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Approximate Bayesian computation (ABC) has now become an es-
sential tool for the analysis of complex stochastic models when the
likelihood function is unavailable. The well-established statistical
method of empirical likelihood however provides another route to
such settings that bypasses simulations from the model and the
choices of the ABC parameters (summary statistics, distance, toler-
ance), while being provably convergent in the number of observa-
tions. Furthermore, avoiding model simulations leads to significant
time savings in complex models, such as those used in population
genetics. The ABCel algorithm we develop in this paper also pro-
vides an evaluation of its own performance through an associated
effective sample size. The method is illustrated using several exam-
ples, including estimation of standard and quantile distributions, and
time series and population genetics models.

Bayesian statistics | likelihood-free methods | empirical likelihood | population

genetics | robust statistics

Abbreviations: ABC, approximate Bayesian computation; DIY-ABC, Do-it-yourself

ABC; AMIS, adaptive multiple importance sampling; IS, importance sampling; ABCel,

ABC with empirical likelihood; ESS, effective sample size; MLE, maximum likelihood

estimator.

Bayesian statistical inference cannot easily operate when
the likelihood function associated with the data is not

completely known, i.e. cannot be computed in a manageable
time, as is the case in most population genetic models (1, 2, 3).
The fundamental reason for this difficulty with population ge-
netics is that the statistical model associated with coalescent
data needs to integrate over trees of high complexity. Similar
computational problems occur on a regular basis in hidden
Markov and other dynamic models (4). In those settings, tra-
ditional approximation tools based on stochastic simulation
(5) are unavailable or unreliable. Indeed, the complexity of the
latent structure defining the likelihood makes simulation of
such structures too unstable to be trusted. Such settings call
for alternative and often cruder approximations. The ABC
methodology (1, 6) is a popular algorithm that achieves this
by bypassing the computation of the likelihood function (see
7 and 8 for recent surveys).

The fast and polytomous development of the ABC algo-
rithm is indicated by the very active literature in the domain,
at both the methodological and the application levels. For
instance, a whole new area of population genetic modelling
(9, 8) has been explored thanks to the availability of such
methods. However, there is a persistent reluctance to adopt
ABC algorithms, found in both practitioners and theoreti-
cians alike, as some consider the validation of the method is
not steady enough (10, 11, 12). We propose in this paper
to connect the ABC approach with a generic and convergent
likelihood approximation called the empirical likelihood ap-
proach that validates the modified ABC technique as a con-
vergent inference method when the number of observations
grows to infinity. The empirical likelihood perspective, intro-
duced by (13), is a robust statistical approach that does not
require the specification of the likelihood function. While it
does not appear to have been previously used in the ABC set-

ting, this data analysis method is a natural tool to overcome
the approximation effects of ABC algorithms. In this paper,
we introduce the ABCel algorithm and illustrate its perfor-
mances on selected representative examples, comparing the
outcome with the true posterior density whenever available,
and with a standard ABC approximation (14) otherwise.

Statistical Methods
The ABC algorithm. The primary purpose of the ABC algo-
rithm is to achieve the approximation of a simulation from
the centrepiece of Bayesian inference, the posterior distribu-
tion π(θ|y) ∝ π(θ)f(y|θ) when it cannot be numerically com-
puted but when the distributions corresponding to both the
prior π and the likelihood f can be simulated by manageable
computer devices. The original (6) ABC algorithm is as fol-
lows: given a sample y of observations from the sample space,
a sample of parameters (θ1, . . . ,θM ) is produced by

Algorithm 1: ABC sampler

for i = 1 to M do
repeat

Generate θ′ from the prior distribution π(·)
Generate z from the likelihood f(·|θ′)

until ρ{η(z), η(y)} ≤ ε
set θi = θ′,

end for

The parameters of the ABC algorithm are the summary
statistic η, the distance ρ{·, ·} and the tolerance level ε > 0.
The basic justification of the ABC approximation is that,
when using a sufficient statistic η, the distribution of the θi’s
in the output of the algorithm converges to the genuine pos-
terior distribution when ε goes to zero.

In practice, however, the statistic η is insufficient and at
the very best the approximation then converges to the gen-
uine posterior π(θ|η(y)) when ε goes to zero. This loss of
information seems to be a necessary price to pay for the ac-
cess to computable quantities. However, we demonstrate in
this paper that it is actually far from necessary in that, when
an empirical likelihood technique can be implemented, no re-
duction in information through the choice of a tolerance zone
or of an insufficient summary statistic is required.
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Empirical likelihood.Owen (13) developed empirical likeli-
hood techniques as a robust alternative to classical likelihood
approaches. He demonstrated that, for some categories of sta-
tistical models, this approach inherited the convergence prop-
erties of standard likelihood at a much lower cost in assump-
tions about the model. While the current ABC algorithms do
require a fully defined and often complex (hence debatable)
statistical model, we argue that they could take advantage of
the approximation device provided by the empirical likelihood
to overcome most of the calibration difficulties encountered by
those earlier versions of the method.

