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1 Random variables, probability, expectation

Exercice 1.1. Reminders Let X be an integrable random vaiable. Are the following propo-
sitions true/false :

– E(1/X) = 1/E(X) ?
– E(X2) ≥ E(X)2 ?
– If X is symetric with respect to 0 then E[X] = 0 ?
– E(XY ) = E(X)E(Y ) ?

Brief justification is expected.

Exercice 1.2. The multinomial distribution Consider a population divided into k cate-
gories according to the proportions p1, ...., pk, with 0 ≤ pi ≤ 1 and

∑k
i=1 pi = 1. We draw n

individuals with relacement. Denote by Ni the number of individuals belonging to category i,
among the n individuals.

1. Determine the distribution of (N1, ...., Nk).
2. What is the marginal distribution of Nj for all j = 1, ..., k ? Compute the expectation

of Nj , j ≤ k.
3. Compute

P [N1 = n1|N2 = n2]

Exercice 1.3.
1. Let X be a random variable following the uniform distribution on

[
−π

2 ,
π
2

]
. Determine

the distribution of Y = tanX.
2. Consider the same question for a general random variable X having a distribution abso-

lutely continuous distribution with respect to Lebesgue measure, with density f , conti-
nuous everywhere (apart possibly at a finite number of points).
Apply this result to the case of an exponential random variable X with parameter θ > 0.

Exercice 1.4. Let X be a real random variable with density

fX(x) =
(

10
x2

)
Ix>10 .

Compute P(X > 20), FX(x) and E(X).

Exercice 1.5. 1. Let Y be a real random variable and Z a random variable, independent
of Y , such that

P(Z = 1) = P(Z = −1) =
1
2
.

Show that the law of X = ZY is symmetric and compute its characteristic function
according to ΦY (characteristic function of Y ). If the random variable Y admits the
density fY on R, what is the law of X ?
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2. Let X be a random variable following the standard Laplace law :

fX(x) =
1
2

exp(−|x|) .

Show that, for every real t, we have that,

ΦX(t) =
1

1 + t2
.

2 bivariate random variables, change of variables and indepen-
dence

Exercice 2.1. Let X = (X1, X2) ∈ R2 be a random Gaussian vector with density with
respect to Lebesgue measure on R2 :

f(x1, x2) =
e−(x2

1+x2
2)/2

2π
, ∀x1, x2 ∈ R

Let g : R \ {(0, 0)} → R+∗ × [0, 2π) inversible such that

g−1(r, θ) = (r cos(θ), r sin(θ)), g(X1, X2) = (R,Θ)

Determine the distribution of (R,Θ).

Exercice 2.2. Recall that for p > 0, we note

Γ(p) =
∫ +∞

0
e−t tp−1 dt

and denote Γ(p, θ) the distribution on R+ with density with respect to Lebesgue measure

t 7→ θp

Γ(p)
e−θ t tp−1 1{t>0}. (1)

We also denote, for p, q > 0, Beta(p, q) the Beta distribution on [0, 1] whosedensity with
respect to Lebesgue measure is given by

t 7→ 1
B(p, q)

tp−1 (1− t)q−1 1{t∈]0,1[}

whee B(p, q) is a normalising constant.

Assume that X and Y are 2 independent random variables following Γ(p, θ) and Γ(q, θ) res-
pectively.

1 Check that (??) defines a probability density function.
2 Derive the expectation of this law.
3 Show that the law of the sum X + Y is the Γ(p+ q, θ).
4 Derive the law of θX.
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5 Show that the random variables X+Y and X
Y are independent and compute their laws.

6 Show that the random variables X + Y and X
X+Y are independent. Compute the law of

the random variable X
X+Y .

7 Show that the distribution of X/Y is independent of θ and determine its density.

Exercice 2.3. Chi-square and Student Let (Xn)n be independent Gaussian random va-
riables N (0, 1). Define for all n ∈ N∗

Yn =
n∑
j=1

X2
j , T ′n =

Xn+1√
Yn

, Tn =
√
nT ′n.

1. Chi-square : Show by induction that the distribution of Yn is absolutely continuous wrt
Lebesgue measure with density fYn :

∀y ∈ R fYn(y) = 1y>0
2−n/2

Γ(n/2)
yn/2−1 exp

(
−y

2

)
2. Compute the expectation and the variance of Yn.

3. Student : Compute the density of the distribution of T ′n with respect to Lebesgue measure
and show that the distribution of Tn has a density wrt Lebesgue measure given by

∀y ∈ R fTn(y) =
Γ((n+ 1)/2)√
nπΓ(n/2)

(
1 +

y2

n

)−(n+1)/2

4. When is Tn integrable ? Tn ?

Exercice 2.4.
Consider n random variables X1, X2, . . . , Xn iid from a distribution with cdf F . We assume

that F is strictly monotone and continuous.

Give the distribution of Z = −2
n∑
i=1

log(F (Xi)) .

