Chapter 3 :
Likelihood function and inference

@ Likelihood function and inference
@ The likelihood
@ Information and curvature
o Sufficiency and ancilarity
@ Maximum likelihood estimation
@ Non-regular models
o EM algorithm



The likelihood

Given an usually parametric family of distributions
F e {Fg, 0 € O}

with densities fg [wrt a fixed measure v|, the density of the iid

sample X1,...,Xn IS
n
I ] folxi)
i=1



The likelihood

Given an usually parametric family of distributions
F e {Fg, 0 € O}

with densities fg [wrt a fixed measure v|, the density of the iid
sample X1,...,Xn IS
n
I ] folxi)
i=1
In the special case v is a counting measure,
n
I [ foxi)
i=1

is the of observing the sample x1,...,X, among all
possible realisations of Xj,..., X}



The likelihood

Definition (likelihood function)

The likelihood function associated with a sample x1,..., %, is the
function
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The likelihood

Definition (likelihood function)
The likelihood function associated with a sample x1,...,xy is the

function

L:@HR.F

0 — | [ folx:)
i=1

same formula as density but different space of variation



Example: density function versus likelihood function

Take the case of a Poisson density
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Example: density function versus likelihood function

Take the case of a Poisson density
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Example: density function versus likelihood function

Take the case of a Normal N(0, 0)
density
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Example: density function versus likelihood function

Take the case of a Normal N(0, 0)
density
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Example: density function versus likelihood function

Take the case of a Normal N(0,1/0)

density
g / \
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Example: density function versus likelihood function

Take the case of a Normal N(0,1/0)
density
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f(x;0) = —— e 2[5 (x)
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Example: Hardy-Weinberg equilibrium

Population genetics:
o Genotypes of biallelic genes AA, Aa, and aa
@ sample frequencies naa, Naq and Ngq
o multinomial model M(n;paa, PAa; Paa)
o related to population proportion of A alleles, pa:

PAA = P%\, PAa = 2pA(l —Pa); Paa = (] —PA)Z
o likelihood

Lipamaa, Maq, Naa) p,zz\nAA 2pa(1T —pa)l™re(1 _pA)znaa

[Boos & Stefanski, 2013]



mixed distributions and their likelihood

Special case when a random variable X may take specific values
ai,...,ax and a continum of values 2

Rainfall at a given spot on a given day may be zero with
positive probability po or an arbitrary number
between 0 and 100 or 100

with positive probability pi1go



mixed distributions and their likelihood

Special case when a random variable X may take specific values
ai,...,ax and a continum of values 2

Tobit model where y ~ N(XTB, 0?) but
y* =y x [{y > 0} observed



mixed distributions and their likelihood

Special case when a random variable X may take specific values
ar,...,ax and a continum of values 2

Density of X against composition of two measures, counting and
Lebesgue:

fe(a) = {Pe(Xa) if a €{ay,...,ax}

f(alO) otherwise
Results in likelihood

k
LOXy,...,xn) =] [Pe(X=a)™ x ][  f(xl0)
j=1

Xi€{31 7"'7ak}

where 1 # observations equal to q;



Enters Fisher, Ronald Fisher!

Fisher’s intuition in the 20’s:

@ the likelihood function contains the
relevant information about the
parameter 0

@ the higher the likelihood the more
likely the parameter

@ the curvature of the likelihood
determines the precision of the
estimation




Concentration of likelihood mode around “true” parameter

Likelihood functions for x1,...,xn ~ P(3) as n increases
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Concentration of likelihood mode around “true” parameter

Likelihood functions for x1,...,xn ~ P(3) as n increases
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Concentration of likelihood mode around “true” parameter

Likelihood functions for x1 see X as M increases
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Concentration of likelihood mode around “true” parameter

Likelihood functions for x1 see X as sample varies
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Concentration of likelihood mode around “true” parameter

Likelihood functions for x1 see X as sample varies

n=250 n=250
- -
m L}
L2 o
(=] (=]
-2 -1 a 1 2 -2 -1 a 1 2
n=250 n=250
- -
m ()
L] o
a (=]
-2 -1 a 1 2 -2 -1 a 1 2




why concentration takes place

Consider
iid
Xl,...,Xn ~ F
Then N N
log | [ f(x:18) = Y log f(xl6)
i=1 i=1
and by

I/n Y log f(xi|@) Jx log f(x|0) dF(x)
i=1



why concentration takes place

I/n Y logf(x]0) LC log f(x|0) dF(x)
i=1

Lemma

Maximising the likelihood is asymptotically equivalent to
minimising the Kullback-Leibler divergence

J log f(x)/f(xjo) dF(x)
X

(© Member of the family closest to true distribution



Score function

Score function defined by
VilogL(0x) = (a/aeJ_(elx), e a/aepL(Glx))/L(elx)

Gradient (slope) of likelihood function at point 6



Score function

Score function defined by
VilogL(0x) = (a/aeJ_(elx), e a/aepL(Glx))/L(elx)

