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Statistical inference can be performed by minimizing, over the parameter space, the Wasserstein distance
between model distributions and the empirical distribution of the data. We study asymptotic properties of
such minimum Wasserstein distance estimators, complementing results derived by Bassetti, Bodini and
Regazzini in 2006. In particular, our results cover the misspecified setting, in which the data-generating
process is not assumed to be part of the family of distributions described by the model. Our results
are motivated by recent applications of minimum Wasserstein estimators to complex generative mod-
els. We discuss some difficulties arising in the numerical approximation of these estimators. Two of
our numerical examples (g-and-k and sum of log-Normals) are taken from the literature on approximate
Bayesian computation, and have likelihood functions that are not analytically tractable. Two other exam-
ples involve misspecified models.
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1. Introduction

We consider a statistical estimation approach for parametric models that is based on minimizing the
Wasserstein distance between the empirical distribution of the data and the model distributions (Belili
et al., 1999; Bassetti et al., 2006). We study two different point estimators, where the first, called
the minimum Wasserstein estimator (MWE), arises as the most important special case of the estimator
introduced by Bassetti et al. (2006). The second, which we term the minimum expected Wasserstein
estimator (MEWE), is better suited to numerical approximations.

We derive theoretical properties of the estimators, such as existence, measurability, and consistency,
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in the misspecified setting. That is, we do not assume that the observations are generated from the work-
ing model. For one-dimensional data, we also study the convergence rate and asymptotic distribution
of the minimum Wasserstein estimator of order 1, extending the work of Bassetti and Regazzini (2006)
on location-scale models. Our proofs are based on epi-convergence (Rockafellar and Wets, 2009) and
general results on minimum distance estimation (Pollard, 1980), and are as such different from those
presented by Bassetti and coauthors.

There are two main motivations for developing these results. Firstly, recent advances in compu-
tational optimal transport have led to the application of minimum Wasserstein distance estimators in
increasingly complicated settings, where the models are likely to be misspecified. For instance, Genevay
et al. (2018) apply the MEWE in the tuning of image generation models, and Genevay et al. (2017) show
that a version of the MEWE also appears in the popular Wasserstein GAN method (Arjovsky et al.,
2017). This development has been driven by the advent of efficient numerical algorithms to approx-
imate the Wasserstein distance (see e.g. Peyré and Cuturi, 2018; Cuturi, 2013; Benamou et al., 2015;
Genevay et al., 2016; Ye et al., 2017; Li et al., 2018; Altschuler et al., 2018).

Secondly, minimum Wasserstein distance estimators, which are particular instances of minimum
distance estimators (Basu et al., 2011), appear to be practical and robust alternatives to likelihood-based
estimation in the setting of generative models. In these models, synthetic observations can be generated
given a parameter, but the likelihood function and associated maximum likelihood estimators might be
intractable (Gouriéroux et al., 1993; Marin et al., 2012; Bernton et al., 2019). Some comments on the
comparison between the Wasserstein distance and other distances commonly used in minimum distance
estimation are provided.

The rest of this paper is organized as follows: we review the definitions of minimum distance
estimation, of the Wasserstein distance, and of the estimators of interest in the rest of this section.
Theoretical results, whose proofs can be found in the supplementary materials, and some open ques-
tions are stated in Section 2. We briefly review computational strategies to compute the Wasser-
stein distance and the estimators in Section 3, before illustrating their behavior on various examples
in Section 4. We conclude in Section 5. Code to reproduce the numerical results can be found at
https://github.com/pierrejacob/winference.

1.1 Notation

Throughout this paper we consider a probability space (Ω ,F ,P), with associated expectation operator
E, on which all the random variables are defined. The set of probability measures on a space X is
denoted by P(X ). The data take values in Y , a subset of Rd for some d ∈ N, and is endowed with
the Borel σ -algebra. We observe n ∈ N data points, y1:n = y1, . . . ,yn, that are distributed according to
µ
(n)
? ∈P(Y n). Let µ̂n = n−1

∑
n
i=1 δyi , where δy is the Dirac distribution with mass on y ∈ Y . We refer

to µ̂n as the empirical distribution of y1:n, even in settings where the observations are not i.i.d.
A model refers to a collection of distributions on Y n, denoted by M (n) = {µ(n)

θ
: θ ∈ H } ⊂

P(Y n), where H ⊂Rdθ is the parameter space, endowed with a distance ρH and of dimension dθ ∈N.
However, we will often assume that the sequence of models (M (n))n>1 is such that, for every θ ∈H ,
the sequence (µ̂θ ,n)n>1 of random probability measures on Y converges (in some sense) to a distribution
µθ ∈P(Y ), where µ̂θ ,n = n−1

∑
n
i=1 δzi with z1:n ∼ µ

(n)
θ

. Similarly, we will often assume that µ̂n con-
verges to some distribution µ? ∈P(Y ) as n→∞. Whenever the notation µ? and µθ is used, it is implic-
itly assumed that these objects exist. In such cases, we instead refer to M = {µθ : θ ∈H } ⊂P(Y )
as the model. We say that it is well-specified if there exists θ? ∈H such that µ? = µθ? ; otherwise it is

https://github.com/pierrejacob/winference
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misspecified. Parameters are identifiable if θ = θ ′ is implied by µθ = µθ ′ . The weak convergence of a
sequence of measures µn to µ is denoted by µn⇒ µ . The Kullback-Leibler (KL) divergence between
µ and ν is defined as KL(µ|ν) =

∫
log(dµ/dν)dµ if µ is absolutely continuous with respect to ν , and

+∞ otherwise.

1.2 Minimum distance estimation

Minimum distance estimation refers to the minimization, over the parameter θ ∈ H , of a distance
between the empirical distribution µ̂n and the model distribution µθ (Wolfowitz, 1957; Basu et al.,
2011). More formally, denoting by D a distance or divergence on P(Y ), the associated minimum
distance estimator (MDE) can be defined as

θ̂n = argmin
θ∈H

D(µ̂n,µθ ). (1.1)

In broad terms, the minimum distance estimation principle captures the idea of many statistical
paradigms. For instance, the generalized method of moments (Hansen, 1982) consists in minimizing
a discrepancy D defined as the weighted Euclidean distance between moments of µ̂n and µθ . In the
empirical likelihood method (Owen, 2001), D is taken to be the KL divergence, and the model is sup-
ported strictly on the set of observed data and subject to moment conditions. The maximum likelihood
estimator minimizes the KL divergence between µ? and µθ in the limit of the number of observations
going to infinity.

However, it is worth noting that the definition in (1.1) precludes the naive application of some
discrepancy measures. For instance, one could not directly choose D to be the KL divergence or the
total variation distance, since for any model distribution µθ not supported solely on the observed data,
they would evaluate to +∞ and 1 respectively. To apply discrepancies of this kind, one would first
need to build sample-based estimators of the underlying population quantity D(µ?,µθ ), assuming it is
well-defined. Many such approaches have been studied in detail by Basu et al. (2011).

