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A pedestrian example

paired and orphan socks

A drawer contains an unknown number of socks, some of which
can be paired and some of which are orphans (single). One takes
at random 11 socks without replacement from this drawer: no pair
can be found among those. What can we infer about the total
number of socks in the drawer?

sounds like an impossible task

one observation x = 11 and two unknowns, nsocks and npairs

writing the likelihood is a challenge [exercise]
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A prioris on socks

Given parameters nsocks and npairs, set of socks

S =
{
s1, s1, . . . , snpairs , snpairs , snpairs+1, . . . , snsocks

}

and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning

If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
nsocks I’m going to use a negative binomial with mean 30 and
standard deviation 15.
On npairs/2nsocks I’m going to put a Beta prior distribution that puts
most of the probability over the range 0.75 to 1.0,

[Rassmus Bå̊ath’s Research Blog, Oct 20th, 2014]



A prioris on socks

Given parameters nsocks and npairs, set of socks

S =
{
s1, s1, . . . , snpairs , snpairs , snpairs+1, . . . , snsocks

}

and 11 socks picked at random from S give X unique socks.

Rassmus’ reasoning

If you are a family of 3-4 persons then a guesstimate would be that
you have something like 15 pairs of socks in store. It is also
possible that you have much more than 30 socks. So as a prior for
nsocks I’m going to use a negative binomial with mean 30 and
standard deviation 15.
On npairs/2nsocks I’m going to put a Beta prior distribution that puts
most of the probability over the range 0.75 to 1.0,
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Simulating the experiment

Given a prior distribution on nsocks and npairs,

nsocks ∼ Neg(30, 15) npairs|nsocks ∼ nsocks/2Be(15, 2)

possible to

1 generate new values
of nsocks and npairs,

2 generate a new
observation of X,
number of unique
socks out of 11.

3 accept the pair
(nsocks,npairs) if the
realisation of X is
equal to 11
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The outcome of this simulation method returns a distribution on
the pair (nsocks,npairs) that is the conditional distribution of the
pair given the observation X = 11
Proof: Generations from π(nsocks,npairs) are accepted with probability

P {X = 11|(nsocks,npairs)}
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the pair (nsocks,npairs) that is the conditional distribution of the
pair given the observation X = 11
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π(nsocks,npairs)× P {X = 11|(nsocks,npairs)} = π(nsocks,npairs|X = 11)



General principle

Bayesian principle Given a probability
distribution on the parameter θ called
prior

π(θ)

and an observation x of X ∼ f(x|θ),
Bayesian inference relies on the
conditional distribution of θ given X = x

π(θ|x) =
π(θ)f(x|θ)∫
π(θ)f(x|θ)dθ

called posterior distribution
[Bayes’ theorem]

Thomas Bayes
(FRS, 1701?-1761)



Bayesian inference

Posterior distribution
π(θ|x)

as distribution on θ the parameter conditional on x the
observation used for all aspects of inference

point estimation, e.g., E[h(θ)|x];
confidence intervals, e.g.,
{θ; π(θ|x) > κ};
tests of hypotheses, e.g.,
π(θ = 0|x) ; and

prediction of future observations



Central tool... central to Bayesian inference

Posterior defined up to a constant as

π(θ|x) ∝ f(x|θ)π(θ)

Operates conditional upon the observation(s) X = x

Integrate simultaneously prior information and information
brought by x

Avoids averaging over the unobserved values of X

Coherent updating of the information available on θ,
independent of the order in which i.i.d. observations are
collected [domino effect]

Provides a complete inferential scope and a unique motor of
inference



The thorny issue of the prior distribution

Compared with likelihood inference, based solely on

L(θ|x1, . . . , xn) =

n∏

i=1

f(xi|θ)

Bayesian inference introduces an extra measure π(θ) that is chosen
a priori, hence subjectively by the statistician based on

hypothetical range of θ

guesstimates of θ with an associated (lack of) precision

type of sampling distribution

Note There also exist reference solutions (see below)
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Bayes’ example

Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.
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Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.