Gradient (slope) of likelihood function at point 6

When X ~ Fg,
Eo[ViogL(0|X)] =0




Score function

Score function defined by
VilogL(O|x) = (a/aeJ_(GIX), e a/aepL(Glx))/L(Glx)
Gradient (slope) of likelihood function at point 6

When X ~ Fe,
Ee[V log L(0]X)] = 0

Reason:

waog L(0)x) dFs(x) :J

VL(8[x)dx = VJ dFg(x)
X

X



Score function

Score function defined by
ViogL(8x) = (%/20,L(6Ix),...,3/00,L(6]x)) /L(6]x)

Gradient (slope) of likelihood function at point 6

When X ~ Fg,
Eg[ViogL(0]X)] =0

Connected with concentration theorem: gradient null on average
for true value of parameter



Score function

Score function defined by
ViogL(8x) = (%/20,L(6Ix),...,3/00,L(6]x)) /L(6]x)

Gradient (slope) of likelihood function at point 6

When X ~ Fg,
Eg[ViogL(0]X)] =0

Warning: Not defined for non-differentiable likelihoods, e.g. when
support depends on 0



Score function

Score function defined by
VilogL(O|x) = (a/ae1L(9|x), e a/aepL(Glx))/L(Glx)
Gradient (slope) of likelihood function at point 6

When X ~ Fo,
Ee[V log L(0]X)] = 0

Warning (2): Does not imply maximum likelihood estimator is
unbiased



Fisher's information matrix

Another notion attributed to Fisher

covariance matrix of the score vector
3(0) = Eg [v log £(X|0) {V log f(X|e)}T]

Often called Fisher information



Fisher's information matrix

Another notion attributed to Fisher

covariance matrix of the score vector
3(0) = Eg [v log £(X|0) {V log f(X|e)}T]

Often called Fisher information

Measures curvature of the likelihood surface, which translates as
brought by the data

Sometimes denoted Jx to stress dependence on distribution of X



Fisher's information matrix

Second derivative of the log-likelihood as well

If L(0]x) is twice differentiable [as a function of 0]

3(0) = —Eq [V V log £(X|0)]

Hence
aZ
69169]-

%(9) = —]Ee log f(X|9)



[llustrations

Binomial B(n,p) distribution

f(xlp) = (:)p"ﬂ —p)

9/oplog f(x[p) = %/p — n—x/1—p
0%/ap? log f(x|p) = —%/p2 — n=%/(1—p)?

Hence

I(p) = ™/p? + nnp/(1—p)?

= /p(1—p)



[llustrations

Multinomial M(m;p1, ..., px) distribution
n
f — X1 pXk
(xlp) (m ! ,Xk)m Pl
9/op: log f(x[p) = xi/pi — Xi/py
0° fopiop; log f(x[p) = —xi/p?
0°/op? log f(x|p) = —xi/p? — xx/p}

Hence
Vpr 4+ Ve -+ /P

1 1
(P) . /Pk /Pk

]/'Pk T ]/qu + 1/Pk



[llustrations

Multinomial M(m;p1, ..., px) distribution

n X

9/op: log f(x|p) = %i/pi — Xx/px
0°/apiap; log f(x[p) = —xi/p?
0°/op? log f(xIp) = —xi/p? — xx/p}

and

pi(l—p1) —pip2

o —p1p2 p2(1 —p2)
Jp) ' = |

—P1Pk—-1 —P2Pk—1

Xk

—P1Pk—1
—P2Pk—1

Pr—1(1 — px—1)



[llustrations

Normal N(u, o?) distribution

1T 1

T2 g on{-
/aclog f(x]|0) = — /o + (x—1)?/s3  3%/op2 log f(x|0) = — 1/52
az/auaolog f(X|e) =2 X_H/G3 82/602 log f(X|9) = 1/02 —3 (X—H)Z/G4

316 =1 (5 5)

(X|9) (x— H)Z/ZGZ} a/aulogf(xle) :X—H/GZ

Hence



Properties

Additive features translating as accumulation of information:
o if X and Y are independent, Jx(0) + Jy(0) = JT(x v(0)
® Jx,,..x. (0) =nJx, (6)
o if X = T(Y) and Y = S(X), ’Jx(e) = jy(e)
o if X=T(Y), Ix(0) < Jy(0)



Properties

Additive features translating as accumulation of information:
o if X and Y are independent, Jx(0) + Jy(0) = JT(x v(0)
® Jx,,..x. (0) =nJx, (6)
o if X = T(Y) and Y = S(X), ’Jx(e) = jy(e)
o if X=T(Y), Ix(0) < Jy(0)

If 1 =W(0) is a bijective transform, change of parameterisation:

T
a0) = {50} 3 {50}



Properties

If 1 =W(0) is a bijective transform, change of parameterisation:

