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Motivating example

Case of a random event with binary (Bernoulli) outcome Z ∈ {0, 1}
such that P(Z = 1) = p
Observations z1, . . . , zn (iid) put to use to approximate p by

p̂ = p̂(z1, . . . , zn) = 1/n

n∑

i=1

zi

Illustration of a (moment/unbiased/maximum likelihood) estimator
of p



intrinsic statistical randomness

inference based on a random sample implies uncertainty

Since it depends on a random sample, an estimator

δ(X1, . . . ,Xn)

also is a random variable

Hence “error” in the reply: an estimator produces a different
estimation of the same quantity θ each time a new sample is used
(data does produce the model)
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infered variation

inference based on a random sample implies uncertainty

Question 1 :

How much does δ(X1, . . . ,Xn) vary when the sample varies?

Question 2 :

What is the variance of δ(X1, . . . ,Xn) ?

Question 3 :

What is the distribution of δ(X1, . . . ,Xn) ?
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infered variation

Example (Normal sample)

Take X1, . . . ,X100 a random sample from N(θ, 1). Its mean θ is
estimated by

θ̂ =
1

100

100∑

i=1

Xi

Variation compatible with the (known) theoretical distribution
θ̂ ∼ N(θ, 1/100)
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Associated difficulties (illustrations)

Observation of a single sample x1, . . . , xn in most cases

The sampling distribution F is often unknown

The evaluation of the average variation of δ(X1, . . . ,Xn) is
paramount for the construction of confidence intervals and for
testing/answering questions like

H0 : θ 6 0

In the normal case, the true θ stands with high probability in
the interval

[θ̂− 2σ, θ̂+ 2σ] .

Quid of σ ?!
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Estimation of the repartition function

Extension/application of the LLN to the approximation of the cdf:
For an i.i.d. sample X1, . . . ,Xn, empirical cdf

F̂n(x) =
1

n

n∑

i=1

I]−∞,x](Xi)

=
card {Xi; Xi 6 x}

n
,

Step function corresponding to the empirical distribution

1/n

n∑

i=1

δXi

where δ Dirac mass
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convergence of the empirical cdf

Glivenko-Cantelli Theorem

‖F̂n − F‖∞ = sup
x∈R

|F̂n(x) − F(x)|
a.s.−→ 0

[Glivenko, 1933;Cantelli, 1933]

F̂n(x) is a convergent estimator of the cdf F(x)



convergence of the empirical cdf

Dvoretzky–Kiefer–Wolfowitz inequality

P
(

sup
x∈R

∣∣F̂n(x) − F(x)
∣∣ > ε

)
6 e−2nε2

for every ε > εn =
√
1/2n ln 2

[Massart, 1990]

F̂n(x) is a convergent estimator of the cdf F(x)



convergence of the empirical cdf

Donsker’s Theorem

The sequence √
n(F̂n(x) − F(x))

converges in distribution to a Gaussian process G with zero mean
and covariance

cov[G(s),G(t)] = E[G(s)G(t)] = min{F(s), F(t)}− F(s)F(t).

[Donsker, 1952]

F̂n(x) is a convergent estimator of the cdf F(x)



statistical consequences of Glivenko-Cantelli

Moments

E[F̂n(x)] = F(x)

var[F̂n(x)] =
F(x)(1− F(x))

n



statistical consequences of Glivenko-Cantelli

Confidence band

If

Ln(x) = max
{
F̂n(x) − εn, 0

}
,Un(x) = min

{
F̂n(x) + εn, 1

}
,

then, for εn =
√
1/2n ln 2/α,

P
(
Ln(x) 6 F(x) 6 Un(x) for all x

)
> 1− α



Glivenko-Cantelli in action

Example (Normal sample)

Estimation of the cdf F from a normal sample of 100 points
and variation of this estimation over 200 normal samples



Properties

Estimator of a non-parametric nature : it is not necessary to
know the distribution or the shape of the distribution of the
sample to derive this estimator

c© it is always available

Robustess versus efficiency: If the [parameterised] shape of
the distribution is known, there exists a better approximation
based on this shape, but if the shape is wrong, the parametric
result can be completely off!
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parametric versus non-parametric inference

Example (Normal sample)

cdf of N(θ, 1), Φ(x− θ)