Exercice 2.5. Define

Xn =
{
n1/2 U ≤ 1/n
0 otherwise

.

where U ∼ U([0, 1]).

Study the convergence L2, P et L of the sequence (Xn).

Exercice 2.6. 1. Compute the moment-generating function of the uniform law on {2, . . . , 12}
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2. Let X1 and X2 be independent random variables with values in {1, . . . , 6}. Studying
the roots of the polynomial GX1GX2 ( where GXi is the moment-generating function
of Xi), show that the law of the random variable X1 + X2 cannot be the uniform law
on {2, . . . , 12} (we should find that for every real s and every i ∈ {1, 2}, there is a
polynomial φi of odd degree with real coefficients such that for every strictly positive
real s, we have GXi(s) = sφi(s)).

3. Can we build two ’loaded dices’ (two independent random variables) such that every
outcome of their sum between 2 and 12 is equally likely ?

Exercice 2.7. Let U1, . . . , Un be an n-sample of a U([a, b]). Define Mn = max(U1, . . . , Un)
and Nn = min(U1, . . . , Un).

1. Show that Mn converges in probability to b.
2. Show that Nn converges in L2 norm toward a.
3. Show that n(b − Mn) converges in distribution to a random variable that follow an

exponential law with parameter 1
b−a .

3 Standard distributions

Exercice 3.1. Consider a sequence Xi of iid Poisson variables with parameter λi > 0 denoted
P(λi) :

P [Xi = k] = e−λi
λki
k!
, k ∈ N

1. Show that, for all p ∈ N∗
p∑
i=1

Xi ∼ P(
p∑
i=1

λi)

2. For every n ≥ 1 take the same iid sample X1, ...., Xn as above and denote Nn the number
of zero realisations among those Xi’s. Deduce the distribution of Nn.

Exercice 3.2. Let (X,Y ) be a couple of real random variable with density

f(X,Y )(x, y) =
1

756
(x2 + xy)I0<x<6I0<y<6 .

Compute fX(x), fY |X=x(y), P(X < Y ) and E(Y |X = x).

Exercice 3.3. Let (Un)n≥0 be a sequence of independent and identically distributed random
variables with Bernoulli law of parameter p ∈]0, 1[, for every positive integer n, we denote
Yn = UnUn+1 and Sn = Y1 + · · ·+ Yn

1. For every integer n ≥ 0 , what is the law of Yn ?
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2. At what condition on the integers n and m such that 0 ≤ n < m we get that the random
variables Yn and Ym are independent ?

3. Compute E[YnYm], then compute E
[
Sn
n

]
.

4. Show that there exists a real constant C such that V[Sn] ≤ Cn.
5. Establish that the sequence

(
Sn
n

)
n≥0

converges in probability toward a constant (and
specify this limit).

Exercice 3.4. 1. Let X and Y be two independent random variables with law N (m1, σ
2
1)

and N (m2, σ
2
2) respectively, what is the law of X + Y ?

2. Let X1, . . . , Xn be iid random variables with distribution N (m,σ2), what is the law of
the random variable Xn = X1+···+Xn

n ?

3. Show that the random variable
√
n
σ (Xn −m) follow the N (0, 1) law.

4. Define α ∈]0, 1[, show that there exists a unique positive real number φα such that,∫ φα

−φα

exp(−x2

2 )
t

√
2πdx = 1− α

5. Derive that exists an interval Iα = [m− t,m+ t] with a real t such that P(Xn ∈ Iα) =
1− α.

6. Show that for every real strictly positive number ε, we have that

lim
n→+∞

P(|Xn −m| > ε) = 0 .

Exercice 3.5. Consider a sequence (Xn)n≥1 of real random variables. For n ∈ N∗, Xn follow
the exponential law with parameter n. Define

Yn = sin
(

[Xn]
π

2

)
,

where [Xn] is the integer part of Xn.
1. Find the distribution of the random variable Yn, and compute E(Yn).
2. Show that the sequence (Yn)n≥1 converges in distribution toward a constant random

variable Y ; specify the law of Y .
3. Check the convergence in probability of the sequence (Yn)n≥1.

Exercice 3.6. 1. Derive the characteristic function of the uniform law in [−1, 1].
2. For every n, define the random variable Xn with

P(Xn = 1/2n) = P(Xn = −1/2n) =
1
2

and suppose that Xn are mutually independent. Define Sn =
∑n

i=1Xi. Show that (Sn)
converges in distribution toward a random variable S and precise its law.
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Exercice 3.7. Normalisation of the asymptotic variance.
Let (Xn) be a sequence of i.i.d. random variables with law P. Suppose that E(X2

1 ) <∞ such
that the Central Limit Theorem applies :

√
n(Xn − µ) L−→ N (0, σ2)

for σ2 = Var (X1) > 0.
1. Making use of Slutsky’s theorem, derive a sequence of random variables (an) function

of X1, . . . , Xn such that √
n/an(Xn − µ) L−→ N (0, 1).