T
a(e)z{g—g} m{g—g}

"In information geometry, this is seen as a change of
coordinates on a Riemannian manifold, and the intrin-
sic properties of curvature are unchanged under different
parametrizations. In general, the Fisher information matrix
provides a Riemannian metric (more precisely, the Fisher-
Rao metric).” [Wikipedia]



Approximations

Back to the Kullback—Leibler divergence

D(0’,0) :J f(x|0') log f(x18") /t(xj0) dx
X



Approximations

Back to the

D(0’,0) :J f(x|0') log f(x16") /f(xjo) dx
X

Using a second degree Taylor expansion

log f(x|0) = log f(x|0") + (0 — 8")TV log f(x|0’)

1
- 2(9 — 0wV T logf(x|0')(6 —0") + o(]|6 — 0']|?)



Approximations

Back to the Kullback—Leibler divergence
D(07,0) :J f(x|0') log f(x16") /f(xjo) dx
X
Using a second degree Taylor expansion
log f(x|0) = log f(x|0") 4+ (0 — 8')TV log f(x|0")

1
- 2(9 — 0wV T logf(x|0')(6 —0") + o(]|6 — 0']|?)

approximation of divergence:

D(0’,0) ~ %(e —0/)13(8") (6 —0")

[Exercise: show this is exact in the normal case]



First CLT

Central limit law of the score vector
Given Xy, ..., Xy i.i.d. f(x|9),

1/vaVI1og L(01Xy, ..., Xn) = N (0, Tx, (6))

[at the “true” O]



First CLT

Central limit law of the score vector
Given Xy, ..., Xy i.i.d. f(x|9),

1/vaVI1og L(01Xy, ..., Xn) = N (0, Tx, (6))

[at the “true” O]

J1(0) stands for Jx, (0) and indicates information
associated with a single observation



Sufficiency

What if a transform of the sample
S(X17"' 7XTL)
contains the information, i.e.

Jxp,%0)(0) = Ts(x;,... x) (6)

uniformly in 07



Sufficiency

What if a transform of the sample
S(X17°" 7Xn)

contains all the information, i.e.

Jxp,%0)(0) = Ts(x;,... x) (6)
uniformly in 07

In this case S(-) is called a sufficient statistic [because it is
sufficient to know the value of S(x1,...,x,) to get complete
information]



Sufficiency

What if a transform of the sample
S(X17° * 7Xn)

contains all the information, i.e.

Jxp,%0)(0) = Ts(x;,... x) (6)
uniformly in 07

In this case S(-) is called a sufficient statistic [because it is
sufficient to know the value of S(x1,...,x,) to get complete
information]

[A statistic is an arbitrary transform of the data X, ..., Xy]



Sufficiency (bis)

Alternative definition:

If (X3,...,Xn) ~f(x1,...,%x4/0) and if T = S(Xj,...,X,) is such
that the distribution of (Xj,...,X;,) conditional on T does not
depend on 0, then S(-) is a sufficient statistic



Sufficiency (bis)

Alternative definition:

If (X1,...,Xn) ~f(x1,...,%x:10) and if T = S(Xj,...,X},) is such
that the distribution of (Xj,...,X;,) conditional on T does not
depend on 0, then S(-) is a sufficient statistic

Factorisation theorem

S(-) is a sufficient statistic if and only if

f(x1,...,xn|9) — g(S(X17°°'7Xn)|e) X h(x17°'°7xn)




Sufficiency (bis)

Alternative definition:

If (X1,...,Xn) ~f(x1,...,%x:10) and if T = S(Xj,...,X},) is such
that the distribution of (Xj,...,X;,) conditional on T does not
depend on 0, then S(-) is a sufficient statistic

Factorisation theorem

S(-) is a sufficient statistic if and only if

f(x1,...,xn|9) — g(S(X17°°'7Xn)|e) X h(x17°'°7xn)




[llustrations

Uniform U(0, 0) distribution

n
L(Okx1, ... xn) =07 | [ T10,0)(x1) = 8 Mo maxx;
1

i=1

Hence
S(X1,...,Xn) = max X; = Xy
1

is sufficient



[llustrations

Bernoulli B(p) distribution

n

Lipha,...,xn) = [ [P0 —p)" % = {p/1—p)}=* (1 —p)"
Hence

is sufficient



[llustrations

Normal N(u, o?) distribution

L(H? olx1 yee 7Xn) -
B 1
-~ {2mo2}/2
B 1
o {27[02}“/2
Hence
S(Xg,. ..

is sufficient

exp




Sufficiency and exponential families

Both previous examples belong to exponential families

f(x|0) = h(x) exp {T(G)TS(X) — T(G)}



Sufficiency and exponential families
Both previous examples belong to exponential families
f(x|0) = h(x) exp {T(G)TS(X) — 1(9)}

Generic property of exponential families:

f(x1,...,%xnl0) = | [ h(x:) exp {T(G)TZ S(xi) — m—(e)}

For an exponential family with summary statistic S(-), the statistic

(X1, Xn) = ) S(Xi)

i=1

is sufficient




Sufficiency as a rare feature

Nice property reducing the data to a low dimension transform but...



