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1 Random variables, probability, expectation

Exercice 1.1 Reminders Let X be an integrable random vaiable. Are the following propo-
sitions true/false :

— E(1/X) = 1/E(X) ?
— E(X2) ≥ E(X)2 ?
— If X is symetric with respect to 0 then E[X] = 0 ?
— E(XY ) = E(X)E(Y ) ?

Brief justification is expected.

Exercice 1.2 The multinomial distribution Consider a population divided into k cate-
gories according to the proportions p1, ...., pk, with 0 ≤ pi ≤ 1 and

∑k
i=1 pi = 1. We draw n

individuals with relacement. Denote by Ni the number of individuals belonging to category i,
among the n individuals.

1. Determine the distribution of (N1, ...., Nk).
2. What is the marginal distribution of Nj for all j = 1, ..., k ? Compute the expectation

of Nj , j ≤ k.
3. Compute

P [N1 = n1|N2 = n2]

Exercice 1.3 Exponential random variables : memoryless variables
Let T be a real random variable. Assume that T satisfies P (T > 0) > 0 together with the

following condition :

∀ (s, t) ∈ R∗2+ , P (T > t+ s) = P (T > s)P (T > t)

1. Show that for all t > 0, P (T > t) > 0.
2. Consider the following application f : ]0,+∞[→ R,t 7→ lnP (T > t). Show that for all

positive real t > 0
f(t) = tf(1)

3. Show that it implies that T is an exponential random variable.

Exercice 1.4

1. Let X be a random variable following the uniform distribution on
[
−π

2 ,
π
2

]
. Determine

the distribution of Y = tanX.
2. Consider the same question for a general random variable X having a distribution

absolutely continuous distribution with respect to Lebesgue measure, with density f ,
continuous everywhere (apart possibly at a finite number of points).
Apply this result to the case of an exponential random variable X with parameter
θ > 0.
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Exercice 1.5 Let X be a real random variable with density

fX(x) =

(
10

x2

)
Ix>10 .

Compute P(X > 20), FX(x) and E(X).

Exercice 1.6 1. Let Y be a real random variable and Z a random variable, independent
of Y , such that

P(Z = 1) = P(Z = −1) =
1

2
.

Show that the law of X = ZY is symmetric and compute its characteristic function
according to ΦY (characteristic function of Y ). If the random variable Y admits the
density fY on R, what is the law of X ?

2. Let X be a random variable following the standard Laplace law :

fX(x) =
1

2
exp(−|x|) .

Show that, for every real t, we have that,

ΦX(t) =
1

1 + t2
.

2 bivariate random variables, change of variables and indepen-
dence

Exercice 2.1 LetX = (X1, X2) ∈ R2 be a random Gaussian vector with density with respect
to Lebesgue measure on R2 :

f(x1, x2) =
e−(x

2
1+x

2
2)/2

2π
, ∀x1, x2 ∈ R

Let g : R \ {(0, 0)} → R+∗ × [0, 2π) inversible such that

g−1(r, θ) = (r cos(θ), r sin(θ)), g(X1, X2) = (R,Θ)

Determine the distribution of (R,Θ).

Exercice 2.2 Recall that for p > 0, we note

Γ(p) =

∫ +∞

0
e−t tp−1 dt
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and denote Γ(p, θ) the distribution on R+ with density with respect to Lebesgue measure

t 7→ θp

Γ(p)
e−θ t tp−1 1{t>0}.

We also denote, for p, q > 0, Beta(p, q) the Beta distribution on [0, 1] whosedensity with
respect to Lebesgue measure is given by

t 7→ 1

B(p, q)
tp−1 (1− t)q−1 1{t∈]0,1[}

whee B(p, q) is a normalising constant.

Assume that X and Y are 2 independent random variables following Γ(p, θ) and Γ(q, θ) res-
pectively.

1. Show that X + Y and X
X+Y are independent and distributed according to a Γ(p+ q, θ)

et Beta(p, q), respecively. Deduce the expression of B(p, q) in terms of the Γ functions.
2. Show that the distribution of X/Y is independent of θ and determine its density.

Exercice 2.3 Chi-square and Student Let (Xn)n be independent Gaussian random va-
riables N (0, 1). Define for all n ∈ N∗

Yn =
n∑
j=1

X2
j , T ′n =

Xn+1√
Yn

, Tn =
√
nT ′n.