2. Suppose now that σ2 is a function of µ. Applying Slutsky’s method, derive the function
φ such that

√
n(φ(Xn)− φ(µ)) L−→ N (0, 1).

3. Find (an) et φ in the particular cases P = B(p) with 0 < p < 1/2 and P = E(λ) with
λ > 0.

Exercice 3.8. Exponential random variables : memoryless variables
Let T be a real random variable. Assume that T satisfies P (T > 0) > 0 together with the

following condition :

∀ (s, t) ∈ R∗2+ , P (T > t+ s) = P (T > s)P (T > t)

1. Show that for all t > 0, P (T > t) > 0.
2. Consider the following application f : ]0,+∞[ → R,t 7→ lnP (T > t). Show that for all

positive real t > 0
f(t) = tf(1)

3. Show that it implies that T is an exponential random variable.

Exercice 3.9. A system works using two different machines serially. The life expectancy X1

and X2 of the two machines follow the exponential distribution with parameters λ1 and λ2.
The random variables X1 and X2 are supposed independent.

1. Show that
X ∼ E(λ) iff ∀x > 0, P(X > x) = exp(−λx)

2. Compute the probability that the system do not break down before time t. Infer the law
of the survival time Z of the system.

3. Compute the probability that a breakdown is due to machine 1.
4. Let I = 1 if the breakdown is due to machine 1, I = 0 otherwise. Compute P(Z > t, I =
δ), for every t ≥ 0 and δ ∈ {0, 1}. Show that Z et I are independent.

5. Suppose that we have n identical systems that function independently and we observe
their survival times Z1, ...Zn. Write the corresponding parametric model.
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Exercice 3.10. Define the generalised inverse of F , F−, by

F−(u) = inf{x;F (x) ≥ u}

than we have that

If U ∼ U(0, 1), then the random variable F−(u) has the distribution of F .

(known as the Inverse Transform method)
Suppose than that you have available a random number generator from U ∼ U(0, 1).

1. How would you obtain samples from a random variable X ∼ E(1) using U ?

2. How would you obtain samples from Y ∼ E(λ), λ > 0 using X ?

3. How would you obtain samples from Z ∼ Γ(n, λ), n ∈ N, λ > 0 using Y ?

4. How would you obtain samples from W ∼ Beta(n1, n2), n ∈ N ?

Relate all of them to the first generator U .
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4 Statistical Models : exponential families

Exercice 4.1. Which of the following distributions belong to the exponential family ?

a) Normal distribution with known mean µ ;

b) Binomial distribution f(y|π) =
(
n
y

)
πy(1− π)n−y , n known ;

c) Gamma distribution f(y|β) = βα

Γ(α)y
α−1e−yβ , shape parameter α > 0 known ;

d) Gamma distribution f(y|α) = βα

Γ(α)y
α−1e−yβ , scale parameter β > 0 known ;

e) Exponential distribution f(y|λ) = λe−λy ;

f) Negative Binomial Distribution f(y|θ) =
(
y+r−1
r−1

)
θr(1− θ)y, r known ;

g) Uniform distribution f(y|θ) = 1
θ , 0 < y < θ ;

h) Pareto distribution f(y|θ) = θy−θ−1 ;

i) Extreme value (Gumbel) distribution f(y|θ) = 1
φ exp

{
y−θ
φ − exp

{
y−θ
φ

}}
, scale parameter

φ > 0 known.name

For those distributions which are part of the exponential family also tell if the distribution is
in canonical form and what is the natural parameter.
Note : we say that a distribution belonging to the exponential family is in its canonical form

if it is expressed according to its natural parameter space, i.e. if τ(θ) = θ.

Exercice 4.2. Are the following families minimal exponential ? What is the natural parameter
space in each case ?

a) Gamma distribution f(y|α, β) = βα

Γ(α)y
α−1e−yβ ;

b) Beta distribution f(y|α, β) = Γ(α+β)
Γ(α)Γ(β)y

α−1(1− y)β−1 ;

Exercice 4.3. Remember that in class you have seen that :

Proposition 1. If T(x) ∈ Rd and T(X) has density c(θ) exp{T(x)T θ}, then, if l = l1+. . .+ld :

Eθ

[
d∏
i=1

Ti(X)li
]

= − ∂l

∂θl11 · · · ∂θ
ld
d

log c(θ)