The computation of the minimum distance estimator might be intractable, especially in settings
where it is assumed that one can simulate data from the model distribution but not evaluate its den-
sity. For such generative models, the following minimum expected distance estimator might be more
computationally convenient:

θ̂n,m = argmin
θ∈H

EmD(µ̂n, µ̂θ ,m), (1.2)

where the expectation Em is taken over the distribution of the sample z1:m ∼ µ
(m)
θ

giving rise to µ̂θ ,m =
m−1

∑
m
i=1 δzi . When n is fixed and m is large, or when n = m and n is large, one might hope that the

expectation is close to D(µ̂n,µθ ), and that the estimators θ̂n and θ̂n,m have similar properties. Infer-
ence techniques such as the method of simulated moments (McFadden, 1989) and indirect inference
(Gouriéroux et al., 1993) often (implicitly) use estimators of this form, in which D defined as the
weighted Euclidean distance between sample moments or summary statistics of y1:n and z1:m, and the
expectation in (1.2) is replaced with a Monte Carlo approximation.

1.3 Minimum Wasserstein estimation

In this paper, we focus on minimum distance estimation with the Wasserstein distance. Let ρ be a dis-
tance on the observation space Y , and let Pp(Y ) with p > 1 (e.g. p = 1 or 2) be the set of distributions
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µ ∈P(Y ) with finite p-th moment, i.e. there exists y0 ∈ Y such that
∫
Y ρ(y,y0)

pdµ(y)< ∞. The p-
Wasserstein distance, also called the Monge-Kantorovich, Mallows, or Gini distance, is a finite metric
on Pp(Y ), defined by the optimal transport problem

Wp(µ,ν)
p = inf

γ∈Γ (µ,ν)

∫
Y ×Y

ρ(x,y)pdγ(x,y), (1.3)

where Γ (µ,ν) is the set of probability measures on Y ×Y with marginals µ and ν respectively; see
Chapter 6 of Villani (2008) for a brief history of this distance and its central role in optimal transport.

A useful property of the Wasserstein distance is that it is well-defined for distributions with non-
overlapping supports. This allows us to define the minimum Wasserstein estimator (MWE) of order
p, denoted θ̂n, by simply plugging Wp into (1.1) in place of D . Some properties of the MWE have
been studied in Bassetti et al. (2006), for well-specified models and i.i.d. data; we derive new results
in Section 2.1 under weaker assumptions. We also propose the minimum expected Wasserstein esti-
mator (MEWE), obtained by replacing D with Wp in (1.2) and denoted θ̂n,m. We describe some of its
theoretical properties in Section 2.2.

Variations of these estimators have recently been applied by for instance Arjovsky et al. (2017) and
Genevay et al. (2018). In the settings they consider, the models are likely to be misspecified, and are
supported on low-dimensional manifolds that might not overlap with the support of the data-generating
mechanism. While the Wasserstein distance is well-defined in that case, the KL divergence or the total
variation are not. This motivates the study of minimum Wasserstein estimators for these settings.

2. Theoretical results

We prove the existence, measurability, and consistency of the MWE and MEWE under weak assump-
tions, allowing the model to be misspecified and to produce data with certain types of dependencies.
Under stronger assumptions, we study the rate of convergence and the asymptotic distribution of the
MWE when d = 1 and p = 1. Throughout, we compare our results to those of Bassetti et al. (2006) and
Bassetti and Regazzini (2006).

Informally, the consistency of the MWE and MEWE can be understood as follows. Under some
conditions, we expect µ̂n to converge to µ?, in the sense that Wp(µ̂n,µ?)→ 0 as n→ ∞. Consequently,
the minimum of θ 7→Wp(µ̂n,µθ ) might converge to the minimum of θ 7→Wp(µ?,µθ ), denoted by θ?,
assuming its existence and unicity. The same can be said for the minimum of θ 7→ EmWp(µ̂n, µ̂θ ,m),
provided m→∞ also. The parameter θ? is thus the limiting object of interest, also termed the estimand.
Beyond its interpretation as the minimizer of θ 7→ Wp(µ?,µθ ), this parameter would coincide to the
data-generating parameter if we assume that the data are generated from the model. In the misspecified
case, note that θ? is not necessarily the parameter that minimizes KL(µ?|µθ ), which is the limit of the
maximum likelihood estimator under standard regularity conditions.

2.1 Minimum Wasserstein estimator

2.1.1 Existence, measurability, and consistency. We first list assumptions on the data-generating pro-
cess and on the model that are sufficient for the existence, measurability, and consistency for the MWE.

ASSUMPTION 2.1 The data-generating process is such that Wp(µ̂n,µ?)→ 0, P-almost surely as n→∞.

ASSUMPTION 2.2 The map θ 7→ µθ is continuous in the sense that ρH (θn,θ)→ 0 implies µθn ⇒ µθ

as n→ ∞.
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ASSUMPTION 2.3 For some ε > 0, the set B?(ε) = {θ ∈H : Wp(µ?,µθ )6 ε?+ ε} is bounded, where
ε? = infθ∈H Wp(µ?,µθ ).

THEOREM 2.1 (Existence and consistency of the MWE) Under Assumptions 2.1-2.3, there exists a set
E ⊂Ω with P(E) = 1 such that, for all ω ∈ E, infθ∈H Wp(µ̂n(ω),µθ )→ infθ∈H Wp(µ?,µθ ), and there
exists n(ω) such that, for all n > n(ω), the sets argmin θ∈H Wp(µ̂n(ω),µθ ) are non-empty and form a
bounded sequence with

limsup
n→∞

argmin
θ∈H

Wp(µ̂n(ω),µθ )⊂ argmin
θ∈H

Wp(µ?,µθ ).

For a generic function f , let ε-argmin x f = {x : f (x) 6 ε + infx f}. Theorem 2.1 also holds if one
replaces argmin θ∈H Wp(µ̂n(ω),µθ ) with εn-argmin θ∈H Wp(µ̂n(ω),µθ ), for any sequence εn converg-
ing to zero. If θ? = argmin θ∈H Wp(µ?,µθ ) is unique, the result can be rephrased as θ̂n→ θ? P-almost
surely.

The following theorem derives from a general result by Brown and Purves (1973) on the measura-
bility of estimators defined as minimizers.

THEOREM 2.2 (Measurability of the MWE) Suppose that H is a σ -compact Borel measurable subset
of Rdθ . Under Assumption 2.2, for any n > 1 and ε > 0, there exists a Borel measurable function
θ̂n : Ω →H that satisfies

θ̂n(ω) ∈

{
argmin θ∈H Wp(µ̂n(ω),µθ ) if this set is non-empty,
ε-argmin θ∈H Wp(µ̂n(ω),µθ ) otherwise.

