
Chapter 1 :
statistical vs. real models

Statistical models
Quantities of interest
Exponential families



Statistical models

For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables
[observations versus Random Variables]

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)



Statistical models

For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 1: Some aspects of F may ultimately remain unavailable



Statistical models

For most of the course, we assume that the data is a random
sample x1, . . . , xn and that

X1, . . . ,Xn ∼ F(x)

as i.i.d. variables or as transforms of i.i.d. variables

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 2: The model is always wrong, even though we behave as
if...



Limit of averages

Case of an iid sequence X1, . . . ,Xn ∼ N(0, 1)

Evolution of the range of X̄n across 1000 repetitions, along with one random
sequence and the theoretical 95% range



Limit theorems

Law of Large Numbers (LLN)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X]

X1 + . . . + Xn
n

prob−→ E[X]

[proof: see Terry Tao’s “What’s new”, 18 June 2008]
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Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),
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[proof: see Terry Tao’s “What’s new”, 5 January 2010]
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Continuity Theorem

If
Xn

dist.−→ a

and g is continuous at a, then

g(Xn)
dist.−→ g(a)



Limit theorems

Central Limit Theorem (CLT)
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Slutsky’s Theorem

If Xn, Yn, Zn converge in distribution to X, a, and b, respectively,
then

XnYn + Zn
dist.−→ aX+ b



Limit theorems

Central Limit Theorem (CLT)

If X1, . . . ,Xn are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance σ2 = var(X),

√
n

{
X1 + . . . + Xn

n
− E[X]

}
dist.−→ N(0,σ2)

[proof: see Terry Tao’s “What’s new”, 5 January 2010]

Delta method’s Theorem

If √
n{Xn − µ}

dist.−→ Np(0,Ω)

and g : Rp → Rq is a continuously differentiable function on a
neighbourhood of µ ∈ Rp, with a non-zero gradient ∇g(µ), then

√
n {g(Xn) − g(µ)}

dist.−→ Nq(0,∇g(µ)TΩ∇g(µ))



Entertaining read



Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of independent Bernoulli variables

Xi ∼ B(pi)

with unknown and different parameters pi (e.g., opinion poll, flu
epidemics)
Transform of i.i.d. U1, . . . ,Un:

Xi = I(Ui 6 pi)



Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of conditionally independent Bernoulli
variables

Xi|zi ∼ B(p(zi))

with covariate-driven parameters p(zi) (e.g., opinion poll, flu
epidemics)
Transform of i.i.d. U1, . . . ,Un:

Xi = I(Ui 6 pi)



Parametric versus non-parametric

Two classes of statistical models:

Parametric when F varies within a family of distributions
indexed by a parameter θ that belongs to a finite dimension
space Θ:

F ∈ {Fθ, θ ∈ Θ}
and to “know” F is to know which θ it corresponds to
(identifiability);

Non-parametric all other cases, i.e. when F is not constrained
in a parametric way or when only some aspects of F are of
interest for inference

Trivia: Machine-learning does not draw such a strict distinction
between classes
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Non-parametric models

In non-parametric models, there may still be constraints on the
range of F‘s as for instance

EF[Y|X = x] = Ψ(βTx), varF(Y|X = x) = σ2

in which case the statistical inference only deals with estimating or
testing the constrained aspects or providing prediction.
Note: Estimating a density or a regression function like Ψ(βTx) is
only of interest in a restricted number of cases



Parametric models

When F = Fθ, inference usually covers the whole of the parameter
θ and provides

point estimates of θ, i.e. values substituting for the unknown
“true” θ

confidence intervals (or regions) on θ as regions likely to
contain the “true” θ

testing specific features of θ (true or not?) or of the whole
family (goodness-of-fit)

predicting some other variable whose distribution depends on
θ

z1, . . . , zm ∼ Gθ(z)

Inference: all those procedures depend on the sample (x1, . . . , xn)
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Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

with unknown parameter p (e.g., opinion poll)
Questions of interest:

1 likely value of p or range thereof

2 whether or not p exceeds a level p0
3 how many more observations are needed to get an estimation

of p precise within two decimals

4 what is the average length of a “lucky streak” (1’s in a row)



Exemple 2: Normal sample

Model: Observation of i.i.d. Normal variates

Xi ∼ N(µ,σ2)

with unknown parameters µ and σ > 0 (e.g., blood pressure)
Questions of interest:

1 likely value of µ or range thereof

2 whether or not µ is above the mean η of another sample
y1, . . . ,ym

3 percentage of extreme values in the next batch of m xi’s

4 how many more observations to exclude µ = 0 from likely
values

5 which of the xi’s are outliers



Quantities of interest

Statistical distributions (incompletely) characterised by (1-D)
moments:

central moments

µ1 = E [X] =

∫
xdF(x) µk = E

[
(X− µ1)

k
]
k > 1

non-central moments

ξk = E
[
Xk
]
k > 1

α quantile
P(X < ζα) = α

and (2-D) moments

cov(Xi,Xj) =

∫
(xi − E[Xi])(xj − E[Xj])dF(xi, xj)

Note: For parametric models, those quantities are transforms of
the parameter θ



Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables

Xi ∼ B(p)

Single parameter p with

E[X] = p var(X) = p(1− p)

[somewhat boring...]
Median and mode



Example 1: Binomial experiment again

Model: Observation of i.i.d. Binomial variables

Xi ∼ B(n,p) P(X = k) =

(
n

k

)
pk(1− p)n−k

Single parameter p with

E[X] = np var(X) = np(1− p)

[somewhat less boring!]
Median and mode



Example 2: Normal experiment again

Model: Observation of i.i.d. Normal variates

Xi ∼ N(µ,σ2) i = 1, . . . ,n ,

with unknown parameters µ and σ > 0 (e.g., blood pressure)

µ1 = E[X] = µ var(X) = σ2 µ3 = 0 µ4 = 3σ
4

Median and mode equal to µ



Exponential families

Class of parametric densities with nice analytic properties

Start from the normal density:

ϕ(x; θ) =
1√
2π

exp
{
xθ− x2/2− θ2/2

}

=
exp{−θ2/2}√

2π
exp {xθ}︸ ︷︷ ︸
x meets θ

exp
{
−x2/2

}

where θ and x only interact through single exponential product



Exponential families

Class of parametric densities with nice analytic properties

Definition

A parametric family of distributions on X is an exponential family
if its density with respect to a measure ν satisfies

f(x|θ) = c(θ)h(x) exp{T(x)Tτ(θ)}︸ ︷︷ ︸
scalar product

, θ ∈ Θ,

where T(·) and τ(·) are k-dimensional functions and c(·) and h(·)
are positive unidimensional functions.

Function c(·) is redundant, being defined by normalising constraint:

c(θ)−1 =

∫

X

h(x) exp{T(x)Tτ(θ)}dν(x)



Exponential families (examples)

Example 1: Binomial experiment again

Binomial variable

X ∼ B(n,p) P(X = k) =

(
n

k

)
pk(1− p)n−k

can be expressed as

P(X = k) = (1− p)n
(
n

k

)
exp{k log(p/(1− p))}

hence

c(p) = (1− p)n , h(x) =

(
n

x

)
, T(x) = x , τ(p) = log(p/(1− p))
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Exponential families (examples)

Example 2: Normal experiment again

Normal variate
X ∼ N(µ,σ2)

with parameter θ = (µ,σ2) and density

f(x|θ) =
1√
2πσ2

exp{−(x− µ)2/2σ2}

=
1√
2πσ2

exp{−x2/2σ2 + xµ/σ2 − µ2/2σ2}

=
exp{−µ2/2σ2}√

2πσ2
exp{−x2/2σ2 + xµ/σ2}

hence

c(θ) =
exp{−µ2/2σ2}√

2πσ2
, T(x) =

(
x2

x

)
, τ(θ) =

(
−1/2σ2

µ/σ2

)



natural exponential families

reparameterisation induced by the shape of the density:

Definition

In an exponential family, the natural parameter is τ(θ) and the
natural parameter space is

Θ =

{
τ ∈ Rk;

∫

X

h(x) exp{T(x)Tτ}dν(x) <∞
}

Example For the B(m,p) distribution, the natural parameter is

θ = log{p/(1− p)}

and the natural parameter space is R
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regular and minimal exponential families

Possible to add and (better!) delete useless components of T :

Definition

A regular exponential family corresponds to the case where Θ is an
open set.
A minimal exponential family corresponds to the case when the
Ti(X)’s are linearly independent, i.e.

Pθ(αTT(X) = const.) = 0 for α 6= 0 θ ∈ Θ

Also called non-degenerate exponential family
Usual assumption when working with exponential families
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Illustrations

For a Normal N(µ,σ2) distribution,

f(x|µ,σ) =
1√
2π

1

σ
exp{− x2/2σ2 + µ/σ2 x− µ2/2σ2}

means this is a two-dimensional minimal exponential family

For a fourth-power distribution

f(x|µ) = C(θ) exp{−(x− θ)4}} ∝ e−x4 e4θ3x−6θ2x2+4θx3−θ4

implies this is a three-dimensional minimal exponential family
[Exercise: find C]



convexity properties

Highly regular densities

Theorem

The natural parameter space Θ of an exponential family is convex
and the inverse normalising constant c−1(θ) is a convex function.