Use this to deduce mean and variance of :

a) the Binomial distribution f(y|π) =
(
n
y

)
πy(1− π)n−y , with n known ;

b) the Gamma distribution f(y|α, β) = βα

Γ(α)y
α−1e−yβ .
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Exercice 4.4. ([optional] Lauritzen (1996)) Consider X = (xij) and Σ = (σij) symmetric
positive-definitem×mmatrices. The Wishart distribution,Wm(α,Σ), is defined by the density

f(X|α,Σ) =
|X|

α−(m+1)
2 exp

(
−tr(Σ−1X)/2

)
Γm(α)|Σ|α/2

where tr(A) is the trace of A and

Γm(α) = 2αm/2 πm(m−1)/4
m∏
i=1

Γ
(
α− i+ 1

2

)
a) Show that this distribution belongs to the exponential family ;
b) Give its canonical form ;
c) Derive the mean of Wm(α,Σ) ;
d) Show that if z1, . . . , zn ∼ Nm(0,Σ), then

n∑
i=1

ziz
T
i ∼ Wm(n,Σ)

Exercice 4.5. Recall that the beta Be(α, β) distribution has a density given by

π(θ) =
Γ(α+ β)
Γ(α)Γ(β)

θα−1(1− θ)β, 0 ≤ θ ≤ 1 .

1. Give the mean of the Be(α, β) distribution.
2. Show that there a one-to-one correspondence between (α, β) and the triplet (µ, θ0, θ1),

where π(θ ∈ [θ0, θ1]) = p and µ is the mean of the distribution.
3. What are the conditions on (µ, θ0, θ1) for (α, β) to exist ?

Exercice 4.6. Dynkin (1951)
Show that the normal distributions and distributions of the form c log(y), when y ∼ G(α, β),
are the only ones which can belong simultaneously to an exponential family and a location
family. Deduce that the normal distribution is the only distribution from an exponential family
that is also spherically symmetric.

Exercice 4.7. * Morris(1982)
A restricted natural exponential family on R is defined by

Pθ(x ∈ A) =
∫
A

exp{θx− ψ(θ)} dF (x), θ ∈ Θ. (2)

a. Show that, if 0 ∈ Θ, F is necessarily a cumulative distribution function. Otherwise,
show that the transformation of F into

dF0(x) = exp{θ0x− ψ(θ)} dF (x),

for an arbitrary θ0 ∈ Θ and the replacement of θ by θ − θ0, provides this case.
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b. Show that, in this restricted sense, Be(mµ,m(1 − µ)) and the lognormal distribution
LogN (α, σ2) do not belong to an exponential family.

c. If µ = ψ′(θ) is the mean of the distribution (??), the variance function of the distribution
is defined by V (µ) = ψ′′(θ) = Varθ(x). Show that V is indeed a function of µ and,
moreover, that if the variation space of µ, Ω, is known, the couple (V,Ω) completely
characterizes the family (??) by

ψ

(∫ µ

µ0

dm

V (m)

)
=
∫ µ

µ0

mdm

V (m)
.

(Notice that θ =
∫ µ
µ0
dm/V (m).) Show that V (µ) = µ2 defines two families, depending

on whether Ω = R− or Ω = R+.
d. Show that V (µ) = µ(1 − µ)/(m + 1) corresponds simultaneously to the binomial dis-

tribution B(m,µ) and to Be(mµ,m(1 − µ)). Deduce that the characterization by V is
only valid for natural exponential families.

e. Show that exponential families with quadratic variance functions, i.e.,

V (µ) = v0 + v1µ+ v2µ
2, (3)

include the following distributions : normal, N (µ, σ2), Poisson, P(µ), gamma, G(r, µ/r),
binomial, B(m,mµ), and negative binomial, N eg(r, p), defined in terms of the number
of successes before the rth failure, with µ = rp/(1− p).

f. Show that the normal distribution (respectively, the Poisson distribution) is the unique
natural exponential distribtion with a constant (reap., of degree one) variance function.

g. Assume v2 6= 0 in (??) and define d = v2
1 − 4v0v2, discriminant of (??), a = 1 if d = 0

and a =
√
dv2 otherwise. Show that x∗ = aV ′(x) is a linear transformation of x with

the variance function
V ∗(µ∗) = s+ v2(µ∗)2, (4)

where µ∗ = aV ′(µ) and s = −sign(dv2). Show that it is sufficient to consider V ∗ to
characterize natural exponential families with a quadratic variance function, in the sense
that other families are obtained by inverting the linear transform.

h. Show that (??) corresponds to six possible cases depending on the sign of v2 and the
value of s (−1, 0, 1). Eliminate the two impossible cases and identify the families given in
e, above. Show that the remaining case is v2 > 0, s = 1. For v2 = 1, this case corresponds
to the distribution of x = log{y/(1− y)}/π, where

y ∼ Be
(

1
2

+
θ

π
,
1
2
− θ

π

)
, |θ| < π

2
,

and
f(x|θ) =

exp[θx+ log(cos(θ))]
2 cosh(πx/2)

. (5)

(The reflection formula B(0.5 + t, 0.5− t) = π/ cos(πt) can be of use.) The distributions
spanned by the linear transformations of (??) are called GHS(r, λ) (meaning generalized
hyperbolic secant , with λ = tan(θ), r = 1/v2, and µ = rλ. Show that the density of
GHS(r, λ) can be written

fr,λ(x) =
(
1 + λ2

)−r/2 exp{x arctan(λ)}fr,0(x)

(do not try to derive an explicit expression for fr,0).
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5 Glivenko-Cantelli, empirical cumulative distribution function
and Bootstrap

Exercice 5.1. Let X1, . . . , Xn ∼ F and let F̂n(x) be the empirical distribution function.
For a fixed x, find the limiting distribution of F̂n(x). (hint : central limit theorem)

Exercice 5.2. Let x1, · · · , xn be n independent realisations from the same distribution P on
R. Let A1, · · · , Ak form a partition of R, i.e. Aj ∪Ai = ∅ if i 6= j and ∪ki=1Ai = R and assume
that each Aj is an interval.