Theorem 2.1 generalizes the results of Bassetti et al. (2006), where the model is assumed to be well-
specified in the sense that µ? ∈M . Moreover, Theorem 2.1 allows for data-generating processes which
do not produce independent data points. For instance, if the data form a stationary and ergodic time
series whose marginal distribution has finite p-th moments, then Assumption 2.1 still holds. These and
other sufficient conditions for Assumption 2.1 to be satisfied are elaborated upon in the supplementary
materials. Theorem 2.2 is only a minor generalization of the result in Bassetti et al. (2006), where it is
assumed that for each n > 1, argmin θ∈H Wp(µ̂n(ω),µθ ) is non-empty for almost every ω ∈ Ω . In the
next section, this small modification also enables the direct application of results by Pollard (1980).

2.1.2 Rate of convergence and asymptotic distribution . Under conditions guaranteeing the consis-
tency of the minimum Wasserstein estimator, we study its rate of convergence and asymptotic distri-
bution in the case where p = 1, Y = R, ρ(x,y) = |x− y|. Under this setup, it can be shown that
W1(µ,ν) =

∫ 1
0 |F−1

µ (s)−F−1
ν (s)|ds =

∫
R|Fµ(t)−Fν(t)|dt, where Fµ and Fν denote the cumulative dis-

tribution functions (CDFs) of µ and ν respectively (see e.g. Ambrosio et al., 2005, Theorem 6.0.2).
Additionally, assume that H is endowed with a norm: ρH (θ ,θ ′) = ‖θ −θ ′‖H . We also require the
assumption that θ? is “well-separated”:

ASSUMPTION 2.4 For all ε > 0, there exists δ > 0 such that

inf
θ∈H :‖θ−θ?‖H >ε

W1(µθ? ,µθ )> δ .

This assumption is commonly made in the asymptotic study of M-estimators (e.g. Chapter 5 of
Van der Vaart, 2000); see also the supplementary materials. We focus on the setting in which the model
is well-specified, but also discuss some extensions to the misspecified setting in Section 2.1.3.
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Our approach to derive asymptotic distributions follows Pollard (1980). Let Fθ , F? and Fn denote
the CDFs of µθ , µ? and µ̂n respectively. Informally speaking, we show that

√
nW1(µ̂n,µθ ) can be

approximated by
∫
R|
√

n(Fn(t)−F?(t))−〈
√

n(θ − θ?),Dθ?(t)〉|dt near θ?, for some Dθ? ∈ (L1(R))dθ ,
with 〈θ ,u〉= ∑

dθ

i=1 θiui. Results by del Barrio et al. (1999) and Dede (2009) give conditions under which√
n(Fn−F?) converges to a zero mean Gaussian process G? with known covariance structure, for both

independent and certain classes of dependent data. Heuristically, the distribution of
√

n(θ̂n−θ?) is then
close to that of argmin u∈H

∫
R|G?(t)−〈u,Dθ?(t)〉|dt. The required form of Dθ? is given in the following

assumption:

ASSUMPTION 2.5 There exists a non-singular Dθ? ∈ (L1(R))dθ such that∫
R
|Fθ (t)−Fθ?(t)−〈θ −θ?,Dθ?(t)〉|dt = o(‖θ −θ?‖H ),

as ‖θ −θ?‖H → 0.

To provide some intuition into the nature of the “derivative” Dθ? , we consider the following simple
example. Let µθ = N (θ ,1) for θ ∈ R, and µ? = µθ? for some θ?. By Taylor expanding Fθ (t) =
Φ(t−θ) around θ? (for fixed t), Assumption 2.5 can be shown to hold with Dθ?(t) =−ϕ(t−θ?), where
Φ and ϕ denote the CDF and density of a standard Gaussian variable, respectively. Next, we state a
result that holds for a well-specified model producing i.i.d. data, and analogous results for misspecified
models and certain types of dependent processes can be found in the supplementary materials.

THEOREM 2.3 Suppose Yi ∼ µ? = µθ? i.i.d., with θ? in the interior of H , and that
∫

∞

0

√
P(|Y0|> t)dt <

∞. Suppose that Assumptions 2.1-2.5 hold and that argmin u∈H
∫
R|G?(t)− 〈u,Dθ?(t)〉|dt is almost

surely unique. Then, the MWE with p = 1 satisfies

√
n(θ̂n−θ?)⇒ argmin

u∈H

∫
R
|G?(t)−〈u,Dθ?(t)〉|dt,

as n→∞, where G? is a zero mean Gaussian process with EG?(s)G?(t)=min{F?(s),F?(t)}−F?(s)F?(t).

A similar statement for p = 2 can potentially be derived by considering the results of del Barrio
et al. (2005). The condition

∫
∞

0

√
P(|Y0|> t)dt < ∞ implies the existence of second moments, and is

itself implied by the existence of moments of order 2+ε for some ε > 0 (see e.g. Section 2.9 in Wellner
and van der Vaart, 1996). The uniqueness assumption on the argmin in the limit can be relaxed by
considering convergence to the entire set of minimizing values, as in Section 7 of Pollard (1980). Still,
uniqueness can sometimes be established, using e.g. the results of Cheney and Wulbert (1969). This
approach is taken by Bassetti and Regazzini (2006), who directly show that Theorem 2.3 holds when
M is a location-scale family supported on a bounded open interval. The existence and form of Dθ?

can in many cases be derived if the model is differentiable in quadratic mean (Le Cam, 1970), which is
elaborated upon in the supplementary materials. There, one can also find results to verify Assumptions
2.1 and 2.4. It can in some cases potentially be easier to verify the assumptions for a reparameterization
of θ , say ϕ = r(θ). Provided that the theorem holds for ϕ̂n and that the inverse map r−1 is differentiable,
the limiting distribution of θ̂n can be derived using a delta method argument.

Computing confidence intervals using the asymptotic distribution provided by Theorem 2.3 is hard,
due in part to its dependence on unknown quantities. However, the existence of the limiting distribu-
tion is in itself sufficient to guarantee the asymptotic validity of appropriately constructed subsampling
confidence intervals (Politis et al., 1999, Theorem 2.2.1). This also generalizes to settings with certain
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kinds of dependent data. Under slightly stronger assumptions, the closely related m out of n bootstrap
produces asymptotically valid confidence intervals as well (see Bickel and Sakov, 2008, and references
therein). In the numerical experiments of Section 4, we find that the standard bootstrap (Efron and
Tibshirani, 1994) works well in practice.

Theorem 2.3 also holds for approximations of the MWE, say θ̃n, provided that θ̃n = θ̂n+oP(1/
√

n),
as can be seen from its proof. In light of the convergence of the MEWE to the MWE as m → ∞

established in Section 2.2, there exists a sequence m(n) (depending on ω) such that the associated
MEWE θ̂n,m(n) satisfies the conclusion of Theorem 2.3.