Estimation of Φ(·− θ) by F̂n and by Φ(·− θ̂) based on 100
points and maximal variation of those estimations over 200
replications



parametric versus non-parametric inference

Example (Non-normal sample)

Sample issued from

0.3N(0, 1) + 0.7N(2.5, 1)

wrongly allocated to a normal distribution Φ(·− θ)



parametric versus non-parametric inference

Estimation of F by F̂n and by Φ(·− θ̂) based on 100 points
and maximal variation of those estimations over 200
replications



Extension to functionals of F

For any quantity θ(F) depending on F, for instance,

θ(F) =

∫
h(x)dF(x) ,

[Functional of the cdf]
use of the plug-in approximation θ(F̂n), for instance,

θ̂(F) =

∫
h(x)dF̂n(x)

= 1/n

n∑

i=1

h(Xi)

[Moment estimator]
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examples

variance estimator

If

θ(F) = var(X) =

∫(
x− EF[X]

)2
dF(x)

then

θ(F̂n) =

∫(
x− E

F̂n
[X]
)2

dF̂n(x)

= 1/n

n∑

i=1

(
Xi − E

F̂n
[X]
)2

= 1/n

n∑

i=1

(
Xi − X̄n

)2

which differs from the (unbiased) sample variance

1/n−1

n∑

i=1

(
Xi − X̄n

)2



examples

median estimator

If θ(F) is the median of F, it is defined by

PF(X 6 θ(F)) = 0.5

θ(F̂n) is thus defined by

P
F̂n
(X 6 θ(F̂n)) = 1/n

n∑

i=1

I(Xi 6 θ(F̂n)) = 0.5

which implies that θ(F̂n) is the median of X1, . . . ,Xn, namely
X(n/2)



median estimator

Example (Normal sample)

θ also is the median of N(θ, 1), hence another estimator of θ is the
median of F̂n, i.e. the median of X1, . . . ,Xn, namely X(n/2)

Comparison of the variations of sample means and sample
medians over 200 normal samples



q-q plots

Graphical test of adequation for dataset x1, . . . , xn and targeted
dsitribution F:
Plot sorted x1, . . . , xn against F−1(1/n+1), . . . , F−1(n/n+1)

Example

Normal N(0, 1) sample
against

N(0, 1)

N(0, 2)

E(3)

theoretical distributions
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basis of Monte Carlo simulation

Recall the

Law of large numbers

If X1, . . . ,Xn simulated from f,

Ê[h(X)]n =
1

n

n∑

i=1

h(Xi)
a.s.−→ E[h(X)]

Result fundamental for the use of computer-based simulation
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computer simulation

Principle

produce by a computer program an arbitrary long sequence

x1, x2, . . .
iid
∼ F

exploit the sequence as if it were a truly iid sample

c© Mix of algorithmic, statistics, and probability theory
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Monte Carlo simulation in practice

For a given distribution F, call the corresponding
pseudo-random generator in an arbitrary computer language

> x=rnorm(10)

> x

[1] -0.02157345 -1.13473554 1.35981245 -0.88757941 0.70356394 -1.03538265

[7] -0.74941846 0.50629858 0.83579100 0.47214477

use the sample as a statistician would do

> mean(x)

[1] 0.004892123

> var(x)

[1] 0.8034657

to approximate quantities related with F



Monte Carlo integration

Approximation of integrals related with F:

Law of large numbers

If X1, . . . ,Xn simulated from f,

În =
1

n

n∑

i=1

h(Xi)
a.s.−→ I =

∫
h(x) dF(x)

Convergence a.s. as n→∞

Monte Carlo principle

1 Call a computer pseudo-random generator of F to produce
x1, . . . , xn

2 Approximate I with În
3 Check the precision of În and if needed increase n
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example: normal moment

For a Gaussian distribution, E[X4] = 3. Via Monte Carlo
integration,

n 5 50 500 5000 50,000 500,000

În 1.65 5.69 3.24 3.13 3.038 3.029



How can one approximate the distribution of θ(F̂n) ?