Sufficiency as a rare feature

Nice property reducing the data to a low dimension transform but...

Very rare as essentially restricted to exponential families
[Pitman-Koopman-Darmois theorem|



Sufficiency as a rare feature

Nice property reducing the data to a low dimension transform but...

Very rare as essentially restricted to exponential families
[Pitman-Koopman-Darmois theorem|

with the exception of parameter-dependent families like U(0, 0)



Pitman-Koopman-Darmois characterisation

If Xy, ..., Xy are iid random variables from a density f(-|0)
whose support does not depend on © and verifying the
property that there exists an integer n such that, forn >

N, there is a sufficient statistic S(Xj,...,Xy) with fixed
[in n] dimension, then f(:|0) belongs to an exponential
family

[Factorisation theorem]



Pitman-Koopman-Darmois characterisation

If Xy, ..., Xy are iid random variables from a density f(-|0)
whose support does not depend on © and verifying the
property that there exists an integer n such that, forn >

N, there is a sufficient statistic S(Xj,...,Xy) with fixed
[in n] dimension, then f(:|0) belongs to an exponential
family

[Factorisation theorem]

Note: Darmois published this result in 1935 and
Koopman and Pitman in 1936 but Darmois is generally
omitted from the theorem... Fisher proved it for one-D sufficient
statistics in 1934



Minimal sufficiency

Multiplicity of sufficient statistics, e.g., S’(x) = (S(x), U(x))
remains sufficient when S(-) is sufficient

Search of a most concentrated summary:

A sufficient statistic S(-) is minimal sufficient if it is a function of
any other sufficient statistic




Minimal sufficiency

Multiplicity of sufficient statistics, e.g., S’(x) = (S(x), U(x))
remains sufficient when S(-) is sufficient

Search of a most concentrated summary:

A sufficient statistic S(-) is minimal sufficient if it is a function of
any other sufficient statistic

For a minimal exponential family representation
f(x|0) = h(x) exp {T(G)TS(X) — T(G)}

S(X7) + ...+ S(X4) is minimal sufficient



Ancillarity

Opposite of sufficiency:

When Xj, ..., X, are iid random variables from a density f(:|0), a
statistic A(-) is ancillary if A(Xy,...,Xy) has a distribution that
does not depend on 0




Ancillarity

Opposite of sufficiency:

When Xj, ..., X, are iid random variables from a density f(:|0), a

statistic A(-) is ancillary if A(Xy,...,Xy) has a distribution that
does not depend on 0

Not necessarily, as conditioning upon A(Xj,...,X)
leads to more precision and efficiency:

Use of Fg(x1,...,Xn]A(X1,...,Xn)) instead of Fg(x1,...,%Xn)




Ancillarity

Opposite of sufficiency:

When Xj, ..., X, are iid random variables from a density f(:|0), a

statistic A(-) is ancillary if A(Xy,...,Xy) has a distribution that
does not depend on 0

Not necessarily, as conditioning upon A(Xj,...,X)
leads to more precision and efficiency:

Use of Fg(x1,...,Xn]A(X1,...,Xn)) instead of Fg(x1,...,%Xn)

Notion of




[llustrations
iid
Q If Xy,..., Xn ~U0,0), A(Xq,..., Xn) = (X1, ., Xn) /X
is ancillary

Q IF X1, ... % ¥ N(u, 02),

A(Xy,..., Xn) =

(X1 —Xn,...,Xn—Xn)
Z?:] (Xi - Xn)z)

is ancillary

Q IFX1,.... % " £(x]0), rank(X1, ..., Xy) is ancillary

> x=rnorm(10)
> rank(x)
[1] 7 4 1 5 2 6 8 9 10 3

[see, e.g., rank tests]



Basu's theorem

Completeness

When Xj, ..., X, are iid random variables from a density f(:|0), a
statistic A(-) is complete if the only function ¥ such that
EoW(A(Xy,...,Xn))] =0 for all 8's is the null function




Basu's theorem

Completeness

When Xj, ..., X, are iid random variables from a density f(:|0), a
statistic A(-) is complete if the only function ¥ such that
EoW(A(X1,...,Xn))] =0 for all 8’'s is the null function

Let X = (X1,...,Xy) be a random sample from f(:|0) where
0 € O. If Vis an ancillary statistic, and T is complete and
sufficient for © then T and V are independent with respect to f(:|0)

for all 0 € O.
[Basu, 1955]



some examples

If X = (Xi,...,Xxn) is a random sample from the Normal
distribution N(i, 02) when o is known, Xy = 1/n > i Xqis
sufficient and complete, while (X7 — Xy, ..., Xn — Xy) is ancillary,

hence independent from Xi,.




some examples

If X = (Xi,...,Xxn) is a random sample from the Normal
distribution N(i, 02) when o is known, Xy = 1/n > i Xqis
sufficient and complete, while (X7 — Xy, ..., Xn — Xy) is ancillary,

hence independent from Xi,.