Assume that the dataset y is composed of n independent
replicates y = (y1, . . . ,yn) of some random vector Y with
density f . Rather than defining the likelihood from the den-
sity f as in traditional likelihood approaches, the empirical
likelihood method starts by defining parameters of interest,
θ, as functionals of f , for instance as moments of f , and it
then profiles a likelihood in a non-parametric manner. More
precisely, given a set of constraints of the form

EF [h(Y, θ)] = 0, [1]

where the dimension of h is the number of constraints un-
equivocally defining θ, the empirical likelihood is defined as

Lel(θ|y) = max
p

n∏
i=1

pi [2]

for p in the set {p ∈ [0; 1]n,
∑
pi = 1,

∑
i pih(yi,θ) = 0}.

For instance, in the one-dimensional case when θ = Ef [Y ],
the empirical likelihood in θ is the maximum of the product
p1 · · · pn under the constraint p1y1 + . . .+ pnyn = θ.

While the convergence of the empirical likelihood is well-
established (13), the Bayesian use of empirical likelihoods has
been little examined in the past, appart from a Monte Carlo
study in (15), a probabilistic interpretation in (16).

ABCel. The most natural use of the empirical likelihood ap-
proximation is to act as if this representation was an exact
likelihood. When incorporating this perspective into a raw
sampler, this leads to the following algorithm:
Algorithm 2: Raw ABCel sampler

for i = 1 to M do
Generate θi from the prior distribution π(·)
Set the weight ωi = Lel(θi|y)

end for

The output of this algorithm is therefore a sample of size M
of parameters with associated weights. It can thus be used
as an importance sampling output (5) and, in particular, the
performance of the algorithm can be evaluated through the
effective sample size

ESS = 1
/ M∑
i=1

{
ωi/

M∑
j=1

ωj

}2

,

which approximates the size of an iid sample with the same
variance as the original sample. As shown in (17), this quan-
tity is always between 1 (corresponding to a very poor out-
come) and M (corresponding to an iid perfect outcome).

Actually, any available classical algorithm that samples
from a posterior distribution (e.g., Monte Carlo Markov
chain, Population Monte Carlo, SMC algorithms, see (5))
may equally use the empirical likelihood as if it were the ex-
act likelihood. For instance, to speed up the computation
in the population genetics model introduced below, we re-
sorted to the adaptive multiple importance sampling (AMIS)

method proposed by (18) which is easy to parallelize on a
multi-core computer. While the original target distribution is
π(θ)L(θ|y) and the AMIS algorithm uses several (multivari-
ate) Student’s t distributions, denoted t3(·|m,Σ) (i.e., with
three degrees of freedom, centered at a mean value m and
with covariance matrix Σ), as an importance sampling distri-
bution, the algorithm can be adapted to the empirical likeli-
hood in a straightforward manner:
Algorithm 3: ABCel-AMIS sampler

for i = 1 to M do
Denote q1(·) the prior distribution.
Generate θ1,i from the prior distribution q1(·)
Set ω1,i = Lel(θ1,i|y)

end for
for t = 2 to TM do

Compute weighted mean mt and weighted variance ma-
trix Σt of the θs,i (1 ≤ s ≤ t− 1, 1 ≤ i ≤M).
Denote qt(·) the density of t3(·|mt,Σt).
for i = 1 to M do

Generate θt,i from qt(·) .

Set ωt,i = π(θt,i)Lel(θt,i|y)
/∑t−1

s=1 qs(θt,i)
end for
for r = 1 to t− 1 do

for i = 1 to M do
Update the weight of θr,i as

ωr,i = π(θt,i)Lel(θr,i|y)
/∑t−1

s=1 qs(θr,i)
end for

end for
end for

The output of this algorithm is a weighted sample θt,i of size
M × TM .

Note that in contrast with the standard ABC algorithm,
ABCel algorithms do not require simulations from the model,
given that [2] provides a converging and non-parametric ap-
proximation of the likelihood function. Moreover, there is
no need for calibrating the many tuning parameters found in
standard ABC algorithms; in particular, the likelihood ratio
acts as a natural distance and the use of importance weights
produces an implicit and self-defined quantile on the original
sample simulated from the prior. Notwithstanding these ap-
pealing qualities, we stress that the algorithm still requires
calibration, in particular in the choice of the parameterisation
of the distribution and of the corresponding constraints [1] in
the empirical likelihood. Some examples of this are discussed
below. We also stress that, from a Bayesian perspective, the
pointwise mathematical validation of the method for a given
sample size and even less for a given dataset is not available
nor even meaningful.

Composite likelihood in population genetics. ABC was first
introduced by population geneticists (2, 9, 6) interested in
statistical inference about the evolutionary history of species,
on the ground that no likelihood-based approach existed apart
from very rudimentary and hence unrealistic situations. This
approach has since been used in a number of biological stud-
ies (19, 20, 21), most of them including model choice. It is
therefore crucial to obtain insights into the validity of such
studies, particularly when they deal with issues of econom-
ical or ecological importance (see, e.g., (22)). This can be
achieved in part by running a comparison using ABCel. Fur-
thermore, given the major gain in computing time for ABCel,
achieved by the absence of replications of the data, ABCel can
be applied to more complex biological models.

