaussian
distribution with

E
π[ỹ|σ2, y,X, X̃] = E

π[Eπ(ỹ|β, σ2, y,X, X̃)|σ2, y,X, X̃]

= E
π[X̃β|σ2, y,X, X̃]

= X̃
β̃ + cβ̂

c + 1

independently of σ2.
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Regression and variable selection

Zellner’s informative G-prior

Gaussian predictive
Conditional on σ2, the future vector of observations has a Gaussian
distribution with

E
π[ỹ|σ2, y,X, X̃] = E

π[Eπ(ỹ|β, σ2, y,X, X̃)|σ2, y,X, X̃]

= E
π[X̃β|σ2, y,X, X̃]

= X̃
β̃ + cβ̂

c + 1

independently of σ2. Similarly,

V
π(ỹ|σ2, y,X, X̃) = E

π[V(ỹ|β, σ2, y,X, X̃)|σ2, y,X, X̃]

+V
π[Eπ(ỹ|β, σ2, y,X, X̃)|σ2, y,X, X̃]

= E
π[σ2Im|σ2, y,X, X̃] + V

π(X̃β|σ2, y,X, X̃)

= σ2

(
Im +

c

c + 1
X̃(XTX)−1X̃T

)
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Regression and variable selection

Zellner’s informative G-prior

Predictor

A predictor under squared error loss is the posterior predictive mean

X̃
β̃ + cβ

c + 1
,

Representation quite intuitive, being the product of the matrix of
explanatory variables X̃ by the Bayes estimate of β.
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Regression and variable selection

Zellner’s informative G-prior

Credible regions

Highest posterior density (HPD) regions on subvectors of the
parameter β derived from the marginal posterior distribution of β.
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Regression and variable selection

Zellner’s informative G-prior

Credible regions

Highest posterior density (HPD) regions on subvectors of the
parameter β derived from the marginal posterior distribution of β.
For a single parameter,

βi|y,X ∼ T1

(
n,

c

c + 1

(
β̃i

c
+ β̂i

)
,

c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
ω(i,i)

)
,

where ω(i,i) is the (i, i)-th element of the matrix (XTX)−1.
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Regression and variable selection

Zellner’s informative G-prior

T time

If

τ =
β̃ + cβ̂

c + 1

and

K =
c(s2 + (β̃ − β̂)TXTX(β̃ − β̂)/(c + 1))

n(c + 1)
(XTX)−1 =

(
κ(i,j)

)
,

the transform

Ti =
βi − τi√

κ(i,i)

has a standard t distribution with n degrees of freedom.
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Regression and variable selection

Zellner’s informative G-prior

T HPD

A 1− α HPD interval on βi is thus given by

[
τi −

√
κ(i,i)F

−1
n (1− α/2), τi +

√
κ(i,i)F

−1
n (1− α/2)

]
.
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Regression and variable selection

Zellner’s informative G-prior

Pine processionary caterpillars

βi HPD interval

β0 [5.7435, 16.2533]
β1 [−0.0071,−0.0018]
β2 [−0.0914,−0.0162]
β3 [−0.1029, 0.2387]
β4 [−2.2618,−0.3255]
β5 [0.0524, 0.4109]
β6 [−3.0466, 2.3330]
β7 [−1.9649, 1.4900]
β8 [−0.2254, 0.5875]
β9 [−2.7704, 0.1997]
β10 [−1.6950, 0.8288]

c = 100
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Regression and variable selection

Zellner’s informative G-prior

T marginal

Marginal distribution of y is multivariate t distribution

Proof. Since β|σ2,X ∼ Nk+1(β̃, cσ2(XTX)−1),

Xβ|σ2,X ∼ N (Xβ̃, cσ2X(XTX)−1XT) ,

which implies that

y|σ2,X ∼ Nn(Xβ̃, σ2(In + cX(XTX)−1XT)).

Integrating in σ2 yields

f(y|X) = (c + 1)−(k+1)/2π−n/2Γ(n/2)

×
[
yTy − c

c + 1
yTX(XTX)−1XTy − 1

c + 1
β̃TXTXβ̃

]
−n/2

.