1. Chi-square : Show by induction that the distribution of Yn is absolutely continuous wrt
Lebesgue measure with density fYn :

∀y ∈ R fYn(y) = 1y>0
2−n/2

Γ(n/2)
yn/2−1 exp

(
−y

2

)
2. Compute the expectation and the variance of Yn.
3. Student : Compute the density of the distribution of T ′n with respect to Lebesgue

measure and show that the distribution of Tn has a density wrt Lebesgue measure
given by

∀y ∈ R fTn(y) =
Γ((n+ 1)/2)√
nπΓ(n/2)

(
1 +

y2

n

)−(n+1)/2

4. When is Tn integrable ? Tn ?

Exercice 2.4
Consider n random variables X1, X2, . . . , Xn iid from a distribution with cdf F . We assume

that F is strictly monotone and continuous.

Give the distribution of Z = −2
n∑
i=1

log(F (Xi)) .
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Exercice 2.5 Let (X,Y ) be a couple of real random variable with density

f(X,Y )(x, y) =
3
√

3

4π
exp{−3/2(x2 + y2 − xy)} .

Compute fX(x), fY (y), fX|Y=y(x) and E(X|Y ).

Exercice 2.6 Define

Xn =

{
n1/2 U ≤ 1/n
0 otherwise

.

where U ∼ U([0, 1]).

Study the convergence L2, P et L of the sequence (Xn).

Exercice 2.7 1. Compute the moment-generating function of the uniform law on {2, . . . , 12}
2. Let X1 and X2 be independent random variables with values in {1, . . . , 6}. Studying

the roots of the polynomial GX1GX2 ( where GXi is the moment-generating function
of Xi), show that the law of the random variable X1 +X2 cannot be the uniform law
on {2, . . . , 12} (we should find that for every real s and every i ∈ {1, 2}, there is a
polynomial φi of odd degree with real coefficients such that for every strictly positive
real s, we have GXi(s) = sφi(s)).

3. Can we build two ’loaded dices’ (two independent random variables) such that every
outcome of their sum between 2 and 12 is equally likely ?

Exercice 2.8 Let U1, . . . , Un be an n-sample of a U([a, b]). Define Mn = max(U1, . . . , Un)
and Nn = min(U1, . . . , Un).

1. Show that Mn converges in probability to b.

2. Show that Nn converges in L2 norm toward a.

3. Show that n(b −Mn) converges in distribution to a random variable that follow an
exponential law with parameter 1

b−a .

3 Standard distributions

Exercice 3.1 Consider a sequence Xi of iid Poisson variables with parameter λi > 0 denoted
P(λi) :

P [Xi = k] = e−λi
λki
k!
, k ∈ N

6



1. Show that, for all p ∈ N∗
p∑
i=1

Xi ∼ P(

p∑
i=1

λi)

2. For every n ≥ 1 take the same iid sample X1, ...., Xn as above and denote Nn the
number of zero realisations among those Xi’s. Deduce the distribution of Nn.

Exercice 3.2 Let (X,Y ) be a couple of real random variable with density

f(X,Y )(x, y) =
1

756
(x2 + xy)I0<x<6I0<y<6 .

Compute fX(x), fY |X=x(y), P(X < Y ) and E(Y |X = x).

Exercice 3.3 Let (Un)n≥0 be a sequence of independent and identically distributed random
variables with Bernoulli law of parameter p ∈]0, 1[, for every positive integer n, we denote
Yn = UnUn+1 and Sn = Y1 + · · ·+ Yn

1. For every integer n ≥ 0 , what is the law of Yn ?

2. At what condition on the integers n and m such that 0 ≤ n < m we get that the
random variables Yn and Ym are independent ?

3. Compute E[YnYm], then compute E
[
Sn
n

]
.

4. Show that there exists a real constant C such that V[Sn] ≤ Cn.
5. Establish that the sequence

(
Sn
n

)
n≥0 converges in probability toward a constant (and

specify this limit).

Exercice 3.4 Consider a > 0 and λ > 0. Define the distribution Ga(a, λ) as associated with
the following density function :

fa,λ(x) =
λa

Γ(a)
exp(−λx)xa−1Ix≥0 .