Let N be an integer-valued random variable with known pdf
(711, 712,...). And let SN =n ~ B(n,p) with unknown p. Then
(N, S) is minimal sufficient and N is ancillary.




more counterexamples

If X =(Xj,...,Xy) is a random sample from the double
exponential distribution f(x|0) = 2exp{—|x — 0[}, (X(1),...,Xm))
is minimal sufficient but not complete since X(;,) — X(1) is ancillary
and with fixed expectation. )




more counterexamples

If X =(Xj,...,Xy) is a random sample from the double
exponential distribution f(x|0) = 2exp{—|x — 0[}, (X(1),...,Xm))
is minimal sufficient but not complete since X(;,) — X(1) is ancillary
and with fixed expectation.

v

If X is a random variable from the Uniform U(0,0 + 1)
distribution, X and [X] are independent, but while X is complete
and sufficient, [X] is not ancillary.




last counterexample

Let X be distributed as

X -5 -4 -3 -2 -1 1 2 3 4 5

px | «’p?q  «'pq?  p3/2  q°/2  v'pa v¥'pa  4?/2  p3/2  apg?  ap?

with
x+o' =y+vy' =25
known and ¢ =1 —p. Then
o T =|X| is minimal sufficient
o V=1I(X>0) is ancillary
o if o/ 2« T and V are not independent
(*

T is complete for two-valued functions
[Lehmann, 1981]



Point estimation, estimators and estimates

When given a parametric family f(-|0) and a sample supposedly
drawn from this family

(X1,. . Xn) < £(x]0)

Q an of O is a statistic T(Xy,...,XN) or 0, providing
a substitute for the unknown value 0.
Q an of O is the value of the estimator for a given

sample, T(x1,...,%Xn)



Point estimation, estimators and estimates

When given a parametric family f(-|0) and a sample supposedly
drawn from this family

(X1,. . Xn) < £(x]0)

Q an of O is a statistic T(Xy,...,XN) or 0, providing
a substitute for the unknown value 0.
Q an of O is the value of the estimator for a given
sample, T(x1,...,%Xn)

For a Normal N(u, 0?) sample X1,..., XN,
T(X1,...,XN) = fin = XN

is an estimator of w and {iy = 2.014 is an estimate



Rao—Blackwell Theorem

If &(-) is an estimator of 8 and T = T(X) is a sufficient statistic,
then
01(X) = Eg[d(X)[T]

has a smaller variance than &(-)
varg (81(X)) < varg(8d(X))

[Rao, 1945; Blackwell, 1947]



Rao—Blackwell Theorem

If &(-) is an estimator of 8 and T = T(X) is a sufficient statistic,
then
01(X) = Eg[d(X)[T]

has a smaller variance than &(-)
varg(61(X)) < varg(8(X))

[Rao, 1945; Blackwell, 1947]
mean squared error of Rao—Blackwell estimator does not exceed
that of original estimator



Lehmann—Scheffé Theorem

Estimator &
@ unbiased for Eg[0X] = ¥(0O)

@ depends on data only through complete, sufficient statistic
S(X)

is the unique best unbiased estimator of WY(0)
[Lehmann & Scheffé, 1955]



Lehmann—Scheffé Theorem

Estimator &
@ unbiased for Eg[6X] = ¥(0)

@ depends on data only through complete, sufficient statistic
S(X)

is the unique best unbiased estimator of WY(0)

[Lehmann & Scheffé, 1955]
For any unbiased estimator §(-) of ¥(0),

5o (X) = Eg[6(X)|S(X)]



|[Fréchet—Darmois—]Cramér—Rao bound

If © is an estimator of O € R with bias
b(0) =Eel0] — 0

then
[1+1b7(6))°

J(0)
[Fréchet, 1943; Darmois, 1945; Rao, 1945; Cramér, 1946]

varg (0) >



|[Fréchet—Darmois—]Cramér—Rao bound

If © is an estimator of O € R with bias
b(0) = Eel0] — 0
then
[14+b’(6)]?
J(0)
[Fréchet, 1943; Darmois, 1945; Rao, 1945; Cramér, 1946]

variance of any unbiased estimator at least as high as inverse
Fisher information

varg (0) >




Single parameter proof

If & = 6(X) unbiased estimator of W(0), then

[v’(6)]°
3(0)

varg(6) >

Take score Z = % log f(X|0). Then
covp(Z,8) = Eg[6(X)Z] =W'(6)
And Cauchy-Schwarz implies

covg(Z, 8)* < varg(d)varg(Z) = varg(8)J(6)



Warning: unbiasedness may be harmful

Unbiasedness is not an ultimate property!