56 / 122



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Regression and variable selection

Zellner’s informative G-prior

Point null hypothesis

If a null hypothesis is H0 : Rβ = r, the model under H0 can be
rewritten as

y|β0, σ2, X0
H0∼ Nn

(
X0β

0, σ2In

)

where β0 is (k + 1− q) dimensional.
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Zellner’s informative G-prior

Point null marginal

Under the prior

β0|X0, σ
2 ∼ Nk+1−q

(
β̃0, c0σ

2(XT
0 X0)

−1
)

,

the marginal distribution of y under H0 is

f(y|X0,H0) = (c + 1)−(k+1−q)/2π−n/2Γ(n/2)

×
[
yTy − c0

c0 + 1
yTX0(X

T
0 X0)

−1XT
0 y

− 1

c0 + 1
β̃T

0 XT
0 X0β̃0

]
−n/2

.
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Zellner’s informative G-prior

Bayes factor

Therefore the Bayes factor is closed form:

Bπ
10 =

f(y|X,H1)

f(y|X0,H0)
=

(c0 + 1)(k+1−q)/2

(c + 1)(k+1)/2

[
yTy − c0

c0+1yTX0(X
T
0 X0)

−1XT
0 y − 1

c0+1 β̃T
0 XT

0 X0β̃0

yTy − c
c+1yTX(XTX)−1XTy − 1

c+1 β̃TXTXβ̃

]n/2
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Zellner’s informative G-prior

Bayes factor

Therefore the Bayes factor is closed form:

Bπ
10 =

f(y|X,H1)

f(y|X0,H0)
=

(c0 + 1)(k+1−q)/2

(c + 1)(k+1)/2

[
yTy − c0

c0+1yTX0(X
T
0 X0)

−1XT
0 y − 1

c0+1 β̃T
0 XT

0 X0β̃0

yTy − c
c+1yTX(XTX)−1XTy − 1

c+1 β̃TXTXβ̃

]n/2

Means using the same σ2 on both models

Still depends on the choice of (c0, c)
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Zellner’s noninformative G-prior

Difference with informative G-prior setup is that we now consider c
as unknown (relief!)
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Zellner’s noninformative G-prior

Zellner’s noninformative G-prior

Difference with informative G-prior setup is that we now consider c
as unknown (relief!)

Solution

Use the same G-prior distribution with β̃ = 0k+1, conditional on c,
and introduce a diffuse prior on c,

π(c) = c−1
IN∗(c) .
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Zellner’s noninformative G-prior

Posterior distribution

Corresponding marginal posterior on the parameters of interest

π(β, σ2|y,X) =

∫
π(β, σ2|y,X, c)π(c|y,X) dc

∝
∞∑

c=1

π(β, σ2|y,X, c)f(y|X, c)π(c)

∝
∞∑

c=1

π(β, σ2|y,X, c)f(y|X, c) c−1 .
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Zellner’s noninformative G-prior

Posterior distribution

Corresponding marginal posterior on the parameters of interest

π(β, σ2|y,X) =

∫
π(β, σ2|y,X, c)π(c|y,X) dc

∝
∞∑

c=1

π(β, σ2|y,X, c)f(y|X, c)π(c)

∝
∞∑

c=1

π(β, σ2|y,X, c)f(y|X, c) c−1 .

and

f(y|X, c) ∝ (c+1)−(k+1)/2

[
yTy − c

c + 1
yTX(XTX)−1XTy

]
−n/2

.
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Zellner’s noninformative G-prior

Posterior means
The Bayes estimates of β and σ2 are given by

E
π[β|y,X] = E

π[Eπ(β|y,X, c)|y,X] = E
π[c/(c + 1)β̂)|y,X]

=





∞∑

c=1

c/(c + 1)f(y|X, c)c−1

∞∑

c=1

f(y|X, c)c−1




β̂

and

E
π[σ2|y,X] =

∞∑

c=1

s2 + β̂TXTXβ̂/(c + 1)

n− 2
f(y|X, c)c−1

∞∑

c=1

f(y|X, c)c−1

.
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Zellner’s noninformative G-prior

Computational details

Both terms involve infinite summations on c

The denominator in both cases is the normalising constant of
the posterior

∞∑

c=1

f(y|X, c)c−1

66 / 122



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Regression and variable selection

Zellner’s noninformative G-prior

Computational details (cont’d)

V
π[β|y, X] = E

π[Vπ(β|y, X, c)|y, X] + V
π[Eπ(β|y, X, c)|y, Xx]