Given an estimate θ(F̂n) of θ(F), its variability is required to
evaluate precision

bootstrap principle

Since

θ(F̂n) = θ(X1, . . . ,Xn) with X1, . . . ,Xn
iid
∼ F

replace F with F̂n :

θ(F̂n) ≈ θ(X∗1 , . . . ,X∗n) with X∗1 , . . . ,X∗n
iid
∼ F̂n
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illustration: bootstrap variance

For a given estimator θ(F̂n), a random variable, its (true) variance
is defined as

σ2 = EF
[
(θ(F̂n) − EF[θ(F̂n)])2

]

bootstrap approximation

E
F̂n

[
(θ(̂̂Fn) − E

F̂n
[θ(F̂n)])

2
]
= E

F̂n

[
θ(̂̂Fn)2

]
− θ(F̂n)

2

meaning that the random variable θ(̂̂Fn) in the first expectation is
now a transform of

X∗1 , . . . ,X∗n
iid
∼ F̂n

while the second θ(F̂n) is the original estimate



screen snapshot



Remarks

bootstrap because the sample itself is used to build an
evaluation of its own distribution

a bootstrap sample is obtained by n samplings with
replacement in (X1, . . . ,Xn)

that is, X∗1 sampled from (X1, . . . ,Xn), then X∗2 independently
sampled from (X1, . . . ,Xn), ...

a bootstrap sample can thus take nn values (or
(
2n−1
n

)
values

if the order does not matter)

combinatorial complexity prevents analytic derivations



Remarks

bootstrap because the sample itself is used to build an
evaluation of its own distribution

a bootstrap sample is obtained by n samplings with
replacement in (X1, . . . ,Xn)

that is, X∗1 sampled from (X1, . . . ,Xn), then X∗2 independently
sampled from (X1, . . . ,Xn), ...

a bootstrap sample can thus take nn values (or
(
2n−1
n

)
values

if the order does not matter)

combinatorial complexity prevents analytic derivations



bootstrap by simulation

Implementation

Since F̂n is known, it is possible to simulate from F̂n, therefore
one can approximate the distribution of θ(X∗1 , . . . ,X∗n) [instead of
θ(X1, . . . ,Xn)]
The distribution corresponding to

F̂n(x) = card {Xi; Xi 6 x}
/
n

allocates a probability of 1/n to each point in {x1, . . . , xn} :

PrF̂n(X∗ = xi) = 1/n

Simulating from F̂n is equivalent to sampling with replacement in
(X1, . . . ,Xn)

[in R, sample(x,n,replace=TRUE)]



bootstrap algorithm

Monte Carlo implementation
1 For b = 1, . . . ,B,

1 generate a sample Xb1 , . . . ,Xbn from F̂n
2 construct the corresponding value

θ̂b = θ(Xb1 , . . . ,Xbn)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . ,Xn)



bootstrap algorithm

Monte Carlo implementation
1 For b = 1, . . . ,B,

1 generate a sample Xb1 , . . . ,Xbn from F̂n
2 construct the corresponding value

θ̂b = θ(Xb1 , . . . ,Xbn)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . ,Xn)



bootstrap algorithm

Monte Carlo implementation
1 For b = 1, . . . ,B,

1 generate a sample Xb1 , . . . ,Xbn from F̂n
2 construct the corresponding value

θ̂b = θ(Xb1 , . . . ,Xbn)

2 Use the sample
θ̂1, . . . , θ̂B

to approximate the distribution of

θ(X1, . . . ,Xn)



mixture illustration

Observation of a sample [here simulated from
0.3N(0, 1) + 0.7N(2.5, 1) as illustration]

> x=rnorm(250)+(runif(250)<.7)*2.5 #n=250

Interest in the distribution of X̄ = 1/n
∑
i Xi

> xbar=mean(x)

[1] 1.73696

Bootstrap sample of X̄∗

> bobar=rep(0,1000) #B=1000

> for (t in 1:1000)

+ bobar[t]=mean(sample(x,250,rep=TRUE))

> hist(bobar)



mixture illustration

Example (Sample 0.3N(0, 1) + 0.7N(2.5, 1))

Variation of the empirical means over 200 bootstrap samples
versus observed average



mixture illustration

Example (Derivation of the average variation)

For an estimator θ(X1, . . . ,Xn), the standard deviation is given by

η(F) =
√

EF
[
{θ(X1, . . . ,Xn) − EF[θ(X1, . . . ,Xn)]}2

]

and its bootstrap approximation is

η(F̂n) =

√
EF̂n

[
{θ(X1, . . . ,Xn) − EF̂n [θ(X1, . . . ,Xn)]}2

]
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mixture illustration

Example (Derivation of the average variation)