@ most transforms h(0) do not allow
for unbiased estimators

@ no bias may imply large variance |

&R B

o efficient estimators may be biased
(MLE)

o existence of UNMVUE restricted to

exponential families
unbiasedness may

@ Cramér—Rao bound inaccessible be harmful to your
: . .r inference
outside exponential families

fodey.com



Maximum likelihood principle

Given the concentration property of the likelihood function,
reasonable choice of estimator as mode:

MLE

A maximum likelihood estimator (MLE) By satisfies

LOnIXg, .., XN) = L(ONIXy, ..., XN)  forall@e®




Maximum likelihood principle

Given the concentration property of the likelihood function,
reasonable choice of estimator as mode:

MLE

A maximum likelihood estimator (MLE) By satisfies

LOnIXg, .., XN) = L(ONIXy, ..., XN)  forall@e®

Under regularity of L(-|X;,...,XxN), MLE also solution of the
likelihood equations

Viog L(ONIX1, ..., XN) =0



Maximum likelihood principle

Given the concentration property of the likelihood function,
reasonable choice of estimator as mode:

MLE

A maximum likelihood estimator (MLE) By satisfies

LOnIXg, .., XN) = L(ONIXy, ..., XN)  forall@e®

Under regularity of L(-|X;,...,XxN), MLE also solution of the
likelihood equations

Viog L(ONIX1, ..., XN) =0

Warning: 8y is not most likely value of 8 but makes observation
(x1,...,xn) most likely...



Maximum likelihood invariance

Principle independent of parameterisation:
If & = h(0) is a one-to-one transform of 0, then

EMLE (/G\MLE)

[estimator of transform = transform of estimator]



Maximum likelthood invariance

Principle independent of parameterisation:
If & = h(0) is a one-to-one transform of 0, then

aMLE (eMLE)

[estimator of transform = transform of estimator]
By extension, if & = h(0) is any transform of 0, then

EI\/ILE (GMLE)

Alternative of profile likelihoods distinguishing between parameters
of interest and nuisance parameters



Unicity of maximum likelihood estimate

Depending on regularity of L(-|x1,...,xn), there may be
Q an a.s. unique MLE @T'\{'LE
(2
o

Q Case of x1,...,%xn ~N(u, 1)
Q
(8



Unicity of maximum likelihood estimate

Depending on regularity of L(-|x1,...,Xxn), there may be
o
@ several or an infinity of MLE's [or of solutions to likelihood
equations]
(8
o

Q Caseof x1,...,xn ~N(uy + uz, 1)
(8



Unicity of maximum likelihood estimate

Depending on regularity of L(-|x1,...,xn), there may be
o

Q
©Q no MLE at all

Qo
Q
Q Case of x1,...,%n ~N(wi, T2)



Unicity of maximum likelihood estimate

Consequence of standard differential calculus results on
£(0) =log L(Olx1,...,%xn):

If © is connected and open, and if £(-) is twice-differentiable with

lim £(0) < +o00
0—00

and if H(0) = VV1{(0) is positive definite at all solutions of the
likelihood equations, then £(-) has a unique global maximum




Unicity of maximum likelihood estimate

Consequence of standard differential calculus results on
£(0) =log L(Olx1,...,%xn):

If © is connected and open, and if £(-) is twice-differentiable with

lim £(0) < +o00
0—00

and if H(8) = VYV 1{(0) is positive definite at all solutions of the
likelihood equations, then £(-) has a unique global maximum

Limited appeal because excluding local maxima



Unicity of MLE for exponential families

If £(-|0) is a minimal exponential family
f(x|0) = h(x) exp {T(G)TS(x) — T(G)}

with T(-) one-to-one and twice differentiable over ©, if © is open,
and if there is at least one solution to the likelihood equations,
then it is the unique MLE

Likelihood equation is equivalent to S(x) = Eg[S(X)]



Unicity of MLE for exponential families

If © is connected and open, and if £(-) is twice-differentiable with

lim £(0) < 400
0—00

and if H(0) = VVT{(0) is positive definite at all solutions of the
likelihood equations, then £(-) has a unique global maximum




[llustrations

Uniform U(0, 0) likelihood
L(Ox1,...,xn) =0 g max Xi
1

not differentiable at X(,,) but

ONE =X

[Super-efficient estimator]



[llustrations

Bernoulli B(p) likelihood

L(plx1,...,xn) = {p/1-p}=t% (1 —p)"

differentiable over (0, 1) and

MLE _

n n



[llustrations

Normal N(u, o?) likelihood

L(w, ox1,...,Xn) 0 ™ exp {—
differentiable with

MLE
(AMLE G270



The fundamental theorem of Statistics

fundamental theorem

Under appropriate conditions, if (Xi,...,Xy) ' £(x]0), if 0, is

solution of Vlog f(Xy,...,Xn|0) =0, then

V{8, — 8} = N, (0,3(6) )