= E
π

h

c/(n(c + 1))(s2 + β̂T(XTX)β̂/(c + 1))(XTX)−1
i

+V
π[c/(c + 1)β̂|y, X]

=

2

6

6

6

6

4

∞
X

c=1

f(y|X, c)/(n(c + 1))(s2 + β̂T(XTX)β̂/(c + 1))

∞
X

c=1

f(y|X, c)c−1

3

7

7

7

7

5

(XTX)−1

+β̂

0

B

B

B

B

@

∞
X

c=1

(c/(c + 1) − E(c/(c + 1)|y, X))2f(y|X, c)c−1

∞
X

c=1

f(y|X, c)c−1

1

C

C

C

C

A

β̂T .
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Zellner’s noninformative G-prior

Marginal distribution

Important point: the marginal distribution of the dataset is
available in closed form

f(y|X) ∝
∞∑

i=1

c−1(c+1)−(k+1)/2

[
yTy − c

c + 1
yTX(XTX)−1XTy

]
−n/2
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Zellner’s noninformative G-prior

Marginal distribution

Important point: the marginal distribution of the dataset is
available in closed form

f(y|X) ∝
∞∑

i=1

c−1(c+1)−(k+1)/2

[
yTy − c

c + 1
yTX(XTX)−1XTy

]
−n/2

T -shape means normalising constant can be computed too.
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Zellner’s noninformative G-prior

Point null hypothesis

For null hypothesis H0 : Rβ = r, the model under H0 can be
rewritten as

y|β0, σ2, X0
H0∼ Nn

(
X0β

0, σ2In

)

where β0 is (k + 1− q) dimensional.
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Zellner’s noninformative G-prior

Point null marginal

Under the prior

β0|X0, σ
2, c ∼ Nk+1−q

(
0k+1−q, cσ

2(XT
0 X0)

−1
)

and π(c) = 1/c, the marginal distribution of y under H0 is

f(y|X0,H0) ∝
∞∑

c=1

(c+1)−(k+1−q)/2

[
yTy − c

c + 1
yTX0(X

T
0 X0)

−1XT
0 y

]
−n/2

.
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Zellner’s noninformative G-prior

Point null marginal

Under the prior

β0|X0, σ
2, c ∼ Nk+1−q

(
0k+1−q, cσ

2(XT
0 X0)

−1
)

and π(c) = 1/c, the marginal distribution of y under H0 is

f(y|X0,H0) ∝
∞∑

c=1

(c+1)−(k+1−q)/2

[
yTy − c

c + 1
yTX0(X

T
0 X0)

−1XT
0 y

]
−n/2

.

Bayes factor Bπ
10 = f(y|X)/f(y|X0,H0) can be computed
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Zellner’s noninformative G-prior

Processionary pine caterpillars
For H0 : β8 = β9 = 0, log10(B

π
10) = −0.7884
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Zellner’s noninformative G-prior

Processionary pine caterpillars
For H0 : β8 = β9 = 0, log10(B

π
10) = −0.7884

Estimate Post. Var. log10(BF)

(Intercept) 9.2714 9.1164 1.4205 (***)

X1 -0.0037 2e-06 0.8502 (**)

X2 -0.0454 0.0004 0.5664 (**)

X3 0.0573 0.0086 -0.3609

X4 -1.0905 0.2901 0.4520 (*)

X5 0.1953 0.0099 0.4007 (*)

X6 -0.3008 2.1372 -0.4412

X7 -0.2002 0.8815 -0.4404

X8 0.1526 0.0490 -0.3383

X9 -1.0835 0.6643 -0.0424

X10 -0.3651 0.4716 -0.3838

evidence against H0:

(****) decisive, (***) strong, (**) subtantial, (*) poor
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Markov Chain Monte Carlo Methods

Complexity of most models encountered in Bayesian modelling
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Markov Chain Monte Carlo Methods

Complexity of most models encountered in Bayesian modelling

Standard simulation methods not good enough a solution
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Markov Chain Monte Carlo Methods

Markov Chain Monte Carlo Methods

Complexity of most models encountered in Bayesian modelling

Standard simulation methods not good enough a solution

New technique at the core of Bayesian computing, based on
Markov chains
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Markov Chain Monte Carlo Methods

