Chapter 1 :
statistical vs. real models

@ Statistical models
@ Quantities of interest
o Exponential families



Statistical models

For most of the course, we assume that the data is a random
sample x1,...,xn and that

X],...,XnNF(X)

as i.i.d. variables or as transforms of i.i.d. variables
[observations versus Random Variables|

Motivation:

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)




Statistical models

For most of the course, we assume that the data is a random
sample x1,...,Xn and that

X],...,XRNF(X)

as 1.1.d. variables or as transforms of i.i.d. variables

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 1: Some aspects of F may ultimately remain unavailable



Statistical models

For most of the course, we assume that the data is a random
sample x1,...,xn and that

X1, .. Xn ~ F(x)

as 1.1.d. variables or as transforms of i.i.d. variables

Repetition of observations increases information about F, by virtue
of probabilistic limit theorems (LLN, CLT)

Warning 2: The model is always wrong, even though we behave as
if...



Limit of averages

Case of an iid sequence Xj,..., X, ~N(0,1)
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Evolution of the range of X,, across 1000 repetitions, along with one random
sequence and the theoretical 95% range



Limit theorems

Law of Large Numbers (LLN)

If Xq,..., X5 are i.i.d. random variables, with a well-defined
expectation E[X]

y

[proof: see Terry Tao's “What's new”, 18 June 2008]




Limit theorems

Law of Large Numbers (LLN)

If Xq,..., X5 are i.i.d. random variables, with a well-defined
expectation E[X]

X]‘|‘+Xn a.s..
n /4

E[X]

y

[proof: see Terry Tao's “What's new”, 18 June 2008]




Limit theorems

Law of Large Numbers (LLN)

If Xq,...,X, are i.i.d. random variables, with a well-defined
expectation E[X]

X] ‘|“|‘Xn a.s.
n /

E[X]

Central Limit Theorem (CLT)

If X1,...,X, are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance 0% = var(X),

X]—I-...—i—Xn_
n

\/H{ E[X]} disty N(0, 02)

y

[proof: see Terry Tao's “What's new”, 5 January 2010]



Limit theorems

Central Limit Theorem (CLT)

If Xq,...,X, are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance 0% = var(X),

ﬁ{x1 i — + Xn —E[X]} 455 N(0, 0?)

v

[proof: see Terry Tao's “What's new", 5 January 2010]

Continuity Theorem
If

dist.

and g is continuous at a, then

dist.

g(Xn) — g(a)




Limit theorems

Central Limit Theorem (CLT)

If Xq,...,X, are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance 0% = var(X),

n

VE{M*““+X“—Mm}ﬂ£Nmp%

y

[proof: see Terry Tao's “What's new", 5 January 2010]

Slutsky's Theorem

If X1, Yn, Z, converge in distribution to X, a, and b, respectively,
then

X Yo+ Zn 5 aX + b




Limit theorems

Central Limit Theorem (CLT)

If X1,...,X, are i.i.d. random variables, with a well-defined
expectation E[X] and a finite variance 0% = var(X),

\/H{X1 +"'+X“—E[X]} disty N(0, 02)

n

v

[proof: see Terry Tao's “What's new", 5 January 2010]

Delta method's Theorem

If
V{Xn — 1} 255 N, (0, Q)

and g : RP — RY is a continuously differentiable function on a
neighbourhood of u € RP, with a non-zero gradient Vg(u), then

dist.

Vv{g(Xn) — g(p)} == Nq(0, Vg(1) " QVg(p))




Entertaining read
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Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables
Xi~B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of independent Bernoulli variables

Xi ~ B(pi)
with unknown and different parameters p; (e.g., opinion poll, flu
epidemics)

Transform of i.i.d. Uy,..., Uy:

Xi =I(U; < pi)



Exemple 1: Binomial sample

Case # 1: Observation of i.i.d. Bernoulli variables
Xi ~B(p)

with unknown parameter p (e.g., opinion poll)
Case # 2: Observation of conditionally independent Bernoulli

variables

Xilzi ~ B(p(zi))
with covariate-driven parameters p(z;) (e.g., opinion poll, flu
epidemics)

Transform of i.i.d. Uy, ..., Uyn:

Xi =I(U; < pi)



Parametric versus non-parametric

Two classes of statistical models:

o Parametric when F varies within a family of distributions
indexed by a 0 that belongs to a finite dimension
space O:

F € {Fg, 0 € ©}

and to “know” F is to know which O it corresponds to
(identifiability);
@ Non-parametric all other cases, i.e. when F is not constrained

in a parametric way or when only some aspects of F are of
interest for inference



Parametric versus non-parametric

Two classes of statistical models:

o Parametric when F varies within a family of distributions
indexed by a 0 that belongs to a finite dimension
space O:

F € {Fg, 0 € ©}

and to “know” F is to know which O it corresponds to
(identifiability);
@ Non-parametric all other cases, i.e. when F is not constrained

in a parametric way or when only some aspects of F are of
interest for inference

Trivia: Machine-learning does not draw such a strict distinction
between classes



Non-parametric models

In non-parametric models, there may still be constraints on the
range of F's as for instance

ErlYIX = x] = Y(BTx), varp(Y|X = x) = o7

in which case the statistical inference only deals with estimating or
testing the constrained aspects or providing prediction.