The fundamental theorem of Statistics

fundamental theorem
Under appropriate conditions, if (Xi,...,Xy) ' f£(x|0), if 8, is
solution of Vlog f(Xj,...,Xy|0) =0, then

V{8, — 8} = N, (0,3(6) )

Equivalent of CLT for estimation purposes
o J(0) can be replaced with J(6y,)
o or even 3(0,) = —1/n > . VVTiiog f(xi/0n)




Assumptions

o O identifiable
@ support of f(-|0) constant in 0
@ {(0) thrice differentiable

) there exists g(x) integrable against f(:|0) in a
neighbourhood of the true parameter such that

63
f(-]0)] <
‘aeiaejaek g )| 9(x)
o the following identity stands

3(6) = Eo |V log f(X[6) {V log f(X[8)}" | = —Eq [V'V log f(X[6)]

A

@ 0,, converges in probability to 0

[Boos & Stefanski, 2014, p.286; Lehmann & Casella, 1998]



Inefficient MLEs

Example of MLE of = [|6]* when x ~ N;, (0, I,):

LE 2
AMLE — |||



Inefficient MLEs

Example of MLE of = [|6]* when x ~ N;, (0, I,):
AME = [[x|?

Then E, [Ix|[*] =n + p diverges away from 1 with p



Inefficient MLEs

Example of MLE of = [|6]* when x ~ N;, (0, I,):
AME = [[x|?

Then E, [Ix|[*] =n + p diverges away from 1 with p

Note: Consistent and efficient behaviour when considering the
MLE of 1 based on

Z =|XI* ~xp(n)
[Robert, 2001]



Inconsistent MLEs
Take X1, ... Xo = £9(x) with

folx) = (1 — e)ﬁ o (x—0/5(0)) + Bf1 (x)

for 0 € [0, 1],

f1(x) =L 11(x)  folx) = (1 =[xy 17(x)

Y

and
5(0) = (1—0) exp{—(1—0)"*+1)

Then for any 0
QULE 22, 1
n

[Ferguson, 1982; John Wellner's slides, ca. 2005]



Inconsistent MLEs

Consider X5 i=1,...,n,j =1,2 with Xj; ~ N(;, 02). Then
MLE 1 <&
~ 2
AMEE = Xu+Xi2/2 o2 ™ E (Xi1 — Xiz2)
Therefore

MLE
(?2 a.s. 02/2

[Neyman & Scott, 1948]



Inconsistent MLEs

Consider X;; i=1,...,m,j =1,2 with Xij ~ N(u, 0%). Then

/iMLE

" Iy
e =XaeXia2 027 = = Y (X — Xa)?
i=1

Therefore
PME 21, )
[Neyman & Scott, 1948]

Note: Working solely with Xi; — Xiz ~ N(0, 20%) produces a
consistent MLE



Likelihood optimisation

Practical optimisation of the likelihood function

n
0* = arg max L(0x) = I [ a(xilo).
i=1

assuming X = (Xj, ..., Xn) ' g(x|0)



Likelihood optimisation

Practical optimisation of the likelihood function

n
*
0 arg max (O]x) I |g(X1|9)

i=1

assuming X = (Xj, ..., Xn) ' g(x|0)

@ analytical resolution feasible for exponential families

VT(0) Y S(xi) =nVr(6)

i=1



Likelihood optimisation

Practical optimisation of the likelihood function

n
*
0 arg max (O]x) I |g(X1|9)

i=1

assuming X = (X1,...,Xn) ' g(x|0)

@ analytical resolution feasible for exponential families

VT(0) Y S(xi) =nVr(6)

i=1

@ use of standard numerical techniques like Newton-Raphson
e(t—l—” — e(t) i IObS(X, e(t))—]vﬁ(e(t))

with £(.) log-likelihood and I°P* observed information matrix



EM algorithm

Cases where g is too complex for the above to work

Special case when g is a marginal

9(x/6) = L f(x, 210) dz

Z called



[llustrations

@ censored data

X = min(X*, a) X*~N(0,1)
@ mixture model

X ~.3Nq(uo, 1) + .7 Ny (p1, 1),
o desequilibrium model

X = min(X*,Y") X"~ f1(x[0) Y™ ~f(x|0)



Completion

EM algorithm based on completing data x with z, such as
(X, Z) ~ f(x,z[0)

Z missing data vector and pair (X, Z) complete data vector



Completion

EM algorithm based on completing data x with z, such as
(X,Z) ~ f(x,z0)
Z missing data vector and pair (X, Z) complete data vector

Conditional density of Z given x:

f(x, z[0)
g(x|0)

k(z]|0,x) =



Likelihood decomposition

Likelihood associated with complete data (x, z)
L°(0/x, z) = f(x, z|0)
and likelihood for observed data
L(0]x)
such that
log L(0]x) = Ellog L°(0|x, Z)|09,x] — Ellog k(Z|0,%)[00,x] (1)

for any 0y, with integration operated against conditionnal
distribution of Z given observables (and parameters), k(z|0, x)



two O's

There are “two 6’s” | : in (1), B¢ is a fixed (and arbitrary) value
driving integration, while 0 both free (and variable)



two O's

There are “two 6’s” | : in (1), B¢ is a fixed (and arbitrary) value
driving integration, while 0 both free (and variable)