2.1.3 Extensions. Under slightly stronger assumptions, Theorem 2.3 can be extended to the misspec-
ified setting. In particular, suppose that there exists a neighborhood N of θ? and a constant c > 0 such
that for any θ ∈ N, W1(µθ ,µ?)>W1(µθ? ,µ?)+c‖θ −θ?‖H . In the well-specified case, this property is
implied by Assumption 2.5. Then, as elaborated upon in the supplementary materials, the minimum of
θ 7→W1(µ̂n,µθ ) is attained on the set Sn = {θ : ‖θ−θ?‖H 6 4W1(µ̂n,µ?)/c}with probability going to
one. Since the conditions of Theorem 2.3 imply that W1(µ̂n,µ?) = OP(1/

√
n), this immediately implies

that ‖θ̂n−θ?‖H = OP(1/
√

n) also. In other words, the minimum Wasserstein estimator retains its rate
of convergence in the misspecified case.

To find its asymptotic distribution, one can observe that with probability going to one, the map θ 7→√
nW1(µ̂n,µθ ) can be approximated uniformly well over Sn by the map θ 7→

√
n
∫
R|Fn(t)−Fθ?(t)−

〈θ −θ?,Dθ?(t)〉|dt, which similarly achieves its minimum on Sn. Therefore, as n gets large,
√

n(θ̂n−
θ?) behaves like a minimum of u 7→

∫
R|
√

n(Fn(t)−F?(t))+
√

n(F?(t)−Fθ?(t))−〈u,Dθ?(t)〉|dt. Under
the conditions of Theorem 2.3,

√
n(Fn−F?) converges to G? in the sense of del Barrio et al. (1999).

In turn,
√

n(θ̂n−θ?) should be distributed as the minimizer(s) of u 7→
∫
R|G?(t)+

√
n(F?(t)−Fθ?(t))−

〈u,Dθ?(t)〉|dt as n grows. A technical complication arises since this function converges pointwise to
infinity, and we therefore leave formal statements to the supplementary materials.

Extensions to cases with multivariate data are left for future research. It is unclear whether conver-
gence to θ? will occur at the same

√
n rate in higher dimensions. This is because EWp(µ̂n,µ?) is on the

order of n−1/d whenever µ? is absolutely continuous with respect to the Lebesgue measure and d > 2p
(see e.g. Weed and Bach, 2019, and references therein). On the other hand, del Barrio and Loubes
(2017) show, under some assumptions, that the 2-Wasserstein distance satisfies the following CLT:

√
n
(
W 2

2 (µ̂n,µθ )−EW 2
2 (µ̂n,µθ )

)
⇒N

(
0,σ2(µ?,µθ )

)
,

where σ2(µ?,µθ ) has a known form and the expectation is taken with respect to the observations y1:n ∼
µ
(n)
? . Similar results are expected to hold for other p also. It therefore seems likely that the distance(s)

between the MWE and the minimizer(s) of θ 7→ EW 2
2 (µ̂n,µθ ) converges to zero at the standard

√
n

rate. If these speculations hold true, one could interpret them in terms of a bias-variance trade-off: the
bias would appear to be on the order of n−1/d , whereas the variance is on the order of n−1/2. However,
note that the function θ 7→ EW 2

2 (µ̂n,µθ ) depends only on population properties of µ
(n)
? . As such, it

is a reasonable alternative to the objective function θ 7→ W 2
2 (µ?,µθ ), and might still yield reasonable

identification of the parameters. For instance, if the model is well-specified and Gaussian with θ being
a location parameter, it seems likely that θ 7→ EW 2

2 (µ̂n,µθ ) is minimized at θ? for any n. It is therefore
unclear whether the slow convergence rate of the bias would always be of practical concern.
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2.2 Minimum expected Wasserstein estimator

2.2.1 Existence, measurability, and consistency. In order to show similar results for the MEWE as
for the MWE, we introduce the following additional assumptions.

ASSUMPTION 2.6 For any m > 1, if ρH (θn,θ)→ 0, then µ
(m)
θn
⇒ µ

(m)
θ

as n→ ∞.

ASSUMPTION 2.7 If ρH (θn,θ)→ 0, then EnWp(µθn , µ̂θn,n)→ 0 as n→ ∞.

Assumption 2.6 is slightly stronger than Assumption 2.2, stating that we not only need weak conver-
gence of the “model” distributions µθ , but also of the sample distributions µ

(m)
θ

for any m > 1. Assump-
tion 2.7 is implied by supθ∈H EnWp(µθ , µ̂θ ,n)→ 0, which in turn might hold when H is compact and
the inequalities in Fournier and Guillin (2015) hold.

In the next result, we prove an analogous version of Theorem 2.1 for the MEWE as min{n,m}→∞.
For simplicity, we write m as a function of n and require that m(n)→ ∞ as n→ ∞.

THEOREM 2.4 (Existence and consistency of the MEWE) Under Assumptions 2.1-2.3 and 2.6-2.7,
there exists a set E ⊂ Ω with P(E) = 1 such that, for all ω ∈ E, infθ∈H Em(n)Wp(µ̂n(ω), µ̂θ ,m(n))→
infθ∈H Wp(µ?,µθ ), and there exists n(ω) such that, for all n> n(ω), the sets argmin θ∈H Wp(µ̂n(ω), µ̂θ ,m(n))
are non-empty and form a bounded sequence with

limsup
n→∞

argmin
θ∈H

Em(n)Wp(µ̂n(ω), µ̂θ ,m(n))⊂ argmin
θ∈H

Wp(µ?,µθ ).

THEOREM 2.5 (Measurability of the MEWE) Suppose that H is a σ -compact Borel measurable subset
of Rdθ . Under Assumption 2.6, for any n > 1 and m > 1 and ε > 0, there exists a Borel measurable
function θ̂n,m : Ω →H that satisfies

θ̂n,m(ω) ∈

{
argmin θ∈H EmWp(µ̂n(ω), µ̂θ ,m), if this set is non-empty,
ε-argmin θ∈H EmWp(µ̂n(ω), µ̂θ ,m), otherwise.

The results above appear to be the first of their kind for the MEWE.

2.2.2 Convergence to the MWE. The next result considers the case where the data are fixed, while
m→ ∞. It shows that the MEWE converges to the MWE, assuming the latter exists. Using the results
of del Barrio and Loubes (2017) and references therein, one could potentially derive the rate of this
convergence, which we leave for future work. We formulate the following additional assumption, in
which the observed empirical distribution is kept fixed and εn = infθ∈H Wp(µ̂n,µθ ).

ASSUMPTION 2.8 For some ε > 0, the set Bn(ε) = {θ ∈H : Wp(µ̂n,µθ )6 εn + ε} is bounded.