Example For B(n,p), the natural parameter space is R and the
inverse normalising constant (1+ exp(θ))n is convex
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Highly regular densities
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analytic properties

Lemma

If the density of X has the minimal representation

f(x|θ) = c(θ)h(x) exp{T(x)Tθ}

then the natural statistic Z = T(X) is also distributed from an
exponential family and there exists a measure νT such that the
density of Z [= T(X)] against νT is

f(z; θ) = c(θ) exp{zTθ}



analytic properties

Theorem

If the density of Z = T(X) against νT is c(θ) exp{zTθ}, if the real
value function ϕ is measurable, with

∫
|ϕ(z)| exp{zTθ}dνT (z) <∞

on the interior of Θ, then

f : θ→
∫
ϕ(z) exp{zTθ} dνT (z)

is an analytic function on the interior of Θ and

∇f(θ) =
∫
zϕ(z) exp{zTθ}dνT (z)



moments of exponential families

Normalising constant c(·) generating all moments

Proposition

If T(·) : X→ Rd and the density of Z = T(X) is exp{zTθ−ψ(θ)},
then

Eθ
[
exp{T(x)Tu}

]
= exp{ψ(θ+ u) −ψ(θ)}

and ψ(·) is the cumulant generating function.

[Laplace transform]



moments of exponential families

Normalising constant c(·) generating all moments

Proposition

If T(·) : X→ Rd and the density of Z = T(X) is exp{zTθ−ψ(θ)},
then

Eθ[Ti(X)] =
∂ψ(θ)

∂θi
i = 1, . . . ,d,

and

Eθ
[
Ti(X) Tj(X)

]
=
∂2ψ(θ)

∂θi∂θj
i, j = 1, . . . ,d

Sort of integration by part in parameter space:

∫ {
Ti(x) +

∂

∂θi
log c(θ)

}
c(θ)h(x) exp{T(x)Tθ}dν(x) =

∂

∂θi
1 = 0



Sample from exponential families

Take an exponential family

f(x|θ) = h(x) exp
{
τ(θ)TT(x) −ψ(θ)

}

and id sample x1, . . . , xn from f(x|θ).
Then

f(x1, . . . , xn|θ) =

n∏

i=1

h(xi) exp

{
τ(θ)T

n∑

i=1

T(xi) − nψ(θ)

}

Remark

For an exponential family with summary statistic T(·), the statistic

S(X1, . . . ,Xn) =

n∑

i=1

T(Xi)

is sufficient for describing the joint density
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connected examples of exponential families

Example

Chi-square χ2k distribution corresponding to distribution of
X21 + . . . + X2k when Xi ∼ N(0, 1), with density

fk(z) =
z
k/2−1 exp{−z/2}

2k/2Γ(k/2)
z ∈ R+



connected examples of exponential families

Counter-Example

Non-central chi-square χ2k(λ) distribution corresponding to
distribution of X21 + . . . + X2k when Xi ∼ N(µ, 1), with density

fk,λ(z) = 1/2 (z/λ)
k/4−1/2 exp{−(z+ λ)/2}Ik/2−1(

√
zλ) z ∈ R+

where λ = kµ2 and Iν Bessel function of second order



connected examples of exponential families

Counter-Example

Fisher Fn,m distribution
corresponding to the ratio

Z =
Yn/n

Ym/m
Yn ∼ χ2n, Ym ∼ χ2m ,

with density

fm,n(z) =
(n/m)n/2

B(n/2,m/2)
z
n/2−1 (1+ n/mz)−

n+m/2 z ∈ R+



connected examples of exponential families

Example

Ising Be(n/2,m/2) distribution corresponding to the distribution of

Z =
nY

nY +m
when Y ∼ Fn,m

has density

fm,n(z) =
1

B(n/2,m/2)
z
n/2−1 (1− z)

m/2−1 z ∈ (0, 1)



connected examples of exponential families

Counter-Example

Laplace double-exponential L(µ,σ) distribution corresponding to
the rescaled difference of two exponential E(σ−1) random variables,

Z = µ+ X1 − X2 when X1,X2
∼

iid E(σ−1)

has density

f(z;µ,σ) =
1

σ
exp{−σ−1|x− µ|}