Maximising observed likelihood
L(6x)
equivalent to maximise r.h.s. term in (1)

Efllog L°(0]x, Z)[60,x] — E[log k(Z]6,x)|6, X]



Intuition for EM

Instead of maximising wrt 0 r.h.s. term in (1), maximise only

Ellog L°(6]x, Z)|0¢, ]



Intuition for EM

Instead of maximising wrt 0 r.h.s. term in (1), maximise only
Ellog L*(6Ix, Z)[60, ]

Maximisation of complete log-likelihood impossible since z
unknown, hence substitute by maximisation of expected complete
log-likelihood, with expectation depending on term 0



Expectation—Maximisation

Expectation of complete log-likelihood denoted
Q(6160,x) = E[log L*(0[x, Z)|0, X]

to stress dependence on 0y and sample x



Expectation—Maximisation

Expectation of complete log-likelihood denoted
Q(6160,x) = E[log L*(0[x, Z)|0, X]

to stress dependence on 0y and sample x

EM derives sequence of estimators @m, j=1,2,..., through
iteration of Expectation and Maximisation steps:

Q(0;)10;_1).x) = max Q(0105_1),x%).




EM Algorithm

lterate (in m)
Q (step E) Compute

AN

Q(610(1m),x) = Ellog L*(6x, Z)|8(1m), X] ,

Q (step M) Maximise Q(Glﬁ(m),x) in 0 and set

A

O(mir) = arg max Q010 (m),x).

until a fixed point [of Q] is found
[Dempster, Laird, & Rubin, 1978]



Justification

Observed likelihood
L(0]x)

increases at every EM step
LO(mi1)x) = L(O(m)lx)

[Exercice: use Jensen and (1)]



Censored data

Normal N(0, 1) sample right-censored

] 1 — n—m
L(Ox) = Wexp {2 ;(Xi— 9)2} 1 —®(a—0)]



Censored data

Normal N(0, 1) sample right-censored

1 - n—m
wa)&m@m{ é: } — ®(a—0)]
Associated complete log-likelihood:

DI

where zi's are censored observations, with density

log L°(0]x, 2)

N |

exp{—3(z—0)%}  @(z—0)
V2l — ®(a—0) 1—®(a—106)

k(z]0,x) = a<z.



Censored data (2)

At j-th EM iteration

N 1 &
QB x) o —5 ) (xi—
i=1
1Y -

X 73

1:

!
i=

1
n

m-+1

J

oo

a

(zi — 0)7k(2I8;

,x) dz;




Censored data (3)

Differenciating in 0,




Censored data (3)

Differenciating in 0,
n@(H” —mx+ (n— m)E[ZI@())] ,
with

> 5 ¢la—08)

—
N
—

]E[ZI@-]:J zk(z|0 5y, x) dz : R
(j) a () 1 . (D(Cl—e(J))

Hence, EM sequence provided by

D >

G+1) = X T

m_ M—Mm [A (P(Cl—/e\(j))
o o [%)Jr

which converges to likelihood maximum 6



Mixtures

Mixture of two normal distributions with unknown means

3N1(po, 1) + .7 N7 (w1, 1),

sample Xi,...,X;,, and parameter 60 = (o, 1)
Missing data: Z; € {0, 1}, indicator of component associated with
Xi,

Xilzi ~ N(uoy, 1) Zi~ B(.7)



Mixtures

Mixture of two normal distributions with unknown means

3N1(po, 1) + .7 N7 (w1, 1),

sample Xi,...,X;,, and parameter 60 = (o, 1)
Missing data: Z; € {0, 1}, indicator of component associated with
Xi
Xilzi ~ N(uoy, 1) Zi~ B(.7)
Complete likelihood

ogLE(0,2) & —2 > zlxi— w2 — 2 > (1 20) (6 — po)?



Mixtures (2)

At j-th EM iteration

A 1

Q(00(5),%) = SE [ (@ — w)* + (n —ny) (o — po)

2|/\
2

0(j) X]
Differenciating in 0

E [min [05),%] /B [mal05),x]

E[(n—n1)fio [8),%] /E [(n—n1)d;,x]



Mixtures (3)

Hence é\()’+1) given by
S E 28y %] x /X8 E [Zi85),x]
SB[ =20 [05), %] xi /ZL E [(1—Z)18), %]

Step (E) in EM replaces missing data Z; with their conditional
expectation, given x (expectation that depend on @(m)).




Mixtures (3)

EM iterations for several starting values




Properties

EM algorithm such that
@ it converges to local maximum or saddle-point
@ it depends on the initial condition 6 )

@ it requires several initial values when likelihood multimodal