THEOREM 2.6 (MEWE converges to MWE as m → ∞) Under Assumptions 2.2 and 2.6-2.8, then
infθ∈H EmWp(µ̂n, µ̂θ ,m)→ infθ∈H Wp(µ̂n,µθ ), and there exists an m̂ such that, for all m > m̂, the sets
argmin θ∈H EmWp(µ̂n, µ̂θ ,m) are non-empty and form a bounded sequence with

limsup
m→∞

argmin
θ∈H

EmWp(µ̂n, µ̂θ ,m)⊂ argmin
θ∈H

Wp(µ̂n,µθ ).
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3. Computational aspects

3.1 Computing the Wasserstein distance

We recall some strategies to calculate or approximate the Wasserstein distance between empirical dis-
tributions. In the case where Y ⊂ R, the exact computation is cheap, as the main computational task
reduces to sorting the samples. However, in dimensions d > 1, the cost is in general expensive, which has
motivated a rich literature on fast approximations (Peyré and Cuturi, 2018). We will write Wp(y1:n,z1:m)
for Wp(µ̂n, ν̂m), where µ̂n and ν̂m stand for the empirical distributions n−1

∑
n
i=1 δyi and m−1

∑
m
i=1 δzi . The

Wasserstein distance then takes the form

Wp(y1:n,z1:m)
p = inf

γ∈Γn,m

n

∑
i=1

m

∑
j=1

ρ(yi,z j)
p
γi j (3.1)

where Γn,m is the set of n×m matrices with non-negative entries, columns and rows resp. summing to
m−1 and n−1.

3.1.1 Exact computation. The formulation in (3.1) is a linear program, and can be solved with
generic linear program solvers. However, specialized approaches can be more efficient. In the uni-
variate case with ρ(x,y) = |x− y|, the optimal transport coupling can be found by sorting the vectors
y1:n and z1:m to get the collections of order statistics {y(i)}n

i=1 and {z( j)}m
j=1. Suppose that m = `n for

some `> 1. Then, the p-Wasserstein distance in (3.1) can be expressed as

W p
p (y1:n,z1:m) =

1
m

n

∑
i=1

`

∑
j=1
|y(i)− z(`(i−1)+ j)|p, (3.2)

which can be seen from the representation W p
p (µ̂n, ν̂m) =

∫ 1
0 |F−1

µ,n(s)−F−1
ν ,m(s)|pds (see e.g. Ambrosio

et al., 2005, Theorem 6.0.2). The cost of the Wasserstein distance computation is thus of order m logm
in the univariate setting. Note that, in some cases, the generation of m sorted observations can be
done directly for a cost of order m, for instance by generating already-sorted uniforms and applying a
quantile function (Devroye, 1985). It should also be noted that the expression W p

p (µ,ν) =
∫ 1

0 |F−1
µ (s)−

F−1
ν (s)|pds, in combination with a numerical integrator, could be used whenever the quantile functions

of µ and ν are known (as in the g-and-k example of Section 4.1). In that case one can directly target the
MWE with a numerical optimizer, as an alternative to computing the MEWE. The same is true if the
CDFs are available, using the expression W1(µ,ν) =

∫
R |Fµ(t)−Fν(t)|dt given in Section 2.1.2.

In multivariate settings, one can solve the problem in (3.1) using dual ascent methods (see e.g. Bertsi-
mas and Tsitsiklis, 1997). This includes the Hungarian algorithm, applicable in the setting where m = n,
at a cost of order n3. Other algorithms have a cost of order n2.5 log(nCn), with Cn = max16i, j6n ρ(yi,z j),
and can therefore be more efficient when Cn is small (Burkard et al., 2009, Section 4.1.3). A prac-
tical alternative is the short-list method, derived from the network simplex algorithm, presented by
Gottschlich and Schuhmacher (2014) and implemented in the transport R package (Schuhmacher
et al., 2017). In general, simplex algorithms come without guarantees of polynomial running times, but
Gottschlich and Schuhmacher (2014) show empirically that their method tends to have sub-cubic cost.
When the cost of computing the Wasserstein distance exactly gets prohibitively large, we can resort to
various approximations.

3.1.2 Approximations. In parallel with its increasing popularity as an inferential tool in statistics
and machine learning, there has been fast growth in the number of algorithms that approximate the
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Wasserstein distance at reduced computational costs. The book of Peyré and Cuturi (2018) provides
an overview of many such methods. In particular, they provide a thorough discussion of the method
introduced by Cuturi (2013), which regularizes the optimization problem in (3.1) using an entropic con-
straint. Specifically, the regularized version of (3.1) reads: γζ = argmin γ∈Γn,m ∑

n
i=1 ∑

m
j=1 ρ(yi,z j)

pγi j +

ζ ∑
n
i=1 ∑

m
j=1 γi j logγi j, which includes a penalty on the entropy of γ . The regularized problem can

be solved iteratively by Sinkhorn’s algorithm (Cuturi, 2013) or iterative Bregman projections (Ben-
amou et al., 2015) for a total cost of order nm. Define the dual-Sinkhorn divergence Sζ

p(y1:n,z1:m)
p =

∑
n
i=1 ∑

m
j=1 ρ(yi,z j)

pγ
ζ

i j. If ζ goes to zero, the dual-Sinkhorn divergence goes to the Wasserstein distance.
If ζ goes to infinity, it converges to the energy distance (Ramdas et al., 2017). Other fast approximations
of the Wasserstein distance include Altschuler et al. (2017, 2018); Ye et al. (2017); Li et al. (2018).

In the case where n = m, computing the Wasserstein distance can be viewed as an assignment prob-
lem, which leads to other specialized approaches. For instance, Puccetti (2017) proposes a greedy
algorithm based on swaps in the assignment, for a cost of n2 per iteration. When a cost of order nm
or n2 is too large, Bernton et al. (2019) propose a new distance generalizing the idea of sorting when
d > 1. It consists in sorting samples according to their projection via the Hilbert space-filling curve and
computing a distance analogous to the one in (3.2), for a computational cost of the order of m logm. A
similar idea underlies the sliced Wasserstein distance (Rabin et al., 2011; Bonneel et al., 2015), which
can be estimated by projecting the data onto L random lines, and by averaging the Wasserstein distances
computed in the associated one-dimensional spaces, for a total cost on the order of Lm logm.

3.2 Computing the estimators

The exact computation of the MWE and MEWE is in general intractable. This is also true when Wp is
substituted for any of its approximations mentioned above. However, we can envision various schemes
to numerically approximate the estimators.

The calculation of the MEWE can be based on the Monte Carlo approximation of EmWp(µ̂n, µ̂θ ,m)

using synthetic samples generated given θ . Assume that a data set z1:m can be sampled from µ
(m)
θ

by setting z1:m = gm(u,θ), where gm is a deterministic function of the parameter θ and u a random
variable independent of θ . Then, the empirical mean k−1

∑
k
i=1 Wp(y1:n,gm(u(i),θ)), where the u(i) are

i.i.d., is a natural estimate of EmWp(µ̂n, µ̂θ ,m). In the limit k → ∞, k−1
∑

k
i=1 Wp(y1:n,gm(u(i),θ))→

EmWp(µ̂n, µ̂θ ,m) almost surely. Since this estimator is an average of i.i.d. random variables, the CLT
indicates that the rate of convergence is

√
k. Moreover, this approximation is a deterministic function of

θ , which can be optimized with standard methods. In turn, this optimization step can be placed within
a Monte Carlo Expectation-Maximization (MCEM) algorithm (Wei and Tanner, 1990), which would
alternate between optimization of θ and resampling of u(i). Convergence results for such algorithms, as
both the number of iterations and the value of k go to infinity, are reviewed in Neath et al. (2013).

