7 Likelihood and Maximum Likelihood Estimation

Exercice 7.1. Let X be a random variable admitting the following probability density :

$$f_X(x;\theta) = \frac{\theta}{x^{\theta+1}} \mathbb{I}_{x \ge 1}$$

where $\theta > 0$. It is in fact a particular Pareto law. Consider a sample of size $n : X_1, \ldots, X_n$ iid from X.

1 Show that the model belongs to the exponential family and deduce that is *regular*.

2 Compute the Fisher information contained in X for the parameter θ . Deduce the information contained in the *n*-sample.

3 Actually we do not observe X, but a random variable Y defined by :

$$Y = \begin{cases} 1 & \text{if } X \ge \exp(1) \\ 0 & \text{if } X < \exp(1) \end{cases}$$

Compute the Fisher information brought by Y for the parameter θ .

4 Show that $I_X(\theta) > I_Y(\theta)$ (we can use the fact that $\exp(x) - 2x > 0$ for every $x \ge 0$).

Exercice 7.2. We consider a random variable X following an exponential law with parameter $\theta > 0$:

$$f_X(x;\theta) = \theta \exp(-\theta x) \mathbb{I}_{x>0}$$
.

Let X_1, \ldots, X_n be an *n*-sample from X.

- **1** Show that $\sum_{i=1}^{n} X_i$ is a sufficient and minimal statistics for θ .
- **2** Admit that $g(\underline{X}) = \frac{X_n}{\sum_{i=1}^n X_i}$ is an ancillary statistics for θ . Compute $\mathbb{E}(g(\underline{X}))$.

Exercice 7.3. Consider a random variable X with density

$$f_X(x;\theta) = k x^{\theta} \mathbb{I}_{]0,1]}(x) \,.$$

Let X_1, \ldots, X_n be an *n*-sample from X.

1 Determine k as a function of θ , specifying the conditions on θ . Compute $\mathbb{E}_{\theta}(X)$ and $\mathbb{V}_{\theta}(X)$.

2 Show that $-\log(X)$ follows a known law and specify its parameter. Deduce that $\tilde{\theta}_n = -1 - (n-1) \left(\sum_{i=1}^n \log(X_i)\right)^{-1}$ is an unbiased estimator for θ .

Exercice 7.4. Let X be a random variable admitting the following probability density :

$$f_X(x;\theta) = \frac{\theta \exp(\theta x)}{\exp(\theta^2) - 1} \mathbb{I}_{[0,\theta]}(x)$$

where $\theta > 0$. Consider an *n*-sample X_1, \ldots, X_n from X. Find, if it exists, a sufficient statistics for θ .

Exercice 7.5. Let X be a random variable with geometric law with parameter $p \in]0,1[$ (number of trials before the first success, p success probability) and X_1, \ldots, X_n be an n-sample from X. Assume p = 1 - q.

- 1 Compute the Fisher information brought by X on p and the one contained in the n-sample.
- **2** Show that $\overline{X_n}$ is sufficient and that $\overline{X_n}$ is an effective estimator for the parameter q/p.

Exercice 7.6. Let X be a Poisson random variable with parameter $\theta > 0$ and X_1, \ldots, X_n an *n*-sample from X.

1 Show that $\overline{X_n}$ and S_{n-1}^2 are unbiased estimators of θ .

2 Show that $\overline{X_n}$ is the uniformly minimum-variance unbiased estimator of θ . Deduce that $\mathbb{V}_{\theta}(\overline{X_n}) \leq \mathbb{V}_{\theta}(S_{n-1}^2)$.

Exercice 7.7. Let X be a random variable in the set of the reals, admitting the density

$$f_X(x;\theta) = k \exp(-\theta |x|)$$

where $\theta > 0$ and X_1, \ldots, X_n an *n*-sample from X.

1 Determine the constant k.

2 Compute the integrals $\int_{-\infty}^{0} t \exp(\theta t) dt$ and $\int_{0}^{+\infty} t \exp(-\theta t) dt$ then deduce the expressions of $\mathbb{E}_{\theta}(X)$, $\mathbb{E}_{\theta}(X^2)$ and $\mathbb{V}_{\theta}(X)$.

3 Compute the estimator W_n of θ via the maximum likelihood method.

4 Show that W_n is convergent estimator for θ in quadratic mean.

Exercice 7.8. Consider an *n*-sample (X_1, \ldots, X_n) iid from X, with density :

$$f_X(x;\theta) = \frac{3}{(x-\theta)^4} \mathbb{I}_{[\theta+1,+\infty[} \, .$$

where $\theta > 0$ is an unknown parameter.

- **1** Compute $\mathbb{E}_{\theta}(X)$ and $\mathbb{V}_{\theta}(X)$ (we can compute $\mathbb{E}_{\theta}((X \theta))$ and $\mathbb{V}_{\theta}((X \theta))$).
- **2** Give the maximum likelihood estimator $\hat{\theta}_n$ for θ .
- **3** Compute $\mathbb{E}_{\theta}(\hat{\theta}_n)$. Deduce an unbiased estimator $\theta_n^{\#}$ for θ as a function of $\hat{\theta}_n$.

Exercice 7.9. Let X be a random variable, distributed according to a Pareto law with parameters $\alpha > 0$ and $\beta > 0$:

$$f_X(x;\alpha,\beta) = \frac{\alpha\beta^{\alpha}}{x^{\alpha+1}} \mathbb{I}_{x \ge \beta}$$

Let X_1, \ldots, X_n be an *n*-sample from X. In the following $\theta = (\alpha, \beta)$.

1 Give the density of X, then compute $\mathbb{E}_{\theta}(X)$, $\mathbb{E}_{\theta}(X^2)$ and $\mathbb{V}_{\theta}(X)$ giving the conditions on the existence on those moments.