1 Consider the empirical distribution defined as

Pn =
1
n

n∑
i=1

δ(xi), i.e. Pn(A) =
1
n

n∑
i=1

1Xi∈A

Show that for all j ≤ k, almost surely with respect to P ,

lim
n
Pn(Aj) = P (Aj)

2 Show that √
n(Pn(Aj)− P (Aj))⇒ N (0, vj), ∀j ≤ k

and determine vj .
3 Determine the limiting distribution of the vector :

√
n(Pn(A1)− P (A1), · · · , Pn(Ak)− P (Ak))

Is it absolutely continuous with respect to Lebesgue measure on Rk ?

Exercice 5.3. We want to estimate the cumulative distribution function F of the survival
time T of a mouse who had been injected a given dose of pathogen. For obvious reasons, it
is important to kill as little mice as possible during the experiment, while retaining a good
precision of our estimate. What would be a good sample size n so that

P[sup
t
|Fn(t)− F (t)| > 0.05] < 0.001?

The probability P is computed under the distribution of a n sample of independent and
identically distributed mice whose survival time has cumulative distribution function F .

Exercice 5.4. Consider an iid sample Y1, Y2, Y3 of size n = 3. For simplicity in thinking about
the problem, suppose that Yi are continuous so that all three are distinct with probability 1.

a) Consider drawing samples of size n = 3 with replacement from the set {Y(1), Y(2), Y(3)},
where Y(1) < Y(2) < Y(3) . Write down the 33 = 27 equally likely resamples samples.

b) How many distinct resamples are obtained ? Find the general number for a sample size of
n.
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c) Using the samples obtained in a), devise the bootstrap distribution of the sample median.
d) From c), write down the bootstrap expectation and variance of the sample median.

Exercice 5.5. Let X1, . . . , Xn be distinct observations (no ties).

Let X∗1 , . . . , X∗n denote a bootstrap sample and let X̄∗n = 1
n

n∑
i=1

X∗i .

Find : E(X̄∗n|X1, . . . , Xn), Var(X̄∗n|X1, . . . ,Xn), E(X̄∗n) and Var(X̄∗n)

Exercice 5.6. Suppose a nonparametric bootstrap sample of size n, drawn uniformly with
replacement from x1, . . . , xn contains j1 copies of x1, j2 copies of x2 and so on till jn copies

of xn, with
n∑
i=1

jn = n.

Show that the probability of of obtaining this sample is(
n

j1j2 · · · jn

) n∏
i=1

n−ji where
(

n

j1j2 · · · jn

)
=

n!
j1!j2! · · · jn!

What is the probability of obtaining that sample with the parametric bootstrap ?

Exercice 5.7. * Let Tn = X̄2
n, µ = E(X1), αk =

∫
|x − µ|kdF(x) and α̂k =

n∑
i=1
|Xi − X̄n|k.

Show that

Varboot =
4X̄2

nα̂2

n
+

4X̄nα̂3

n2
+
α̂4

n3

6 Monte Carlo

Exercice 6.1. Let X = (X1, X2) be uniformly distributed on the square [−1, 1]× [−1, 1]. Let
Y = f(X) where

f(x) =

{
1 if x2

1 + x2
2 ≤ 1

0 otherwise

Imagine using a Monte Carlo sample of size n = 1000 from X

a) Detail how to produce an estimate of µ = E(Y ) ;
b) Translate your estimator in an estimate for π ;
c) Give an expression for the variance of π̂ ;

Now imagine to have a sample from X̃ = (X̃1, X̃2), uniformly distributed on the unit
square [0, 1]× [0, 1]. Can you derive a similar estimator for π ? Would this be an improvement
with respect to the previous one ? Why ?
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Exercice 6.2. Let µn = 1
n

n∑
i=1

xi (the empirical mean) and Sn =
n∑
i=1

(xi − µn)2 (n times the

empirical variance).
There is a way to obtain good numerical stability in updating these quantities as new data

points are available : Starting with µ1 = x1 and S1 = 0 , make the updates as :

δi = xi − µi−1

µi = µi−1 + δi/i

Si = Si−1 +
i− 1
i

δ2
i

for i = 2, . . . , n.
Prove that this methods actually yields the expected µn and Sn.