Markov chains

Markov chain

A process (θ(t))t∈N is an homogeneous
Markov chain if the distribution of θ(t)

given the past (θ(0), . . . , θ(t−1))

1 only depends on θ(t−1)

2 is the same for all t ∈ N
∗.
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Markov Chain Monte Carlo Methods

Algorithms based on Markov chains

Idea: simulate from a posterior density π(·|x) [or any density] by
producing a Markov chain

(θ(t))t∈N

whose stationary distribution is

π(·|x)
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Markov Chain Monte Carlo Methods

Algorithms based on Markov chains

Idea: simulate from a posterior density π(·|x) [or any density] by
producing a Markov chain

(θ(t))t∈N

whose stationary distribution is

π(·|x)

Translation

For t large enough, θ(t) is approximately distributed from π(θ|x),
no matter what the starting value θ(0) is [Ergodicity].
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Markov Chain Monte Carlo Methods

Convergence

If an algorithm that generates such a chain can be constructed, the
ergodic theorem guarantees that, in almost all settings, the average

1

T

T∑

t=1

g(θ(t))

converges to E
π[g(θ)|x], for (almost) any starting value
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Markov Chain Monte Carlo Methods

More convergence

If the produced Markov chains are irreducible [can reach any region
in a finite number of steps], then they are both positive recurrent
with stationary distribution π(·|x) and ergodic [asymptotically
independent from the starting value θ(0)]

 While, for t large enough, θ(t) is approximately distributed
from π(θ|x) and can thus be used like the output from a more
standard simulation algorithm, one must take care of the
correlations between the θ(t)’s
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Markov Chain Monte Carlo Methods

Demarginalising

Takes advantage of hierarchical structures: if

π(θ|x) =

∫
π1(θ|x, λ)π2(λ|x) dλ ,

simulating from π(θ|x) comes from simulating from the joint
distribution

π1(θ|x, λ) π2(λ|x)
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Markov Chain Monte Carlo Methods

Two-stage Gibbs sampler

Usually π2(λ|x) not available/simulable
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Markov Chain Monte Carlo Methods

Two-stage Gibbs sampler

Usually π2(λ|x) not available/simulable

More often, both conditional posterior distributions,

π1(θ|x, λ) and π2(λ|x, θ)

can be simulated.
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Regression and variable selection

Markov Chain Monte Carlo Methods

Two-stage Gibbs sampler

Usually π2(λ|x) not available/simulable

More often, both conditional posterior distributions,

π1(θ|x, λ) and π2(λ|x, θ)

can be simulated.

Idea: Create a Markov chain based on those conditionals
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Markov Chain Monte Carlo Methods

Two-stage Gibbs sampler (cont’d)

Initialization: Start with an
arbitrary value λ(0)

Iteration t: Given λ(t−1), generate

1 θ(t) according to π1(θ|x, λ(t−1))
2 λ(t) according to π2(λ|x, θ(t))

J.W. Gibbs (1839-1903)
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Markov Chain Monte Carlo Methods

Two-stage Gibbs sampler (cont’d)

Initialization: Start with an
arbitrary value λ(0)

Iteration t: Given λ(t−1), generate

1 θ(t) according to π1(θ|x, λ(t−1))
2 λ(t) according to π2(λ|x, θ(t))

J.W. Gibbs (1839-1903)

π(θ, λ|x) is a stationary distribution for this transition
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Markov Chain Monte Carlo Methods

Implementation

1 Derive efficient decomposition of the joint distribution into
simulable conditionals (mixing behavior, acf(), blocking, &tc.)
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Regression and variable selection

Markov Chain Monte Carlo Methods

Implementation

1 Derive efficient decomposition of the joint distribution into
simulable conditionals (mixing behavior, acf(), blocking, &tc.)

2 Find when to stop the algorithm (mode chasing, missing
mass, shortcuts, &tc.)
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Markov Chain Monte Carlo Methods

Simple Example: iid N (µ, σ2) Observations

When y1, . . . , yn
iid∼ N (µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard family
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Regression and variable selection

Markov Chain Monte Carlo Methods

Simple Example: iid N (µ, σ2) Observations

When y1, . . . , yn
iid∼ N (µ, σ2) with both µ and σ unknown, the

posterior in (µ, σ2) is conjugate outside a standard family

But...