Thomas Bayes’ question

Given X, what inference can we
make on p?



Bayes’ example

Billiard ball W rolled on a line of length
one, with a uniform probability of
stopping anywhere: W stops at p.
Second ball O then rolled n times under
the same assumptions. X denotes the
number of times the ball O stopped on
the left of W.

Modern translation:

Derive the posterior distribution of p
given X, when

p ∼ U([0, 1]) and X ∼ B(n,p)



Resolution

Since

P(X = x|p) =

(
n

x

)
px(1− p)n−x,

P(a < p < b and X = x) =

∫b

a

(
n

x

)
px(1− p)n−xdp

and

P(X = x) =

∫ 1

0

(
n

x

)
px(1− p)n−x dp,



Resolution (2)

then

P(a < p < b|X = x) =

∫b
a

(
n
x

)
px(1− p)n−x dp

∫1
0

(
n
x

)
px(1− p)n−x dp

=

∫b
a p

x(1− p)n−x dp

B(x+ 1,n− x+ 1)
,

i.e.
p|x ∼ Be(x+ 1,n− x+ 1)

[Beta distribution]
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Conjugate priors

Easiest case is when prior distribution is within parametric family

Conjugacy

In this case, posterior inference is tractable and reduces to
updating the hyperparameters∗ of the prior

Example In Thomas Bayes’ example, the Be(a,b) prior is
conjugate

∗The hyperparameters are parameters of the priors; they are most often not
treated as random variables
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Exponential families and conjugacy

The family of exponential distributions

f(x|θ) = C(θ)h(x) exp{R(θ) · T(x)}
= h(x) exp{R(θ) · T(x) − τ(θ)}

allows for conjugate priors

π(θ|µ, λ) = K(µ, λ) eθ.µ−λψ(θ)

Following Pitman-Koopman-Darmois’ Lemma, only case [besides
uniform distributions]
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Illustration

Discrete/Multinomial & Dirichlet

If observations consist of positive counts Y1, . . . ,Yd modelled by a
Multinomial M(θ1, . . . ,θp) distribution

L(y|θ,n) =
n!

∏d
i=1 yi!

d∏

i=1

θ
yi
i

conjugate family is the Dirichlet D(α1, . . . ,αd) distribution

π(θ|α) =
Γ(
∑d
i=1 αi)∏d

i=1 Γ(αi)

d∏

i

θαi−1i

defined on the probability simplex (θi > 0,
∑d
i=1 θi = 1), where Γ

is the gamma function Γ(α) =
∫∞
0 t

α−1e−tdt



Standard exponential families

f(x|θ) π(θ) π(θ|x)

Normal Normal

N(θ,σ2) N(µ, τ2) N(ρ(σ2µ+ τ2x), ρσ2τ2)

ρ−1 = σ2 + τ2

Poisson Gamma
P(θ) G(α,β) G(α+ x,β+ 1)

Gamma Gamma
G(ν, θ) G(α,β) G(α+ ν,β+ x)

Binomial Beta
B(n, θ) Be(α,β) Be(α+ x,β+ n− x)



Standard exponential families [2]

f(x|θ) π(θ) π(θ|x)
Negative Binomial Beta

Neg(m, θ) Be(α,β) Be(α+m,β+ x)
Multinomial Dirichlet

Mk(θ1, . . . ,θk) D(α1, . . . ,αk) D(α1 + x1, . . . ,αk + xk)
Normal Gamma

N(µ, 1/θ) Ga(α,β) G(α+ 0.5,β+ (µ− x)2/2)



Linearity of the posterior mean

Lemma If
θ ∼ πλ,x0(θ) ∝ eθ·x0−λψ(θ)

with x0 ∈ X, then

Eπ[∇ψ(θ)] = x0
λ

.