Estimating a density or a regression function like W(B1x) is
only of interest in a restricted number of cases



Parametric models

When F = Fg, inference usually covers the whole of the parameter
0 and provides

° of 0, i.e. values substituting for the unknown
“true” 0

° (or regions) on O as regions likely to
contain the “true” O

° specific features of 0 or of the whole
family (goodness-of-fit)

) some other variable whose distribution depends on

Zh"'aZmNGe(Z)



Parametric models

When F = Fg, inference usually covers the whole of the parameter
0 and provides

° of 0, i.e. values substituting for the unknown
“true” 0

o (or regions) on O as regions likely to
contain the “true” 0

° specific features of 0 or of the whole
family (goodness-of-fit)

) some other variable whose distribution depends on
0

Z1, ..., zZm ~ Gg(z)

Inference: all those procedures depend on the sample (x1,...,%n)



Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables
Xi~B(p)

with unknown parameter p (e.g., opinion poll)
Questions of interest:

Q likely value of p or range thereof
@ whether or not p exceeds a level pg

© how many more observations are needed to get an estimation
of p precise within two decimals

@ what is the average length of a “lucky streak” (1's in a row)



Exemple 2: Normal sample

Model: Observation of i.i.d. Normal variates
Xi ~ N(ua 02)

with unknown parameters 1 and o > 0 (e.g., blood pressure)
Questions of interest:

O likely value of u or range thereof

©Q whether or not W is above the mean 1n of another sample
Yt,-- -5 Ym
© percentage of extreme values in the next batch of m x;'s

@ how many more observations to exclude u = 0 from likely
values

@ which of the x;'s are outliers



Quantities of interest

Statistical distributions (incompletely) characterised by (1-D)
moments:

@ central moments
b =B = [xdF0) =B [(X— )] k>
@ non-central moments
Ge=E[X] k>1

@ « quantile
P(X < Coc) = X

and (2-D) moments

cov(XL, X) = J(xi ~EXY) (6 — EX])AF(x, %)

For parametric models, those quantities are transforms of
the parameter 0



Example 1: Binomial experiment again

Model: Observation of i.i.d. Bernoulli variables
Xi ~B(p)
Single parameter p with
EX] =p var(X) =p(1 —p)

[somewhat boring...]
Median and mode



Example 1: Binomial experiment again

Model: Observation of i.i.d. Binomial variables

n _
Xi~B(n,p) P(X=Kk) = (k)p“ﬂ —p)n K
Single parameter p with
E[X] =np var(X) = np(1 —p)

[somewhat less boring!]
Median and mode



Example 2: Normal experiment again

Model: Observation of i.i.d. Normal variates
Xi~N(w,o?) i=1,....n,
with unknown parameters u and o > 0 (e.g., blood pressure)

w =EX = pvar(X) = 0* u3 =0 wy = 30"

Median and mode equal to n



Exponential families

Class of parametric densities with nice analytic properties

Start from the

p(x;0) = \/12_71 exp {x0 —x*/2 — 0%/2}
= exp\{/z_jT/z} exp{x0} exp {—Xz/z}

X meets 0

where 0 and x only interact through single exponential product



Exponential families

Class of parametric densities with nice analytic properties

A parametric family of distributions on X is an
if its density with respect to a measure v satisfies

f(x18) = c(8)h(x) exp{T(x)7(6)} 6 € ©,

Vo
scalar product

where T(-) and T(-) are k-dimensional functions and c(-) and h(-)
are positive unidimensional functions.

v

Function c(-) is redundant, being defined by normalising constraint:

c(0) ! = Jx h(x) exp{T(x) ' 7(8)}dv(x)



Exponential families (examples)

Example 1: Binomial experiment again

Binomial variable

X~Bn,p) PX=k)= (n>pk(] _p)k




Exponential families (examples)

Example 1: Binomial experiment again

Binomial variable
n _
X~B(n,p) P(X=k) =< )pk(l —p)n K

can be expressed as

PX=k) = (1—p)" (L‘) explklog(p/(1 — p))}




Exponential families (examples)

Example 2: Normal experiment again

Normal variate

X ~ N(u, %)
with parameter 8 = (u, 0%) and density

1

f(x10) = ——— exp{—(x — )*/20")
1 29,2 2 2 /9,2
= exp{—x“/20° + xu/0° — u-/20%}
5 P / i

2 2 2
= eXPL—H/207) exp{—x?/20% + xp/ 0%}
2mo?

exp{—p?/20%} B X2 B —1/20%
c(0) = , T(x) —( > , T(0) = ( LL/GZ )




natural exponential families

reparameterisation induced by the shape of the density:

Definition
In an exponential family, the natural parameter is T(0) and the
natural parameter space is

O = {T € Rk;J h(x) exp{T(x)  t}dv(x) < oo}
X




natural exponential families

reparameterisation induced by the shape of the density:

Definition
In an exponential family, the natural parameter is T(0) and the
natural parameter space is

O = {T € Rk;J h(x) exp{T(x) ' t}dv(x) < oo}
X

Example For the B(m,p) distribution, the natural parameter is

0 = log{p/(1 —p)}

and the natural parameter space is R




regular and minimal exponential families

Possible to add and (better!) delete useless components of T:

Definition
A regular exponential family corresponds to the case where © is an

open set.
A minimal exponential family corresponds to the case when the

Ti(X)'s are linearly independent, i.e.