Exercice 6.3. Suppose you have a sample of size n = 1000 from a distribution F . How would
you compute an approximate value of F (x) for x = 2 ? What is the variance of your estimate ?
Now suppose F is a standard normal random variable. How many simulated random samples
are needed to obtain three digits of accuracy for your estimator ?

Exercice 6.4. Take a Cauchy C(0, 1) random variable X with density

f(x) =
1
π

1
1 + x2

.

Show that the C(0, 1) has no mean.

What is the consequence on X̄n =
n∑
i=1

Xi, the Monte Carlo estimator for its mean ?

Exercice 6.5. We want to evaluate the integral

I =

∞∫
2

1
π(1 + x2)

dx

a) Analytically calculate the value of I.
b) Devise a Monte Carlo Estimator În for I, based on a sample of n observations from a

distribution F of your choice.
* Can we do better ? Try to devise a second estimator based on a transformation of I.

Exercice 6.6. Let N ∼ N (θ, 1) (θ ∈ R), X = exp(N) and suppose to have an n-sample
(X1, . . . , Xn) from X.
a) Show that the density of X is

f(x|θ) =
1√
2πx

exp
{
−1

2
(log(x)− θ)2

}
Ix>0;

b) Compute Eθ(X) (hint : everything is easier using the change of variable y = log(x)) ;

c) Let Tn = log
(

1
n

n∑
i=1

Xi

)
− 1

2 . Show that Tn converges in probability towards θ.
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7 Likelihood and Maximum Likelihood Estimation

Exercice 7.1. Let X be a random variable admitting the following probability density :

fX(x; θ) =
θ

xθ+1
Ix≥1

where θ > 0. It is in fact a particular Pareto law. Consider a sample of size n : X1, . . . , Xn iid
from X.

1 Show that the model belongs to the exponential family and deduce that is regular.

2 Compute the Fisher information contained in X for the parameter θ. Deduce the informa-
tion contained in the n-sample.

3 Actually we do not observe X, but a random variable Y defined by :

Y =
{

1 if X ≥ exp(1)
0 if X < exp(1)

.

Compute the Fisher information brought by Y for the parameter θ.

4 Show that IX(θ) > IY (θ) (we can use the fact that exp(x)− 2x > 0 for every x ≥ 0).

Exercice 7.2. We consider a random variable X following an exponential law with parameter
θ > 0 :

fX(x; θ) = θ exp(−θx)Ix>0 .

Let X1, . . . , Xn be an n-sample from X.

1 Show that
∑n

i=1Xi is a sufficient and minimal statistics for θ.

2 Admit that g(X) = XnPn
i=1Xi

is an ancillary statistics for θ.
Compute E(g(X)).

Exercice 7.3. Consider a random variable X with density

fX(x; θ) = kxθI]0,1](x) .

Let X1, . . . , Xn be an n-sample from X.

1 Determine k as a function of θ, specifying the conditions on θ. Compute Eθ(X) and Vθ(X).
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2 Show that − log(X) follows a known law and specify its parameter. Deduce that θ̃n =
−1− (n− 1) (

∑n
i=1 log(Xi))

−1 is an unbiased estimator for θ.

Exercice 7.4. Let X be a random variable admitting the following probability density :

fX(x; θ) =
θ exp(θx)

exp(θ2)− 1
I[0,θ](x)

where θ > 0. Consider an n-sample X1, . . . , Xn from X. Find, if it exists, a sufficient statistics
for θ.

Exercice 7.5. Let X be a random variable with geometric law with parameter p ∈]0, 1[
(number of trials before the first success, p success probability) and X1, . . . , Xn be an n-
sample from X. Assume p = 1− q.

1 Compute the Fisher information brought by X on p and the one contained in the n-sample.

2 Show that Xn is sufficient and that Xn is an effective estimator for the parameter q/p.

Exercice 7.6. Let X be a Poisson random variable with parameter θ > 0 and X1, . . . , Xn an
n-sample from X.

1 Show that Xn and S2
n−1 are unbiased estimators of θ.

2 Show that Xn is the uniformly minimum-variance unbiased estimator of θ. Deduce that
Vθ(Xn) ≤ Vθ(S2

n−1).

Exercice 7.7. Let X be a random variable in the set of the reals, admitting the density

fX(x; θ) = k exp(−θ|x|)

where θ > 0 and X1, . . . , Xn an n-sample from X.

1 Determine the constant k.

2 Compute the integrals
∫ 0
−∞ t exp(θt)dt and

∫ +∞
0 t exp(−θt)dt then deduce the expressions

of Eθ(X), Eθ(X2) and Vθ(X).

3 Compute the estimator Wn of θ via the maximum likelihood method.
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4 Show that Wn is convergent estimator for θ in quadratic mean.

Exercice 7.8. Consider an n-sample (X1, . . . , Xn) iid from X, with density :

fX(x; θ) =
3

(x− θ)4
I[θ+1,+∞[ .

where θ > 0 is an unknown parameter.