1 Check that this function defines a probability density function.

2 Derive the expectation of this law.

Let V1, . . . , Vn be independent random variables with distribution E(λ).

3 Show, through recursion, that the law of the sum V1 + · · ·+ Vn is the Gan,λ law.

Let X and Y be two independent random variables with distribution Ga(a, λ).
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4 Derive the law of λX.

5 Show that the random variables X + Y and X
Y are independent and compute their laws.

6 Show that the random variables X + Y and X
X+Y are independent. Compute the law of

the random variable X
X+Y .

Let X,Y : Ω→ R be two independent random variables with law Gaa,λ and Gab,λ respectively.

7 Derive the law of the random variable X + Y .

Let Z1, . . . , Zn be iid random variables with N (0, 1) distribution.

8 Show that the random variable Z2
1 follow a Ga

(
1
2 ,

1
2

)
distribution.

9 Show that the law of the random variable Z2
1 + · · · + Z2

n follow a Ga
(
n
2 ,

1
2

)
distribution,

also called the χ2(n) distribution.

Exercice 3.5 1. Let X and Y be two independent random variables with law N (m1, σ
2
1)

and N (m2, σ
2
2) respectively, what is the law of X + Y ?

2. Let X1, . . . , Xn be iid random variables with distribution N (m,σ2), what is the law of
the random variable Xn = X1+···+Xn

n ?

3. Show that the random variable
√
n
σ (Xn −m) follow the N (0, 1) law.

4. Define α ∈]0, 1[, show that there exists a unique positive real number φα such that,∫ φα

−φα

exp(−x2

2 )

t

√
2πdx = 1− α

5. Derive that exists an interval Iα = [m− t,m+ t] with a real t such that P(Xn ∈ Iα) =
1− α.

6. Show that for every real strictly positive number ε, we have that

lim
n→+∞

P(|Xn −m| > ε) = 0 .

Exercice 3.6 Consider a sequence (Xn)n≥1 of real random variables. For n ∈ N∗, Xn follow
the exponential law with parameter n. Define

Yn = sin
(

[Xn]
π

2

)
,

where [Xn] is the integer part of Xn.
1. Find the distribution of the random variable Yn, and compute E(Yn).
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2. Show that the sequence (Yn)n≥1 converges in distribution toward a constant random
variable Y ; specify the law of Y .

3. Check the convergence in probability of the sequence (Yn)n≥1.

Exercice 3.7 1. Derive the characteristic function of the uniform law in [−1, 1].

2. For every n, define the random variable Xn with

P(Xn = 1/2n) = P(Xn = −1/2n) =
1

2

and suppose that Xn are mutually independent. Define Sn =
∑n

i=1Xi. Show that (Sn)
converges in distribution toward a random variable S and precise its law.

Exercice 3.8 Normalisation of the asymptotic variance.
Let (Xn) be a sequence of i.i.d. random variables with law P. Suppose that E(X2

1 ) <∞ such
that the Central Limit Theorem applies :

√
n(Xn − µ)

L−→ N (0, σ2)

for σ2 = Var (X1) > 0.
1. Making use of Slutsky’s theorem, derive a sequence of random variables (an) function

of X1, . . . , Xn such that √
n/an(Xn − µ)

L−→ N (0, 1).

2. Suppose now that σ2 is a function of µ. Applying Slutsky’s method, derive the function
φ such that

√
n(φ(Xn)− φ(µ))

L−→ N (0, 1).
3. Find (an) et φ in the particular cases P = B(p) with 0 < p < 1/2 and P = E(λ) with
λ > 0.

Exercice 3.9 A system works using two different machines serially. The life expectancy X1

and X2 of the two machines follow the exponential distribution with parameters λ1 and λ2.
The random variables X1 and X2 are supposed independent.

1. Show that
X ∼ E(λ) iff ∀x > 0, P(X > x) = exp(−λx)
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2. Compute the probability that the system do not break down before time t. Infer the
law of the survival time Z of the system.

3. Compute the probability that a breakdown is due to machine 1.

4. Let I = 1 if the breakdown is due to machine 1, I = 0 otherwise. Compute P(Z >
t, I = δ), for every t ≥ 0 and δ ∈ {0, 1}. Show that Z et I are independent.

5. Suppose that we have n identical systems that function independently and we observe
their survival times Z1, ...Zn. Write the corresponding parametric model.
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