Therefore, if x1, . . . , xn are i.i.d. f(x|θ),

Eπ[∇ψ(θ)|x1, . . . , xn] =
x0 + nx̄

λ+ n



Improper distributions

Necessary extension from a prior probability distribution to a prior
σ-finite positive measure π such that

∫

Θ

π(θ)dθ = +∞

Improper prior distribution
Note A σ-finite density with

∫

Θ

π(θ)dθ < +∞

can be renormalised into a probability density
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Justifications

Often automatic prior determination leads to improper prior
distributions

1 Only way to derive a prior in noninformative settings

2 Performances of estimators derived from these generalized
distributions usually good

3 Improper priors often occur as limits of proper distributions

4 More robust answer against possible misspecifications of the
prior

5 Penalization factor
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Validation

Extension of the posterior distribution π(θ|x) associated with an
improper prior π as given by Bayes’s formula

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ)dθ
,

when ∫

Θ

f(x|θ)π(θ)dθ <∞
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Normal illustration

If x ∼ N(θ, 1) and π(θ) = $, constant, the pseudo marginal
distribution is

m(x) = $

∫+∞

−∞

1√
2π

exp
{
−(x− θ)2/2

}
dθ = $

and the posterior distribution of θ is

π(θ | x) =
1√
2π

exp
{
−(x−θ)2/2

}
,

i.e., corresponds to a N(x, 1) distribution.
[independent of ω]
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Warning

The mistake is to think of them [non-informative priors] as
representing ignorance

[Lindley, 1990]

Normal illustration:
Consider a θ ∼ N(0, τ2) prior. Then

lim
τ→∞

Pπ (θ ∈ [a,b]) = 0

for any (a,b)



Warning

Noninformative priors cannot be expected to represent
exactly total ignorance about the problem at hand, but
should rather be taken as reference or default priors, upon
which everyone could fall back when the prior information
is missing.

[Kass and Wasserman, 1996]

Normal illustration:
Consider a θ ∼ N(0, τ2) prior. Then

lim
τ→∞

Pπ (θ ∈ [a,b]) = 0

for any (a,b)



Haldane prior

Consider a binomial observation, x ∼ B(n,p), and

π∗(p) ∝ [p(1− p)]−1

[Haldane, 1931]
The marginal distribution,

m(x) =

∫ 1

0

[p(1− p)]−1
(
n

x

)
px(1− p)n−xdp

= B(x,n− x),

is only defined for x 6= 0,n .
[Not recommended!]
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The Jeffreys prior

Based on Fisher information

I(θ) = Eθ
[
∂`

∂θt
∂`

∂θ

]

Jeffreys prior density is

π∗(θ) ∝ |I(θ)|1/2

Pros & Cons

relates to information theory

agrees with most invariant priors

parameterisation invariant
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Example

If x ∼ Np(θ, Ip), Jeffreys’ prior is

π(θ) ∝ 1

and if η = ‖θ‖2,
π(η) = ηp/2−1

and
Eπ[η|x] = ‖x‖2 + p

with bias 2p
[Not recommended!]



Example

If x ∼ B(n, θ), Jeffreys’ prior is

Be(1/2, 1/2)

and, if n ∼ Neg(x, θ), Jeffreys’ prior is

π2(θ) = −Eθ
[
∂2

∂θ2
log f(x|θ)

]

= Eθ
[
x

θ2
+

n− x

(1− θ)2

]
=

x

θ2(1− θ)
,

∝ θ−1(1− θ)−1/2



MAP estimator

When considering estimates of the parameter θ, one default
solution is the maximum a posteriori (MAP) estimator

arg max
θ
`(θ|x)π(θ)

Motivations

Most likely value of θ

Penalized likelihood estimator

Further appeal in restricted parameter spaces
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Illustration

Consider x ∼ B(n,p). Possible priors:

π∗(p) =
1

B(1/2, 1/2)
p−1/2(1− p)−1/2 ,

π1(p) = 1 and π2(p) = p
−1(1− p)−1 .