1 Compute Eθ(X) and Vθ(X) (we can compute Eθ((X − θ)) and Vθ((X − θ))).

2 Give the maximum likelihood estimator θ̂n for θ.

3 Compute Eθ
(
θ̂n

)
. Deduce an unbiased estimator θ#

n for θ as a function of θ̂n.

Exercice 7.9. Let X be a random variable, distributed according to a Pareto law with
parameters α > 0 and β > 0 :

fX(x;α, β) =
αβα

xα+1
Ix≥β .

Let X1, . . . , Xn be an n-sample from X. In the following θ = (α, β).

1 Give the density of X, then compute Eθ(X), Eθ(X2) and Vθ(X) giving the conditions on
the existence on those moments.

2 Suppose β known.

a) Write the likelihood on the sample and give a sufficient statistics for α.

b) Find an estimator Tn of α with the maximum likelihood method.

c) Find the law of the random variable Y = log(X/β).

d) Show that Tn is a strongly consistent estimator of α.

e) Find the law of Zn =
∑n

i=1 log(Xi/β). Deduce the expression of E(Tn) and V(Tn), then
show that Tn is a quadratic mean convergent estimator for α.

f) Deduce from Tn an unbiased estimator T ∗n for α. Show that T ∗n is asymptotically efficient.

3 Suppose α known.
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a) Find an estimator Wn of β via maximum likelihood.

b) Find the law of Wn and deduce that Wn is a quadratic mean convergent estimator of β.

Exercice 7.10. Consider a random variable X with density

fX(x; θ) = k|x| exp
(
−x

2

2θ

)
where θ > 0. Let X1, . . . , Xn be as usual an n-sample from X.

1 Compute the normalising constant k.

2 Compute Eθ(X), Eθ(X2) and Vθ(X).

3 Give the maximum likelihood estimator θ̂n of θ. Is it unbiased ?
Is it strongly consistent ?

5 Explain why the model for X is regular.

6 Compute the Fisher information given by X on θ, then the one given by the whole sample.

7 Compute Eθ(X4). θ̂n is efficient ? (Cramer-Rao bound)

8 Is θ̂n the unique unbiased estimator with uniformly minimum variance ?

Exercice 7.11. Let X be a real random variable with density
fX(x; θ) = 2

√
θ√
π

exp(−θx2)I]0,+∞[(x) where θ > 0.
Let X1, . . . , Xn then be an n-sample of X.

1 Compute Eθ(X), Eθ(X2) and Vθ(X).

2 Find Wn, the maximum likelihood estimator for θ.

Exercice 7.12. Let X be a discrete random variable with values in {−1, 0, 1} such that
P(X = 0) = 1− 2θ et P(X = −1) = P(X = 1) = θ. Suppose θ ∈ [0, 1/2]. Consider X1, . . . , Xn

an n-sample from X.
Name R the random variable euql to the number of Xi with a non-null value. Find the

maximum likelihood estimator Wn of θ. Give the law of R and deduce E(Wn) and V(Wn).

Exercice 7.13. Let X be a random variable with values in [−1, 1] with density fX(x; a, b) =
aI[−1,0](x) + bI]0,1](x) where a ≤ 0 and b ≤ 0 and X1, . . . , Xn is an n-sample from X.

19



1 Point out the relation between a and b.
in the following, we will write b as a function of a.

2 Compute Ea(X) and Va(X).

3 Find the maximum likelihood estimator Wn of θ.

Exercice 7.14. Infection Markers

N infectious agents aggress simultaneously an organism that has Q defending agents . The
Immune response is modeliez in the following way : every defending agent choose randomly
an infectious agent (only one) in the N aggressors, independently from the other defendants.
With probability ϑ ∈ (0, 1) the infectious agent is nullified.

Only one surviving infectious agent is required for the organism to be infected.

1. Show that the probability that a given aggressive agent infect the the organism is

pQ,N (ϑ) =
(

1− ϑ

N

)Q
.

In the lab, we repeat n independent scenarios of aggression. In every experiment, an infectious
agent is marked. For experiment i, we note Xi = 1 if the given agent did infect the organism,
0 otherwise.

2. Consider having a sample (X1, . . . , Xn), where ϑ is the unknown parameter and Q et N
are known. Show that the likelihood can be written as

ϑ pQ,N (ϑ)
Pn
i=1Xi

(
1− pQ,N (ϑ)

)n−Pn
i=1Xi .

3. Show that the model is regular and that its Fisher information is given by

I(ϑ) =

(
∂ϑpQ,N (ϑ)

)2
pQ,N (ϑ)

(
1− pQ,N (ϑ)

) .
4. Show that the maximum likelihood estimator for ϑ is well defined, asymptotically normal

and compute its limiting variance.

Suppose now that N et Q are unknown parameters of interest, and we take the limit N ≈ +∞
supposing that Q = QN ∼ κN for a κ > 0 (unknown).

