
7 Likelihood and Maximum Likelihood Estimation

Exercice 7.1. Let X be a random variable admitting the following probability density :

f

X

(x; ✓) =
✓

x

✓+1
I
x�1

where ✓ > 0. It is in fact a particular Pareto law. Consider a sample of size n : X1, . . . , Xn

iid
from X.

1 Show that the model belongs to the exponential family and deduce that is regular.

2 Compute the Fisher information contained in X for the parameter ✓. Deduce the informa-
tion contained in the n-sample.

3 Actually we do not observe X, but a random variable Y defined by :

Y =

⇢

1 if X � exp(1)
0 if X < exp(1)

.

Compute the Fisher information brought by Y for the parameter ✓.

4 Show that I

X

(✓) > I

Y

(✓) (we can use the fact that exp(x)� 2x > 0 for every x � 0).

Exercice 7.2. We consider a random variable X following an exponential law with parameter
✓ > 0 :

f

X

(x; ✓) = ✓ exp(�✓x)I
x>0 .

Let X1, . . . , Xn

be an n-sample from X.

1 Show that
P

n

i=1Xi

is a sufficient and minimal statistics for ✓.

2 Admit that g(X) = XnPn
i=1 Xi

is an ancillary statistics for ✓.
Compute E(g(X)).

Exercice 7.3. Consider a random variable X with density

f

X

(x; ✓) = kx

✓I]0,1](x) .

Let X1, . . . , Xn

be an n-sample from X.

1 Determine k as a function of ✓, specifying the conditions on ✓. Compute E
✓

(X) and V
✓

(X).
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2 Show that � log(X) follows a known law and specify its parameter. Deduce that ✓̃

n

=
�1� (n� 1) (

P

n

i=1 log(Xi

))�1 is an unbiased estimator for ✓.

Exercice 7.4. Let X be a random variable admitting the following probability density :

f

X

(x; ✓) =
✓ exp(✓x)

exp(✓2)� 1
I[0,✓](x)

where ✓ > 0. Consider an n-sample X1, . . . , Xn

from X. Find, if it exists, a sufficient statistics
for ✓.

Exercice 7.5. Let X be a random variable with geometric law with parameter p 2]0, 1[
(number of trials before the first success, p success probability) and X1, . . . , Xn

be an n-
sample from X. Assume p = 1� q.

1 Compute the Fisher information brought by X on p and the one contained in the n-sample.

2 Show that X

n

is sufficient and that X

n

is an effective estimator for the parameter q/p.

Exercice 7.6. Let X be a Poisson random variable with parameter ✓ > 0 and X1, . . . , Xn

an
n-sample from X.

1 Show that X

n

and S

2
n�1 are unbiased estimators of ✓.

2 Show that X

n

is the uniformly minimum-variance unbiased estimator of ✓. Deduce that
V
✓

(X
n

)  V
✓

(S2
n�1).

Exercice 7.7. Let X be a random variable in the set of the reals, admitting the density

f

X

(x; ✓) = k exp(�✓|x|)

where ✓ > 0 and X1, . . . , Xn

an n-sample from X.

1 Determine the constant k.

2 Compute the integrals
R 0
�1 t exp(✓t)dt and

R +1
0 t exp(�✓t)dt then deduce the expressions

of E
✓

(X), E
✓

(X2) and V
✓

(X).

3 Compute the estimator W

n

of ✓ via the maximum likelihood method.
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4 Show that W

n

is convergent estimator for ✓ in quadratic mean.

Exercice 7.8. Consider an n-sample (X1, . . . , Xn

) iid from X, with density :

f

X

(x; ✓) =
3

(x� ✓)4
I[✓+1,+1[ .

where ✓ > 0 is an unknown parameter.

1 Compute E
✓

(X) and V
✓

(X) (we can compute E
✓

((X � ✓)) and V
✓

((X � ✓))).

2 Give the maximum likelihood estimator ✓̂

n

for ✓.

3 Compute E
✓

⇣

✓̂

n

⌘

. Deduce an unbiased estimator ✓

#
n

for ✓ as a function of ✓̂
n

.

Exercice 7.9. Let X be a random variable, distributed according to a Pareto law with
parameters ↵ > 0 and � > 0 :

f

X

(x;↵,�) =
↵�

↵

x

↵+1
I
x��

.

Let X1, . . . , Xn

be an n-sample from X. In the following ✓ = (↵,�).

1 Give the density of X, then compute E
✓

(X), E
✓

(X2) and V
✓

(X) giving the conditions on
the existence on those moments.