In practice, we are naturally constrained to finite values of m and k. The incremental cost of increas-
ing k is typically lower than that of increasing m, due in part to the potential for parallelization when
calculating the distances Wp(y1:n,gm(θ ,u(i))) for a given θ , and in part to the algorithmic complexity in
m, which is super-linear as described in the previous section. In the numerical experiments of Section
4, we found that m = 104 and k = 20 within a single iteration of MCEM yielded accurate estimators.
That is, we draw u(i) for i = 1, . . . ,k once and for all, and optimize over θ . We illustrate the effect of
choosing different m and k in Section 4.3.

Several alternatives to the MCEM approach exist. An approach to computing the MEWE was pro-
posed in Genevay et al. (2018) based on the Sinkhorn divergence approximation to the Wasserstein
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distance. They derive gradients of Sζ
p(y1:n,gm(u,θ)) with respect to θ while u is fixed, allowing for

the application of stochastic gradient descent. In practice, the gradients can be computed with auto-
differentiation. A method for computing the MWE was proposed by Chen and Li (2018), in which they
pull back the 2-Wasserstein metric tensor in P2(Y ) to H , under which H becomes a Riemannian
manifold. In turn, this structure allows them to derive a novel gradient descent algorithm. Alternatively,
in the spirit of Monte Carlo optimization, one can modify the sampling algorithms used for the approx-
imate Bayesian computation (ABC) approach described by Bernton et al. (2019) to approximate the
MEWE. This has the benefit of not requiring the synthetic data to be generated via a deterministic func-
tion gm with fixed-dimensional arguments. Related discussions can be found in Wood (2010); Rubio
et al. (2013).

4. Illustrations

In Sections 4.1 and 4.2, we compute the MEWE in two well-specified models with intractable likeli-
hoods that produce i.i.d. data, taken from the ABC literature. We empirically estimate the coverage
of bootstrap confidence intervals for the data-generating parameter. In Section 4.1, we also compute
the MEWE in a setting where the data-generating process produces a time series. In Section 4.3, we
compare the distribution of the MEWE with that of the maximum likelihood estimator (MLE) in a
simple misspecified setting. We also investigate the effect of k and m on the distribution of the approx-
imate MEWE. In Section 4.4, we highlight the robustness of this choice by considering a heavy-tailed
data-generating process for which the MLE is not consistent. Throughout the numerical experiments,
we have chosen p = 1, as this imposes minimal assumptions on the existence of moments of both the
data-generating process and the model.

4.1 Quantile “g-and-κ” distribution

4.1.1 Independent data . The g-and-κ distribution (Tukey, 1977; Jorge and Boris, 1984) is defined
in terms of its quantile function:

r ∈ (0,1) 7→ a+b
(

1+0.8
1− exp(−gz(r)
1+ exp(−gz(r)

)(
1+ z(r)2)κ

z(r), (4.1)

where z(r) refers to the r-th quantile of the standard Normal distribution. The model is indexed by
the parameter θ = (a,b,g,κ) ∈ [0,10]4, and we take µ? = µθ? with θ? = (3,1,2,0.5). The probability
density function, and therefore the likelihood of the model, is analytically intractable; thus the model
has become a standard benchmark for ABC methods (Sisson et al., 2018). Though, the likelihood can be
estimated by numerically inverting and then differentiating the quantile function, as described in Rayner
and MacGillivray (2002); Bernton et al. (2019).

Sampling i.i.d. variables from the g-and-κ distribution can be achieved straightforwardly by plug-
ging independent standard Normals into (4.1) in place of z(r). Therefore, the MEWE with large m
can be computed to high precision. In Figure 1, we show the behavior of the MEWE with p = 1
and m = 104 for different numbers of observed data, and illustrate its concentration around the data-
generating parameter θ?. In computing the MEWE, we used k = 20 and only one iteration of MCEM.
That is, we approximate the MEWE by sampling k = 20 independent u(i) random variables and mini-
mize θ 7→ k−1

∑
k
i=1 Wp(y1:n,gm(u(i),θ)) to form the estimator, using the optim function in R (R Core

Team, 2015).
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We check the coverage of bootstrap confidence intervals calculated for θ? = (3,1,2,0.5). We use the
percentile bootstrap (Efron and Tibshirani, 1994) for data sets of size n = 1,000 and synthetic data sets
of size m = 104, and calculate the MEWE with k = 20. We draw 400 data sets from the data-generating
process, and 1,000 bootstrap data sets for each of these. The observed coverage rates of the resulting
0.95 confidence intervals were 0.928 for a, 0.945 for b, 0.960 for g, and 0.938 for κ . The coverage rates
should approach 0.95 as n→ ∞, m→ ∞, and k→ ∞ within the MCEM algorithm. After a Bonferroni
correction, the observed coverage of the confidence sets for θ? was 0.935.

As mentioned in Section 3.1.1, since the g-and-κ distribution has an explicit quantile function (inso-
far as the Normal quantile function can be considered explicit), one could instead directly estimate the
Wasserstein distance between the g-and-k distribution and some empirical distribution using a represen-
tation of the distance in terms of an integral of the difference of quantile functions, combined with a
numerical integrator.

(a) MEWE: a vs b. (b) MEWE: g vs κ .
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(d) Histogram of data.

FIG. 1: Estimators in the well-specified g-and-κ model, as described in Section 4.1.1. Figures 1a and 1b show
the MEWE’s bivariate marginal sampling distributions for (a,b) and (g,κ) respectively, as n ranges from 50 to 104

(colors from red to white to blue as n increases). For each n, we plot M = 1,000 estimators based on independent
data sets. Each estimator was computed with p = 1, m = 104, k = 20, and one iteration of MCEM. Note that for
small data sizes (n = 50 and n = 100), the estimator occasionally appears to be on the boundary of the parameter
space, which could mean that the optimization procedure failed to converge. The intersections of the black lines
indicate data-generating parameters. Figure 1c shows the MEWE’s marginal distribution for κ for the different
levels of n, centered and rescaled by

√
n, illustrating the rate of convergence anticipated by Theorem 2.3. Figure 1d

is a histogram of a data set generated with θ? = (3,1,2,0.5) and n = 1,000.

4.1.2 Dependent data . To illustrate the behavior of the estimator when the data-generating process
produces dependent data, we also generated g-and-κ variables using Normals from an AR(1) process.
Specifically, we let x0 ∼N (0,1) and xt = ρxt−1+ηt for t > 1, where ηt ∼N (0,1−ρ2) independently,
and ρ = 0.75. Hence, these variables are marginally distributed as N (0,1), but are positively correlated.
To produce the observation yt for each t, we plugged xt into (4.1) in place of z(r), using the same θ? as
in the independent setting. The marginal distribution of the data are therefore the same as before, but
the sequence of observations now forms a stationary and ergodic time series. This setting is covered by
the theoretical results of Section 2; Assumption 2.1 holds with µ? = µθ? . The model, as before, is taken
to generate i.i.d. data.