- **2** Suppose β known.
- a) Write the likelihood on the sample and give a sufficient statistics for α .
- **b)** Find an estimator T_n of α with the maximum likelihood method.
- c) Find the law of the random variable $Y = \log(X/\beta)$.
- d) Show that T_n is a strongly consistent estimator of α .

e) Find the law of $Z_n = \sum_{i=1}^n \log(X_i/\beta)$. Deduce the expression of $\mathbb{E}(T_n)$ and $\mathbb{V}(T_n)$, then show that T_n is a quadratic mean convergent estimator for α .

- **f)** Deduce from T_n an unbiased estimator T_n^* for α . Show that T_n^* is asymptotically efficient.
- **3** Suppose α known.

- a) Find an estimator W_n of β via maximum likelihood.
- b) Find the law of W_n and deduce that W_n is a quadratic mean convergent estimator of β .

Exercice 7.10. Consider a random variable X with density

$$f_X(x;\theta) = k|x| \exp\left(-\frac{x^2}{2\theta}\right)$$

where $\theta > 0$. Let X_1, \ldots, X_n be as usual an *n*-sample from X.

- **1** Compute the normalising constant k.
- **2** Compute $\mathbb{E}_{\theta}(X)$, $\mathbb{E}_{\theta}(X^2)$ and $\mathbb{V}_{\theta}(X)$.
- **3** Give the maximum likelihood estimator $\hat{\theta}_n$ of θ . Is it unbiased? Is it strongly consistent?
- 5 Explain why the model for X is regular.
- 6 Compute the Fisher information given by X on θ , then the one given by the whole sample.
- 7 Compute $\mathbb{E}_{\theta}(X^4)$. $\hat{\theta}_n$ is efficient? (Cramer-Rao bound)
- 8 Is $\hat{\theta}_n$ the unique unbiased estimator with uniformly minimum variance?

Exercice 7.11. Let X be a real random variable with density $f_X(x;\theta) = \frac{2\sqrt{\theta}}{\sqrt{\pi}} \exp(-\theta x^2) \mathbb{I}_{]0,+\infty[}(x)$ where $\theta > 0$. Let X_1, \ldots, X_n then be an *n*-sample of X.

- 1 Compute $\mathbb{E}_{\theta}(X)$, $\mathbb{E}_{\theta}(X^2)$ and $\mathbb{V}_{\theta}(X)$.
- **2** Find W_n , the maximum likelihood estimator for θ .

Exercice 7.12. Let X be a discrete random variable with values in $\{-1, 0, 1\}$ such that $\mathbb{P}(X = 0) = 1 - 2\theta$ et $\mathbb{P}(X = -1) = \mathbb{P}(X = 1) = \theta$. Suppose $\theta \in [0, 1/2]$. Consider X_1, \ldots, X_n an *n*-sample from X.

Name R the random variable equal to the number of X_i with a non-null value. Find the maximum likelihood estimator W_n of θ . Give the law of R and deduce $\mathbb{E}(W_n)$ and $\mathbb{V}(W_n)$.

Exercice 7.13. Let X be a random variable with values in [-1, 1] with density $f_X(x; a, b) = a\mathbb{I}_{[-1,0]}(x) + b\mathbb{I}_{[0,1]}(x)$ where $a \leq 0$ and $b \leq 0$ and X_1, \ldots, X_n is an *n*-sample from X.

- **1** Point out the relation between *a* and *b*. in the following, we will write *b* as a function of *a*.
- **2** Compute $\mathbb{E}_a(X)$ and $\mathbb{V}_a(X)$.
- **3** Find the maximum likelihood estimator W_n of θ .

Exercice 7.14. Infection Markers

N infectious agents aggress simultaneously an organism that has Q defending agents. The Immune response is modeliez in the following way : every defending agent choose randomly an infectious agent (only one) in the N aggressors, independently from the other defendants. With probability $\vartheta \in (0, 1)$ the infectious agent is nullified.

Only one surviving infectious agent is required for the organism to be infected.

1. Show that the probability that a given aggressive agent infect the the organism is

$$p_{Q,N}(\vartheta) = \left(1 - \frac{\vartheta}{N}\right)^Q.$$

In the lab, we repeat n independent scenarios of aggression. In every experiment, an infectious agent is **marked**. For experiment i, we note $X_i = 1$ if the given agent did infect the organism, 0 otherwise.

2. Consider having a sample (X_1, \ldots, X_n) , where ϑ is the unknown parameter and Q et N are known. Show that the likelihood can be written as

$$\vartheta \rightsquigarrow p_{Q,N}(\vartheta)^{\sum_{i=1}^{n} X_i} (1 - p_{Q,N}(\vartheta))^{n - \sum_{i=1}^{n} X_i}$$

3. Show that the model is regular and that its Fisher information is given by

$$\mathbb{I}(\vartheta) = \frac{\left(\partial_{\vartheta} p_{Q,N}(\vartheta)\right)^2}{p_{Q,N}(\vartheta)\left(1 - p_{Q,N}(\vartheta)\right)}$$

4. Show that the maximum likelihood estimator for ϑ is well defined, asymptotically normal and compute its limiting variance.

Suppose now that N et Q are unknown parameters of interest, and we take the limit $N \approx +\infty$ supposing that $Q = Q_N \sim \kappa N$ for a $\kappa > 0$ (unknown).

6. Going at the limit for N in the previous model, show that the observation of (X_1, \ldots, X_n) allow (identifiability) the estimate of $\tilde{\vartheta} = \kappa \vartheta$ and hence compute its maximum likelihood estimator.