2 Suppose � known.

a) Write the likelihood on the sample and give a sufficient statistics for ↵.

b) Find an estimator T

n

of ↵ with the maximum likelihood method.

c) Find the law of the random variable Y = log(X/�).

d) Show that T

n

is a strongly consistent estimator of ↵.

e) Find the law of Z
n

=
P

n

i=1 log(Xi

/�). Deduce the expression of E(T
n

) and V(T
n

), then
show that T

n

is a quadratic mean convergent estimator for ↵.

f) Deduce from T

n

an unbiased estimator T ⇤
n

for ↵. Show that T ⇤
n

is asymptotically efficient.

3 Suppose ↵ known.
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a) Find an estimator W

n

of � via maximum likelihood.

b) Find the law of W
n

and deduce that W

n

is a quadratic mean convergent estimator of �.

Exercice 7.10. Consider a random variable X with density

f

X

(x; ✓) = k|x| exp
✓

�x

2

2✓

◆

where ✓ > 0. Let X1, . . . , Xn

be as usual an n-sample from X.

1 Compute the normalising constant k.

2 Compute E
✓

(X), E
✓

(X2) and V
✓

(X).

3 Give the maximum likelihood estimator ✓̂

n

of ✓. Is it unbiased ?
Is it strongly consistent ?

5 Explain why the model for X is regular.

6 Compute the Fisher information given by X on ✓, then the one given by the whole sample.

7 Compute E
✓

(X4). ✓̂
n

is efficient ? (Cramer-Rao bound)

8 Is ✓̂

n

the unique unbiased estimator with uniformly minimum variance ?

Exercice 7.11. Let X be a real random variable with density
f

X

(x; ✓) = 2
p
✓p
⇡

exp(�✓x

2)I]0,+1[(x) where ✓ > 0.
Let X1, . . . , Xn

then be an n-sample of X.

1 Compute E
✓

(X), E
✓

(X2) and V
✓

(X).

2 Find W

n

, the maximum likelihood estimator for ✓.

Exercice 7.12. Let X be a discrete random variable with values in {�1, 0, 1} such that
P(X = 0) = 1� 2✓ et P(X = �1) = P(X = 1) = ✓. Suppose ✓ 2 [0, 1/2]. Consider X1, . . . , Xn

an n-sample from X.
Name R the random variable euql to the number of X

i

with a non-null value. Find the
maximum likelihood estimator W

n

of ✓. Give the law of R and deduce E(W
n

) and V(W
n

).

Exercice 7.13. Let X be a random variable with values in [�1, 1] with density f

X

(x; a, b) =
aI[�1,0](x) + bI]0,1](x) where a  0 and b  0 and X1, . . . , Xn

is an n-sample from X.
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1 Point out the relation between a and b.
in the following, we will write b as a function of a.

2 Compute E
a

(X) and V
a

(X).

3 Find the maximum likelihood estimator W

n

of ✓.

Exercice 7.14. Infection Markers

N infectious agents aggress simultaneously an organism that has Q defending agents . The
Immune response is modeliez in the following way : every defending agent choose randomly
an infectious agent (only one) in the N aggressors, independently from the other defendants.
With probability # 2 (0, 1) the infectious agent is nullified.

Only one surviving infectious agent is required for the organism to be infected.

1. Show that the probability that a given aggressive agent infect the the organism is

p

Q,N

(#) =
⇣

1� #

N

⌘

Q

.

In the lab, we repeat n independent scenarios of aggression. In every experiment, an infectious
agent is marked. For experiment i, we note X

i

= 1 if the given agent did infect the organism,
0 otherwise.

2. Consider having a sample (X1, . . . , Xn

), where # is the unknown parameter and Q et N
are known. Show that the likelihood can be written as

# p

Q,N

(#)
Pn

i=1 Xi
�

1� p

Q,N

(#)
�

n�
Pn

i=1 Xi
.

3. Show that the model is regular and that its Fisher information is given by

I(#) =
�

@

#

p

Q,N

(#)
�2

p

Q,N

(#)
�

1� p

Q,N

(#)
�

.

4. Show that the maximum likelihood estimator for # is well defined, asymptotically normal
and compute its limiting variance.

Suppose now that N et Q are unknown parameters of interest, and we take the limit N ⇡ +1
supposing that Q = Q

N

⇠ N for a  > 0 (unknown).
6. Going at the limit for N in the previous model, show that the observation of (X1, . . . , Xn

)
allow (identifiability) the estimate of e# = # and hence compute its maximum likelihood
estimator.
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