µ|y, σ2 ∼ N

(
µ
∣∣∣ 1n
∑n

i=1 yi,
σ2

n )

σ2|y, µ ∼ I G
(
σ2
∣∣n
2 − 1, 1

2

∑n
i=1(yi − µ)2

)

assuming constant (improper) priors on both µ and σ2

Hence we may use the Gibbs sampler for simulating from the
posterior of (µ, σ2)
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Markov Chain Monte Carlo Methods

Gibbs output analysis

Example (Cauchy posterior)

π(µ|D) ∝ e−µ2/20

(1 + (x1 − µ)2)(1 + (x2 − µ)2)

is marginal of

π(µ,ω|D) ∝ e−µ2/20 ×
2∏

i=1

e−ωi[1+(xi−µ)2] .
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Markov Chain Monte Carlo Methods

Gibbs output analysis

Example (Cauchy posterior)

π(µ|D) ∝ e−µ2/20

(1 + (x1 − µ)2)(1 + (x2 − µ)2)

is marginal of

π(µ,ω|D) ∝ e−µ2/20 ×
2∏

i=1

e−ωi[1+(xi−µ)2] .

Corresponding conditionals

(ω1, ω2)|µ ∼ E xp(1 + (x1 − µ)2)⊗ E xp(1 + (x2 − µ))2)

µ|ω ∼ N

(
∑

i

ωixi/(
∑

i

ωi + 1/20), 1/(2
∑

i

ωi + 1/10)

)
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Markov Chain Monte Carlo Methods

Gibbs output analysis (cont’d)
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Markov Chain Monte Carlo Methods

Generalisation

Consider several groups of parameters, θ, λ1, . . . , λp, such that

π(θ|x) =

∫
. . .

∫
π(θ, λ1, . . . , λp|x) dλ1 · · · dλp

or simply divide θ in
(θ1, . . . , θp)
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Markov Chain Monte Carlo Methods

The general Gibbs sampler

For a joint distribution π(θ) with full conditionals π1, . . . , πp,

Given (θ
(t)
1 , . . . , θ

(t)
p ), simulate

1. θ
(t+1)
1 ∼ π1(θ1|θ(t)

2 , . . . , θ
(t)
p ),

2. θ
(t+1)
2 ∼ π2(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
p ),

...

p. θ
(t+1)
p ∼ πp(θp|θ(t+1)

1 , . . . , θ
(t+1)
p−1 ).

Then θ(t) → θ ∼ π
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Variable selection

Back to regression: one dependent random variable y and a set
{x1, . . . , xk} of k explanatory variables.
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Variable selection

Back to regression: one dependent random variable y and a set
{x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?
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Variable selection

Variable selection

Back to regression: one dependent random variable y and a set
{x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)
explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set of
explanatory variables for the regression of y [intercept included in
every corresponding model]

100 / 122



Bayesian Core:A Practical Approach to Computational Bayesian Statistics

Regression and variable selection

Variable selection

Variable selection

Back to regression: one dependent random variable y and a set
{x1, . . . , xk} of k explanatory variables.

Question: Are all xi’s involved in the regression?

Assumption: every subset {i1, . . . , iq} of q (0 ≤ q ≤ k)
explanatory variables, {1n, xi1 , . . . , xiq}, is a proper set of
explanatory variables for the regression of y [intercept included in
every corresponding model]

Computational issue

2k models in competition...
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Variable selection

Model notations

1

X =
[
1n x1 · · · xk

]

is the matrix containing 1n and all the k potential predictor
variables

2 Each model Mγ associated with binary indicator vector
γ ∈ Γ = {0, 1}k where γi = 1 means that the variable xi is
included in the model Mγ

3 qγ = 1T
nγ number of variables included in the model Mγ

4 t1(γ) and t0(γ) indices of variables included in the model and
indices of variables not included in the model
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Variable selection

Model indicators

For β ∈ R
k+1 and X, we define βγ as the subvector

βγ =
(
β0, (βi)i∈t1(γ)

)

and Xγ as the submatrix of X where only the column 1n and the
columns in t1(γ) have been left.
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Variable selection

Models in competition

The model Mγ is thus defined as

y|γ, βγ , σ2, X ∼ Nn

(
Xγβγ , σ2In

)

where βγ ∈ R
qγ+1 and σ2 ∈ R

∗

+ are the unknown parameters.
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Regression and variable selection

Variable selection

Models in competition

The model Mγ is thus defined as

y|γ, βγ , σ2, X ∼ Nn

(
Xγβγ , σ2In

)

where βγ ∈ R
qγ+1 and σ2 ∈ R

∗

+ are the unknown parameters.