Approximation itself approximated by Monte-Carlo:

η̂(F̂n) =

(
1/B

B∑

b=1

(θ(Xb1 , . . . ,Xbn) − θ̄)
2

)1/2

where

θ̄ = 1/B

B∑

b=1

θ(Xb1 , . . . ,Xbn)



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

1 rely on the normal approximation

θ(F̂n) ≈ N(θ(F),η(F)2)

and use the interval

[
θ(F̂n) + zα/2η(F̂n), θ(F̂n) − zα/2η(F̂n)

]



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

2 generate a bootstrap approximation to the cdf of θ(F̂n)

Ĥ(r) = 1/B

B∑

b=1

I(θ(Xb1 , . . . ,Xbn) 6 r)

and use the interval

[
Ĥ−1(α/2), Ĥ−1(1− α/2)

]

which is also [
θ∗(n{α/2}), θ

∗
(n{1−α/2})

]



bootstrap confidence intervals

Several ways to implement the bootstrap principle to get
confidence intervals, that is intervals C(X1, . . . ,Xn) on θ(F) such
that

P
(
C(X1, . . . ,Xn) 3 θ(F)

)
= 1− α

[1− α-level confidence intervals]

3 generate a bootstrap approximation to the cdf of θ(F̂n)−θ(F),

Ĥ(r) =
1

B

B∑

b=1

I((θ(Xb1 , . . . ,Xbn) − θ(F̂n) 6 r)

and use the interval
[
θ(F̂n) − Ĥ

−1(1− α/2), θ(F̂n) − Ĥ
−1(α/2)

]

which is also
[
2θ(F̂n) − θ

∗
(n{1−α/2}), 2θ(F̂n) − θ

∗
(n{α/2})

]



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> sd(bootmed)

[1] 0.1222386

> median(x)-2*sd(bootmed)

[1] -0.2090547

> median(x)+2*sd(bootmed)

[1] 0.2798995



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> quantile(bootmed,prob=c(.025,.975))

2.5% 97.5%

-0.2430018 0.2375104



exemple: median confidence intervals

Take X1, . . . ,Xn an iid random sample and θ(F) as the median of
F, then

θ(Fn) = X(n/2)

> x=rnorm(123)

> median(x)

[1] 0.03542237

> T=10^3

> bootmed=rep(0,T)

> for (t in 1:T) bootmed[t]=median(sample(x,123,rep=TRUE))

> 2*median(x)-quantile(bootmed,prob=c(.975,.025))

97.5% 2.5%

-0.1666657 0.3138465



example: mean bootstrap variation

Example (Sample 0.3N(0, 1) + 0.7N(2.5, 1))

Interval of bootstrap variation at ±2η̂(F̂n) and average of the
observed sample



example: mean bootstrap variation

Example (Normal sample)

Sample

(X1, . . . ,X100)
iid
∼ N(θ, 1)

Comparison of the confidence intervals

[x̄− 2 ∗ σ̂x/10, x̄+ 2 ∗ σ̂x/10] = [−0.113, 0.327]

[normal approximation]

[x̄∗ − 2 ∗ σ̂∗, x̄∗ + 2 ∗ σ̂∗] = [−0.116, 0.336]

[normal bootstrap approximation]

[q∗(0.025),q∗(0.975)] = [−0.112, 0.336]

[generic bootstrap approximation]
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example: mean bootstrap variation

Variation ranges at 95% for a sample of 100 points and 200
bootstrap replications



a counter-example

Consider X1, . . . ,Xn ∼ U(0, θ) then

θ = θ(F) = Eθ
[
n

n− 1
X(n)

]

Using bootstrap, distribution of
n−1/nθ(F̂n) far from truth

fmax(x) = nxn−1/θn I(0,θ)(x)
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Parametric Bootstrap

If the parametric shape of F is known,

F(·) = Φλ(·) λ ∈ Λ ,

an evaluation of F more efficient than F̂n is provided by

Φλ̂n

where λ̂n is a convergent estimator of λ
[Cf Example 3]
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Parametric Bootstrap