To approximate the MEWE, we used the same computational approach as in the i.i.d. setting, with
p = 1, m = 104, and k = 20. In Figure 2, we show that the MEWE appears to concentrate around θ? at
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the same rate as in the i.i.d. setting, but that its asymptotic distribution has higher variance. Note that
in Figure 2, the data sizes are 10 times larger than in the plots for the i.i.d. setting (Figure 1), as the
correlation between the samples effectively reduces the sample size and makes the estimators poorly
behaved when n is small.

(a) MEWE: a vs b. (b) MEWE: g vs κ .
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FIG. 2: Estimators in the g-and-κ model with dependent data, as described in Section 4.1.2. Figures 2a and 2b
show the MEWE’s bivariate marginal sampling distributions for (a,b) and (g,κ) respectively, as n ranges from
500 to 105 (colors from red to white to blue as n increases). Note that the sample sizes here are 10 times larger
than in the plots for the i.i.d. setting. For each n, we plot M = 1,000 estimators based on independent data sets.
Each estimator was computed with p = 1, m = 104, k = 20, and one iteration of MCEM. The intersections of the
black lines indicate data-generating parameters. Figure 2c shows the MEWE’s marginal distribution for κ for the
different levels of n, centered and rescaled by

√
n, illustrating the rate of convergence anticipated by Theorem 2.3,

but that the asymptotic variance is larger than in the i.i.d. case. Figure 2d shows the autocorrelation function of a
data set generated with θ? = (3,1,2,0.5), ρ = 0.75, and n = 1,000.

4.2 Sum of log-Normal random variables

The distribution of the sum of log-Normal random variables appears in various settings (Fenton, 1960;
Rodrigues et al., 2018), but no analytical formula is available for its probability density function, and
thus the associated likelihood function is intractable. For a given positive integer L, γ ∈R and σ > 0, the
model generates an observation y ∈ R by sampling x1, . . . ,xL ∼N (γ,σ2) independently, and defining
y =∑

L
`=1 exp(x`). Thus, sampling synthetic observations from the model is simple. We consider the task

of estimating θ = (γ,σ) from data, fixing L to 10, and using the MEWE. We generate n observations
independently using θ? = (0,1).

In Figure 3, we illustrate the behavior of the MEWE with p = 1 and m = 104 for different sizes
of observed data n. The sampling distribution of the MEWE appears to concentrate around the data-
generating parameter θ? at the

√
n rate as n increases. In computing the MEWE, we used k = 20 and

one iteration of MCEM as in the previous section.
We estimate the coverage of bootstrap confidence intervals calculated for θ? = (0,1). As before, we

use the percentile bootstrap (Efron and Tibshirani, 1994) for data sets of size n = 1,000 and synthetic
data sets of size m = 104, and calculate the MEWE with k = 20. We draw 400 data sets from the data-
generating process, and 1,000 bootstrap data sets for each. The observed coverage rates were 0.945 and
0.940 for γ? and σ? respectively, which are close to the limiting 0.95 coverage rates. After a Bonferroni
correction, the observed coverage of the confidence sets for θ? was 0.960.



14 of 23 E. BERNTON, P.E. JACOB, M. GERBER AND C.P. ROBERT
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FIG. 3: Estimators in the well-specified sum of log-Normals model, as described in Section 4.2. Figure 3a shows
the sampling distributions of the MEWE, as n ranges from 50 to 104 (colors from red to white to blue as n increases).
For each n, we plot M = 1,000 estimators based on independent data sets. Each estimator was computed with
p = 1, m = 104, k = 20, and one iteration of MCEM. The intersections of the black lines indicate data-generating
parameters. Figures 3b and 3c show the MEWE’s marginal distributions for the different levels of n, centered and
rescaled by

√
n, illustrating the rate of convergence anticipated by Theorem 2.3. Figure 3d is a histogram of a data

set generated with θ? = (0,1) and n = 1,000.

4.3 Gamma data fitted with a Normal model

We now consider a misspecified setting. Let µ? be a Gamma(10,5) distribution (parametrized by shape
and rate) and M = {N (γ,σ2) : γ ∈R,σ > 0}. The Normal location-scale model is very simple, yet it is
widely used in practice in the form of regression models. Figure 4 compares the sampling distributions
of the maximum likelihood estimator and approximations of the MEWE of order 1, over M = 1,000
experiments, for different values of n. The MEWE converges at the same

√
n rate as the MLE, albeit

to a distribution that is centered at a different location. Therefore, despite both estimation techniques
leading to similar values for γ and σ , the distributions of the estimators have very little overlap for large
n, as observed in Figures 4c and 4d. For the MEWE, we have again used m = 104, k = 20, and one
iteration of MCEM.

In Figure 5, we fix an observed data set of size n = 100, and compute M = 500 instances of the
approximate MEWE for 8 different values of k and m, ranging from 1 to 1,000 and 10 to 10,000
respectively. In Figure 5a, we plot the estimators obtained for all the levels of k, given 4 different values
of m. In Figure 5b, we plot the estimators obtained for all the levels of m, given 4 different values of
k. The axis scales are different for each subplot. In both figures, black points correspond to the “true”
MWE, calculated using a very large value of m (m = 108). For low values of m, the estimators might be
significantly different from the MWE, as can be seen from the lower-right sub-plots of Figure 5b. When
m increases, the estimators converge to the MWE. Increasing k reduces variation in the estimator. The
changes in k and m had no significant impact on the number of evaluations of the objective required to
locate the maximum using the optim function in R (R Core Team, 2015), which uses the Nelder–Mead
simplex method (Nelder and Mead, 1965).

We check the coverage of bootstrap confidence intervals calculated for θ? (itself calculated using
n = m = 108 and k = 1). As before, we use the percentile bootstrap (Efron and Tibshirani, 1994) for



ON PARAMETER ESTIMATION WITH THE WASSERSTEIN DISTANCE 15 of 23

(a) MLE of (γ,σ). (b) MEWE of (γ,σ).
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FIG. 4: Gamma data fitted with a Normal model, as described in Section 4.3. Figures 4a and 4b show the sampling
distributions of the MLE and MEWE of order 1 respectively, as n ranges from 50 to 104 (colors from red to white
to blue). Figures 4c and 4d show the marginal densities of the estimators of γ and σ respectively, for n = 104; the
MLEs are shown in dashed lines and the MEWE in full lines. For the MEWE, we have used m = 104, k = 20 and
one iteration of MCEM.

data sets of size n= 1,000 and synthetic data sets of size m= 104, and calculate the MEWE with k = 20.
We draw 400 data sets from the data-generating process, and 1,000 bootstrap data sets for each of these.
The observed coverage rates of the resulting 0.95 confidence intervals were 0.960 and 0.953 for γ? and
σ? respectively. After a Bonferroni correction, the observed coverage rate of the confidence sets for
θ? = (γ?,σ?) was 0.955.