Warning

σ2 is common to all models and thus uses the same prior for all
models
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Variable selection

Informative G-prior

Many (2k) models in competition: we cannot expect a practitioner
to specify a prior on every Mγ in a completely subjective and
autonomous manner.

Shortcut: We derive all priors from a single global prior associated
with the so-called full model that corresponds to γ = (1, . . . , 1).
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Variable selection

Prior definitions

(i) For the full model, Zellner’s G-prior:

β|σ2, X ∼ Nk+1(β̃, cσ2(XTX)−1) and σ2 ∼ π(σ2|X) = σ−2

(ii) For each model Mγ , the prior distribution of βγ conditional
on σ2 is fixed as

βγ |γ, σ2 ∼ Nqγ+1

(
β̃γ , cσ2

(
XT

γ Xγ

)−1
)

,

where β̃γ =
(
XT

γ Xγ

)
−1

XT
γ β̃ and same prior on σ2.
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Variable selection

Prior completion

The joint prior for model Mγ is the improper prior

π(βγ , σ2|γ) ∝
(
σ2
)−(qγ+1)/2−1

exp

[
− 1

2(cσ2)

(
βγ − β̃γ

)T

(XT
γ Xγ)

(
βγ − β̃γ

)]
.
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Variable selection

Prior competition (2)

Infinitely many ways of defining a prior on the model index γ:
choice of uniform prior π(γ|X) = 2−k.

Posterior distribution of γ central to variable selection since it is
proportional to marginal density of y on Mγ (or evidence of Mγ)

π(γ|y,X) ∝ f(y|γ,X)π(γ|X) ∝ f(y|γ,X)

=

∫ (∫
f(y|γ, β, σ2,X)π(β|γ, σ2,X) dβ

)
π(σ2|X) dσ2 .
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Variable selection

f(y|γ, σ2,X) =

∫
f(y|γ, β, σ2)π(β|γ, σ2) dβ

= (c + 1)−(qγ+1)/2(2π)−n/2
(
σ2
)
−n/2

exp

(
− 1

2σ2
yTy

+
1

2σ2(c + 1)

{
cyTXγ

(
XT

γ Xγ

)
−1

XT
γ y − β̃T

γ XT
γ Xγ β̃γ

})
,

this posterior density satisfies

π(γ|y, X) ∝ (c + 1)−(qγ+1)/2

[
yTy − c

c + 1
yTXγ

(
XT

γ Xγ

)−1
XT

γ y

− 1

c + 1
β̃T

γ XT
γ Xγ β̃γ

]
−n/2

.
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Regression and variable selection

Variable selection

Pine processionary caterpillars
t1(γ) π(γ|y, X)

0,1,2,4,5 0.2316

0,1,2,4,5,9 0.0374

0,1,9 0.0344

0,1,2,4,5,10 0.0328

0,1,4,5 0.0306

0,1,2,9 0.0250

0,1,2,4,5,7 0.0241

0,1,2,4,5,8 0.0238

0,1,2,4,5,6 0.0237

0,1,2,3,4,5 0.0232

0,1,6,9 0.0146

0,1,2,3,9 0.0145

0,9 0.0143

0,1,2,6,9 0.0135

0,1,4,5,9 0.0128

0,1,3,9 0.0117

0,1,2,8 0.0115
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Regression and variable selection

Variable selection

Pine processionary caterpillars (cont’d)

Interpretation

Model Mγ with the highest posterior probability is
t1(γ) = (1, 2, 4, 5), which corresponds to the variables

- altitude,

- slope,

- height of the tree sampled in the center of the area, and

- diameter of the tree sampled in the center of the area.
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Regression and variable selection

Variable selection

Pine processionary caterpillars (cont’d)

Interpretation

Model Mγ with the highest posterior probability is
t1(γ) = (1, 2, 4, 5), which corresponds to the variables

- altitude,

- slope,

- height of the tree sampled in the center of the area, and

- diameter of the tree sampled in the center of the area.