Approximation of the distribution of

θ(X1, . . . ,Xn)

by the distribution of

θ(X∗1 , . . . ,X∗n) X∗1 , . . . ,X∗n
iid
∼ Φλ̂n

May avoid Monte Carlo simulation approximations in some cases
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example of parametric Bootstrap

Example (Exponential Sample )

Take

X1, . . . ,Xn
iid
∼ Exp(λ)

and λ= 1/Eλ[X] to be estimated
A possible estimator is

λ̂(x1, . . . , xn) =
n∑n
i=1 xi

but this estimator is biased

Eλ[λ̂(X1, . . . ,Xn)] 6= λ
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example of parametric Bootstrap

Example (Exponential Sample (2))

Questions :

What is the bias

λ− Eλ[λ̂(X1, . . . ,Xn)]

of this estimator ?

What is the distribution of this estimator ?
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Bootstrap evaluation of the bias

Example (Exponential Sample (3))

λ̂(x1, . . . , xn) − Eλ̂(x1,...,xn)[λ̂(X1, . . . ,Xn)]

[parametric version]

λ̂(x1, . . . , xn) − EF̂n [λ̂(X1, . . . ,Xn)]

[non-parametric version]



example: bootstrap bias evaluation

Example (Exponential Sample (4))

In the first (parametric) version,

1/λ̂(X1, . . . ,Xn) ∼ Ga(n,nλ)

and
Eλ[λ̂(X1, . . . ,Xn)] =

n

n− 1
λ

therefore the bias is analytically evaluated as

−λ
/
n− 1

and estimated by

−
λ̂(X1, . . . ,Xn)

n− 1
= −0.00787
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example: bootstrap bias evaluation

Example (Exponential Sample (5))

In the second (nonparametric) version, evaluation by Monte Carlo,

λ̂(x1, . . . , xn) − EF̂n [λ̂(X1, . . . ,Xn)] = 0.00142

which achieves the “wrong” sign



example: bootstrap bias evaluation

Example (Exponential Sample (6))

Construction of a confidence interval on λ
By parametric bootstrap,

Prλ
(
λ̂1 6 λ 6 λ̂2

)
= Pr

(
ω1 6 λ/λ̂ 6 ω2

)
= 0.95

can be deduced from
λ/λ̂ ∼ Ga(n,n)

[In R, qgamma(0.975,n,1/n)]

[λ̂1, λ̂2] = [0.452, 0.580]



example: bootstrap bias evaluation

Example (Exponential Sample (7))

In nonarametric bootstrap, one replaces

PrF (q(.025) 6 λ(F) 6 q(.975)) = 0.95

with
PrF̂n

(
q∗(.025) 6 λ(F̂n) 6 q∗(.975)

)
= 0.95

Approximation of quantiles q∗(.025) and q∗(.975) of λ(F̂n) by
bootstrap (Monte Carlo) sampling

[q∗(.025),q∗(.975)] = [0.454, 0.576]
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example: bootstrap distribution evaluation

Example (Student Sample)

Take

X1, . . . ,Xn
iid
∼ T(5,µ, τ2)

def
= µ+ τ

N(0, 1)√
χ25/5

µ and τ could be estimated by

µ̂n =
1

n

n∑

i=1

Xi τ̂n =

√
5− 2

5

√√√√ 1

n

n∑

i=1

(Xi − µ̂)2

=

√
5− 2

5
σ̂n



example: bootstrap distribution evaluation

Example (Student Sample (2))

Problem µ̂n is not distributed from a Student T(5,µ, τ2/n)
distribution
The distribution of µ̂n can be reproduced by bootstrap sampling



example: bootstrap distribution evaluation

Example (Student Sample (3))

Comparison of confidence intervals

[µ̂n − 2 ∗ σ̂n/10, µ̂n + 2 ∗ σ̂n/10] = [−0.068, 0.319]

[normal approximation]

[q∗(0.05),q∗(0.95)] = [−0.056, 0.305]

[parametric boostrap approximation]

[q∗(0.05),q∗(0.95)] = [−0.094, 0.344]

[non parametric boostrap approximation]



example: bootstrap distribution evaluation

95% variation interval for a 150 points sample with 400
bootstrap replicas (top) nonparametric and (bottom)
parametric