4.4 Cauchy data fitted with a Normal model

Let µ? be Cauchy with median zero and scale one, and consider the model M = {N (γ,σ2) : γ ∈
R,σ > 0}. We explore the behavior of the MEWE of order 1, over M = 1,000 repeated experiments.
Figure 6 shows its sampling distributions, for n ranging from 50 to 104. The marginal distribution of the
estimator of γ concentrates around 0, the median of µ?. The marginal distribution of the estimator of σ

also concentrates to a value close to 2.2. The concentration appears to occur at rate
√

n, as shown by the
marginal densities of the rescaled estimators of γ and σ in Figures 6a and 6b.

In this setting the maximum likelihood estimator would not converge as n→ ∞, as the maximum
likelihood estimator for γ is the sample average, and the sample average of independent Cauchy vari-
ables is also Cauchy, with the same location and scale. As an alternative, we consider an estimator
defined by minimizing a sample based estimator of the Kullback-Leibler divergence between µθ and
µ?. For the KL approximation we use the function KL.divergence in the FNN package (Beygelz-
imer et al., 2013), which approximates the KL divergence using `-nearest neighbor estimates described
in Boltz et al. (2009) (and using the default parameter ` = 5). The resulting estimator is termed the
minimum KL estimator (MKLE), and is a variation of the MDEs discussed by Basu et al. (2011). We
compute it using the same approach as for the MEWE, using k = 20, m = 104, and one iteration of
MCEM. For n = 5,000 the distributions of MEWEs and MKLEs are plotted in Figures 6c and 6d. Both
estimators appear to be robust in the sense that they converge to well-defined limits, unlike the MLE
approach. The estimators of γ are concentrated around 0, but the estimators of σ are concentrated around
two different values: the MEWEs seem to concentrate around 2.15 and the MKLEs around 1.65. The
marginal distributions of the MEWE appear to have slightly smaller variance than those of the MKLE.



16 of 23 E. BERNTON, P.E. JACOB, M. GERBER AND C.P. ROBERT

(a) Approximate MEWE for increasing k (colors
from red to white to blue as k increases), for dif-
ferent values of m.

(b) Approximate MEWE for increasing m (colors
from red to white to blue as m increases), for differ-
ent values of k.

FIG. 5: Gamma data with n = 100, fitted with a Normal model, as described in Section 4.3. MEWEs are obtained
for different values of m (from 10 to 10,000) and k (from 1 to 1,000), using one iteration of MCEM, M = 500
times independently. The intersections of the black lines represent the location of the “exact” MWE computed with
n = m = 108.
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FIG. 6: Cauchy data fitted with a Normal model, as described in Section 4.4. Marginals distributions of the MEWE
of γ and σ , centered by θ? itself computed with n = m = 108, and rescaled by

√
n, are shown in Figures 6a and 6b.

Figures 6c and 6d show the distributions of the MEWE for n = 5,000 (full lines), along with the distribution of an
estimator obtained by minimizing an estimate of the Kullback–Leibler divergence (dashed lines).

Note that this example is not covered by the theoretical results of Section 2 since the Cauchy distribu-
tion does not have a finite first moment. Robustness properties of general minimum distance estimators
are discussed in Parr and Schucany (1980), and of the MWE in location models in Bassetti and Regazz-
ini (2006). In the location-scale model considered here, if the approximation of the MEWE is computed
with k = 1 and m = `n for some `> 1, it can be written

argmin
γ,σ

n

∑
i=1

`

∑
j=1
|y(i)− (σx(`(i−1)+ j)+ γ)|. (4.2)

As such, the approximate MEWE can be seen as the coefficients in a median regression (Koenker and
Hallock, 2001) of a vector Ỹ on a vector X̃ , where Ỹ`(i−1)+1:`i = y(i) for each i = 1, . . . ,n, and X̃ contains
the order statistics of an m-sample of N (0,1) random variables. Quantile regression is often presented
as a robust alternative to linear regression in the presence of outliers, and further connections might
explain the observed robustness of the MEWE with p = 1 in this example.

5. Discussion

The minimum Wasserstein (or Kantorovich) estimation approach (Bassetti et al., 2006) has received a
renewed attention, due to recent advances in the field of computational optimal transport (Peyré and
Cuturi, 2018), along with various applications in machine learning. In the broad context of generative
models, these estimators present various appeals compared to maximum likelihood estimators. For
instance, in Sections 4.1 and 4.2, we have observed the satisfactory behavior of minimum expected
Wasserstein estimators in models where the likelihood function is not analytically available. In Sections
4.3 and 4.4 we have observed similarities and differences between MEWE and MLE in misspecified
settings, illustrating some robustness properties of minimum Wasserstein estimation.

Minimum distance estimators were originally developed for obtaining almost surely convergent esti-
mators (Wolfowitz, 1957), and we have showed that both the MWE and MEWE have this strong consis-
tency property under mild conditions. We have also proved that the MWE converges to θ? at the optimal√

n convergence rate when the observations are univariate, and have derived its asymptotic distribution.
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The generalization of this result to multivariate data is left for future research. Interestingly, given the
known convergence properties of the Wasserstein distance, it seems reasonable to conjecture that the
rate of the MWE depends (negatively) on the dimension of the observation space rather than that of the
parameter space. Other topics for future research include a more general derivation of the limiting distri-
butions of the estimators, whose existence is needed to justify the asymptotic coverage of subsampling
confidence intervals, as well as the development of a better understanding of their robustness properties.
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Lévy distance. Comptes Rendus de l’Academie des Sciences Series I Mathematics, 5(328):423–426.
1

Benamou, J.-D., Carlier, G., Cuturi, M., Nenna, L., and Peyré, G. (2015). Iterative Bregman projec-
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del Barrio, E., Giné, E., Utzet, F., et al. (2005). Asymptotics for l2 functionals of the empirical quan-
tile process, with applications to tests of fit based on weighted Wasserstein distances. Bernoulli,
11(1):131–189. 6

del Barrio, E. and Loubes, J.-M. (2017). Central limit theorems for empirical transportation cost in
general dimension. arXiv preprint arXiv:1705.01299. 7, 8

Devroye, L. (1985). Non-uniform random variate generation. Springer-Verlag, New York. 9

Efron, B. and Tibshirani, R. J. (1994). An Introduction to the Bootstrap. CRC press. 7, 12, 13, 14

Fenton, L. (1960). The sum of log-Normal probability distributions in scatter transmission systems. IRE
Transactions on Communications Systems, 8(1):57–67. 13

Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein distance of the empirical
measure. Probability Theory and Related Fields, 162:707–738. 8



20 of 23 REFERENCES
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