Corresponds to the five variables identified in the R regression
output
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Regression and variable selection

Variable selection

Noninformative extension

For Zellner noninformative prior with π(c) = 1/c, we have

π(γ|y, X) ∝
∞∑

c=1

c−1(c + 1)−(qγ+1)/2
[
yTy−

c

c + 1
yTXγ

(
XT

γ Xγ

)−1
XT

γ y

]
−n/2

.
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Regression and variable selection

Variable selection

Pine processionary caterpillars

t1(γ) π(γ|y, X)

0,1,2,4,5 0.0929

0,1,2,4,5,9 0.0325

0,1,2,4,5,10 0.0295

0,1,2,4,5,7 0.0231

0,1,2,4,5,8 0.0228

0,1,2,4,5,6 0.0228

0,1,2,3,4,5 0.0224

0,1,2,3,4,5,9 0.0167

0,1,2,4,5,6,9 0.0167

0,1,2,4,5,8,9 0.0137

0,1,4,5 0.0110

0,1,2,4,5,9,10 0.0100

0,1,2,3,9 0.0097

0,1,2,9 0.0093

0,1,2,4,5,7,9 0.0092

0,1,2,6,9 0.0092
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Regression and variable selection

Variable selection

Stochastic search for the most likely model

When k gets large, impossible to compute the posterior
probabilities of the 2k models.
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Regression and variable selection

Variable selection

Stochastic search for the most likely model

When k gets large, impossible to compute the posterior
probabilities of the 2k models.

Need of a tailored algorithm that samples from π(γ|y, X) and
selects the most likely models.

Can be done by Gibbs sampling, given the availability of the full
conditional posterior probabilities of the γi’s.
If γ−i = (γ1, . . . , γi−1, γi+1, . . . , γk) (1 ≤ i ≤ k)

π(γi|y, γ−i, X) ∝ π(γ|y, X)

(to be evaluated in both γi = 0 and γi = 1)
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Regression and variable selection

Variable selection

Gibbs sampling for variable selection

Initialization: Draw γ0 from the uniform
distribution on Γ
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Regression and variable selection

Variable selection

Gibbs sampling for variable selection

Initialization: Draw γ0 from the uniform
distribution on Γ

Iteration t: Given (γ
(t−1)
1 , . . . , γ

(t−1)
k ), generate

1. γ
(t)
1 according to π(γ1|y, γ

(t−1)
2 , . . . , γ

(t−1)
k ,X)

2. γ
(t)
2 according to

π(γ2|y, γ
(t)
1 , γ

(t−1)
3 , . . . , γ

(t−1)
k ,X)

...

p. γ
(t)
k according to π(γk|y, γ

(t)
1 , . . . , γ

(t)
k−1,X)
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Regression and variable selection

Variable selection

MCMC interpretation

After T ≫ 1 MCMC iterations, output used to approximate the
posterior probabilities π(γ|y, X) by empirical averages

π̂(γ|y, X) =

(
1

T − T0 + 1

) T∑

t=T0

Iγ(t)=γ .

where the T0 first values are eliminated as burnin.
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Regression and variable selection

Variable selection

MCMC interpretation

After T ≫ 1 MCMC iterations, output used to approximate the
posterior probabilities π(γ|y, X) by empirical averages

π̂(γ|y, X) =

(
1

T − T0 + 1

) T∑

t=T0

Iγ(t)=γ .

where the T0 first values are eliminated as burnin.

And approximation of the probability to include i-th variable,

P̂ π(γi = 1|y, X) =

(
1

T − T0 + 1

) T∑

t=T0

I
γ
(t)
i =1

.
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Regression and variable selection

Variable selection

Pine processionary caterpillars

γi P̂π(γi = 1|y,X) P̂π(γi = 1|y,X)
γ1 0.8624 0.8844
γ2 0.7060 0.7716
γ3 0.1482 0.2978
γ4 0.6671 0.7261
γ5 0.6515 0.7006
γ6 0.1678 0.3115
γ7 0.1371 0.2880
γ8 0.1555 0.2876
γ9 0.4039 0.5168
γ10 0.1151 0.2609

Probabilities of inclusion with both informative (β̃ = 011, c = 100)
and noninformative Zellner’s priors
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