Po(x'T(X) =const.) =0 fora#0 0€0®

Also called non-degenerate exponential family



regular and minimal exponential families

Possible to add and (better!) delete useless components of T:

Definition
A regular exponential family corresponds to the case where © is an

open set.
A minimal exponential family corresponds to the case when the

Ti(X)'s are linearly independent, i.e.

Po(x'T(X) =const.) =0 fora#0 0€0®

Also called non-degenerate exponential family
Usual assumption when working with exponential families



[llustrations

o For a Normal N(y, o?) distribution,

T 1
f(x|w, 0) = — — exp{—**/262 + W/o2 x — W’ /252}

V2T O

means this is a two-dimensional minimal exponential family

@ For a fourth-power distribution
f(x|w) = C(0) exp{—(x — 0)4]} oc e 407 x—60%x" +40x° —*

implies this is a three-dimensional minimal exponential family
[Exercise: find C]



convexity properties

Highly regular densities

Theorem
The natural parameter space @ of an exponential family is convex
and the inverse normalising constant ¢~'(0) is a convex function.




convexity properties

Highly regular densities

The natural parameter space @ of an exponential family is convex
and the inverse normalising constant ¢~'(0) is a convex function.

Example For B(n,p), the natural parameter space is R and the
inverse normalising constant (1 4+ exp(0))™ is convex



analytic properties

If the density of X has the minimal representation
f(x10) = c(0)h(x) exp{T(x)" 6}

then the natural statistic Z = T(X) is also distributed from an
exponential family and there exists a measure v such that the
density of Z [= T(X)] against vt is

f(z;0) = c(0) exp{z' 0}




analytic properties

If the density of Z = T(X) against vt is c(0) exp{z' 0}, if the real
value function ¢ is measurable, with

ozl explzTe}dvr(z) < oc
on the interior of ©, then

f: 00— Jcp(z) exp{z1 0} dvy(z)
is an analytic function on the interior of © and

V§(0) = qu)(z) exp{z'0}dvr(z)




moments of exponential families

Normalising constant c¢(-) generating all moments

Proposition
If T(-): X — RY and the density of Z = T(X) is exp{z'0 —(0)},
then

Eo [exp{T(x)'u}| = exp{Y(0 +u) —P(0)}
and VP(-) is

v

[Laplace transform]



moments of exponential families

Normalising constant c¢(-) generating all moments

If T(-) : X — RY and the density of Z = T(X) is exp{z'0 —(0)},

then 3(6
Bo001 = 220 o1 g,
and 52006
Eo [Ti(X) T;(X)] w(o) i,j=1,...,d

00,06,

Sort of integration by part in parameter space:

0

[ {Ti(X) + aiel log C(G)} c(0)h(x) eXP{T(X)TG}dv(x) _ 6—911 0



Sample from exponential families

Take an exponential family
f(x[8) = h(x) exp {T(8) T(x) —¥(6)}

and id sample x1,...,xy from f(x|0).



Sample from exponential families

Take an exponential family

f(x]8) = h(x) exp {T(8) " T(x) —(6)}

and id sample x1,...,xy from f(x|0).
Then
n n
f(x1,...,xal0) = | [hxi) exp {T(G)TZ T(xi) — mp(e)}
i=1 i=1

For an exponential family with summary statistic T(-), the statistic

S(X1,- . Xn) =) T(Xy)

is sufficient for describing the joint density




connected examples of exponential families

Example
Chi-square Xi distribution corresponding to distribution of
X% +...+ Xi when X; ~N(0, 1), with density

22 exp{—2z/2}
fk(Z) — zk/zr(k/Z)

Z€R+




connected examples of exponential families

Counter-Example

Non-central chi-square Xﬁ(?\) distribution corresponding to
distribution of X% +...+ Xﬁ when X; ~ N(u, 1), with density

fa(z) = 172 (/)72 exp{—(z + A)/2Mi, 1(VZA) z € Ry

where A = ku? and I, Bessel function of second order




connected examples of exponential families

Counter-Example

Fisher 7 i distribution
corresponding to the ratio

Yn/n
L= Y;;m YTL NX‘%,) YmNX12n7
with density
(n/m)n/ n/z_]
fm,n( ) = (1 4+"/mz)




connected examples of exponential families

Example

Ising Be(n/2,m/2) distribution corresponding to the distribution of

nyY

/ =
nyY+m

when Y ~ Fy

has density




connected examples of exponential families

Counter-Example

Laplace double-exponential L[, o) distribution corresponding to
the rescaled difference of two exponential &(o~') random variables,

Z = u+ X7 — X when Xq, X5 iiNd 8(0_1)

has density

1 -
f(z1,0) = — exp[-o T — )