Corresponding MAP estimators:

δ∗(x) = max

(
x− 1/2

n− 1
, 0

)
,

δ1(x) =
x

n
,

δ2(x) = max

(
x− 1

n− 2
, 0

)
.



Illustration [opposite]

MAP not always appropriate:
When

f(x|θ) =
1

π

[
1+ (x− θ)2

]−1
,

and

π(θ) =
1

2
e−|θ|

then MAP estimator of θ is always

δ∗(x) = 0



Prediction

Inference on new observations depending on the same parameter,
conditional on the current data

If x ∼ f(x|θ) [observed], θ ∼ π(θ), and z ∼ g(z|x, θ) [unobserved],
predictive of z is marginal conditional

gπ(z|x) =

∫

Θ

g(z|x, θ)π(θ|x)dθ.



time series illustration

Consider the AR(1) model

xt = ρxt−1 + εt εt ∼ N(0,σ2)

predictive of xT is then

xT |x1:(T−1) ∼

∫
σ−1√
2π

exp{−(xT−ρxT−1)
2/2σ2}π(ρ,σ|x1:(T−1))dρdσ ,

and π(ρ,σ|x1:(T−1)) can be expressed in closed form



Posterior mean

Theorem The solution to

arg min
δ

Eπ
[
||θ− δ||2

∣∣ x
]

is given by
δπ(x) = Eπ [θ|x]

[Posterior mean = Bayes estimator under quadratic loss]



Posterior median

Theorem When θ ∈ R, the solution to

arg min
δ

Eπ [ |θ− δ| | x]

is given by
δπ(x) = medianπ (θ|x)

[Posterior mean = Bayes estimator under absolute loss]

Obvious extension to

arg min
δ

Eπ
[

p∑

i=1

|θi − δ|

∣∣∣∣∣ x
]
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Inference with conjugate priors

For conjugate distributions, posterior expectations of the natural
parameters may be expressed analytically, for one or several
observations.

Distribution Conjugate prior Posterior mean
Normal Normal

N(θ,σ2) N(µ, τ2)
µσ2 + τ2x

σ2 + τ2
Poisson Gamma

P(θ) G(α,β)
α+ x

β+ 1



Inference with conjugate priors

For conjugate distributions, posterior expectations of the natural
parameters may be expressed analytically, for one or several
observations.

Distribution Conjugate prior Posterior mean
Gamma Gamma

G(ν, θ) G(α,β)
α+ ν

β+ x
Binomial Beta

B(n, θ) Be(α,β)
α+ x

α+ β+ n
Negative binomial Beta

Neg(n, θ) Be(α,β)
α+ n

α+ β+ x+ n
Multinomial Dirichlet

Mk(n; θ1, . . . ,θk) D(α1, . . . ,αk)
αi + xi(∑
j αj

)
+ n

Normal Gamma

N(µ, 1/θ) G(α/2,β/2)
α+ 1

β+ (µ− x)2



Illustration

Consider
x1, ..., xn ∼ U([0, θ])

and θ ∼ Pa(θ0,α). Then

θ|x1, ..., xn ∼ Pa(max (θ0, x1, ..., xn),α+ n)

and

δπ(x1, ..., xn) =
α+ n

α+ n− 1
max (θ0, x1, ..., xn).



HPD region

Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region
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Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region

Example case x ∼ N(θ, 1) and θ ∼ N(0, 10). Then

θ|x ∼ N (10/11x, 10/11)

and

Cπ(x) =
{
θ; |θ− 10/11x| > k′

}

= (10/11x− k′, 10/11x+ k′)



HPD region

Natural confidence region based on
π(·|x) is

Cπ(x) = {θ;π(θ|x) > k}

with
Pπ(θ ∈ Cπ|x) = 1− α

Highest posterior density (HPD) region

Warning Frequentist coverage is not 1− α, hence name of credible
rather than confidence region

Further validation of HPD regions as smallest-volume
1− α-coverage regions