6. Going at the limit for N in the previous model, show that the observation of (X1, . . . , Xn)
allow (identifiability) the estimate of ϑ̃ = κϑ and hence compute its maximum likelihood
estimator.
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8 Bayesian Estimation

Exercice 8.1. Assume that we have perform n independent experiments where each ex-
periment has probability π for success. Let x ∈ {0, 1, ..., n} denote the random number of
successes. The number of successes follows a Binomial distribution :

x ∼ Bin(n, p)

that is
f(x|n, π) =

(
n

x

)
px(1− p)n−x.

For a Bayesian analysis we now need to specify our prior distribution. It turns out to be
convenient to specify the prior distribution for p by a beta distribution with parameter α and
β, i.e.

p ∼ Be(α, β) such that π? = B(α, β)pα−1(1− p)β−1 for p ∈ (0, 1)

– Compute the posterior distribution of p
– Compute Eπ(p) with respect to the prior and Eπ(p|x) the posterior mean.
– Similarly, how does the posterior variance change with respect to the prior variance ?
– Remember that if α = β = 1 p(π|α, β) is flat. Is this a non-informative prior ? If yes in

which sense ?

Exercice 8.2. Consider an observation from a Normal distribution x ∼ N (µ, σ2) where the
precision τ = 1/σ2 is known and the mean µ is unknown. We assume a priori for µ a Normal
distribution with mean µo and precision τo.

– Give the posterior distribution for µ ; what is your interpretation of the parameter of
the posterior ?

– Now, the data set consists of n iid observation xn from a N (µ, σ2) (remember that using
the precision τ is probably convenient). What are the posterior mean and variance ?

– Relate the above to the maximum likelihood estimator for µ.
– What happens to the posterior distribution for µ|xn when n→∞
Give the expression of the Jeffreys Prior for this model. What is the associated posterior

distribution ? What is its interpretation in terms of the conjugate prior we just described ?

Exercice 8.3. Let again xn be a sample xn = (x1, . . . , xn) ∼ N (µ, σ2 = 1
τ ) but now consider

that µ is known and the parameter of interest is τ . Assume a Γ(α, β) as a prior distribution
for τ .

1
– Derive the posterior distribution p(τ |xn);
– Compute posterior mean and posterior variance for τ .
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2 If both mean and variance are unknown we ideally want a joint conjugate prior distribution.
Consider that we define π(µ, τ) = π1(µ) × π2(τ) where both the priors are defined as before
as µ ∼ N (µ0, 1/τ0) and τ ∼ Γ(α, β). What is the marginal posterior distribution of µ ?

Exercice 8.4. Samples are taken from twenty wagonloads of an industrial mineral and ana-
lysed. The amounts in ppm (parts per million) of an impurity are found to be as follows.

44.3 50.2 51.7 49.4 50.6 55.0 53.5 48.6 48.8 53.3
59.4 51.4 52.0 51.9 51.6 48.3 49.3 54.1 52.4 53.1

We regard the observations to be drawn from a normal distribution with a known precision
τ = 1/σ2 = 0.1 and unknown mean µ.
Compute the posterior mean, variance and 95% credibility interval for µ.

Exercice 8.5. Consider a x ∼ P(λ) .
– Give a conjuguate family of prior distributions for λ .
– Derive the associated posterior distributions

From the book : The Bayesian Choice
Exercice 8.6. If ψ(θ|x) is a posterior distribution associated with f(x|θ) and a (possibly
improper) prior distribution π, show that

ψ(θ|x)
f(x|θ)

= k(x)π(θ).

a. Deduce that, if f belongs to an exponential family, the posterior distribution also be-
longs to an exponential family, whatever π is.

b. Show that if ψ belongs to an exponential family, the same holds for f .

Exercice 8.7. A contingency table is a k× ` matrix such that the (i, j)-th element is nij , the
number of simultaneous occurrences of the ith modality of a first characteristic, and of the
jth modality of a second characteristic in a population of n individuals (1 ≤ i ≤ k, 1 ≤ j ≤ `).
The probability of this occurrence is denoted by pij .

a. Show that these distributions belong to an exponential family.
b. Determine the distributions of the margins of the table, i.e., of ni· = ni1 + . . .+ni` and
n·j = n1j + . . .+ nkj . Deduce the distributions of (n1·, . . . , nk·) and of (n·1, . . . , n·`).

c. Derive conjugate priors on p = (pij) and the Jeffreys prior.
Recall the Jeffreys prior is defined as

p(θ) ∝
√
|I(θ)|

where I(θ) is the Fisher Information.
d. In the particular case of independence between the two variables, the parameters are

supposed to satisfy the relations pij = pi·p·j where (p1·, . . . , pk·) (p·1, . . . , p·`) are two vec-
tors of probabilities. Relate these vectors to the distributions derived in b. and construct
the corresponding conjugate priors.
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