The main difficulty when using the empirical likelihood
in such settings is to derive a constraint [1] on the parame-
ter of interest: in phylogeography, parameters like divergence
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dates, effective population sizes, mutation rates, etc. cannot
be expressed as moments of the distribution of the sample at
a given locus. In particular, the datapoints are not iid. How-
ever, when considering microsatellite loci with the stepwise
mutation model (23) and evolutionary scenarios composed of
divergence, we can derive the pairwise composite scores whose
zero is the pairwise maximum likelihood estimator. Compos-
ite likelihoods have been previously proved consistent for esti-
mating recombination rates, introducing approximation of the
dependency structure between nearby loci (24, 25, 26, 27).

More specifically, we are here approximating the intra-
locus likelihood using a product over all pairs of genes in the
sample at a given locus. Assuming that yki denotes the allele
of the i-th gene in the sample at the k-th locus, and that φ
is the vector of parameters, then the so-called pairwise like-
lihood of the data at the k-th locus, namely yk, is defined
by

`2(yk|φ) =
∏
i<j

`2(yki , y
k
j |φ)

and the corresponding pairwise score function is ∇φ`2(yk|φ).
Pairwise score equations

Ef [∇φ`2(Y |φ)] = 0

provide a constraint [1] in every way comparable to the score
equations that give the maximum likelihood estimate and
which is quite powerful for empirical likelihood derivations
(28, pp. 48–50). Hence the empirical likelihood of the full
dataset y = (y1, . . . ,yK) given φ is computed with [2] under
the (multidimensional) constraint that

K∑
k=1

pk∇φ log `2(yk|φ) = 0.

When the effective population size is identical over all pop-
ulations of the demographical scenario, the time axis might be
scaled so that coalescence of two genes in Kingman’s geneal-
ogy occurs with rate k(k−1)/2 if there are k lineages. In this
modified scale, mutations at a given locus arise with rate θ/2
along the gene genealogy. Our mutation model is the simple
stepwise mutation model of (23), i.e. the number of repeats
of the mutated gene increases or decreases by one unit with
equal probability. Given two microsatellite allelic states x1
and x2, their pairwise likelihood `2(x1, x2|φ) depends only on
the difference of the two states x1 − x2. If the two genes be-
long to individuals that lie in the same deme, then (see SI and
(29))

`2(x1, x2|φ) =
1√

1 + 2θ
ρ(θ)|x2−x1|,

where ρ(θ) = θ
/(

1 + θ+
√

1 + 2θ
)
. If the two genes belong to

individuals that lie in two demes having diverged at time τ ,
then (29)

`2(x1, x2|φ) =
e−τθ√
1 + 2θ

+∞∑
k=−∞

ρ(θ)|k|I|x1−x2|−k(τθ)

where Iδ(z) denotes the δth-order modified Bessel function of
the first kind evaluated at z. Computing the pairwise scores,
i.e. partial derivatives of log `2(x1, x2|φ) from those equations,
is straightforward, by recalling that

dIδ(z)

dz
= (Iδ−1(z) + Iδ+1(z))/2 .

Algorithm ABCel is therefore directly available in this setting,
and furthermore at a cost much lower than the one associated
with the standard ABC algorithm.

Results
Normal distribution. Starting with the very simple example
of a normal distribution with known variance (equal to one),
we can check whether or not the empirical likelihood allows
for a proper recovery of the true posterior distribution. Fig.
S1 shows that a constraint based on the mean works well, as
do the two constraints on mean and variance (Figure S2). On
the other hand, using the three first moments in the definition
of the empirical likelihood degrades the fit (Figure S3).

Quantile distributions. Quantile distributions are defined by a
closed-form quantile function F−1(p; θ), and generally have
no closed form for the density function. They are of great in-
terest because of their flexibility and the ease with which they
can be simulated by a simple inversion of the uniform distri-
bution. A range of methods, including ABC approaches (9),
have been proposed for estimation; see supplementary mate-
rial for further details. We focus here on the four-parameter
g-and-k distribution, defined by its quantile function

Q(r;A,B, g, k) = A+B

(
1 + c

1− exp(−gz(r))
1 + exp(−gz(r))

)
[3]

×
(
1 + z(r)2

)k
z(r) [4]

where z(r) is the rth standard normal quantile; the param-
eters A,B, g and k represent location, scale, skewness and
kurtosis, respectively and c measures the overall asymmetry
(30, 31). We evaluated the ABCel algorithm for estimation
of this distribution using two values of θ = (A,B, g, k), two
sets of priors and various combinations of n,M and p, where
p is the number of percentiles used as constraints; details are
in the supplementary material.

Figure 1 illustrates the true and fitted curves and a
95% credible region for the case with n = 100,M =
5000 and p = 3. The corresponding posterior means
(standard deviations) for the parameters A,B, g, k were
3.08(0.14), 1.12(0.23), 1.79(0.25), 0.41(0.12), respectively. The
choice of sample size and number of constraints did not sub-
stantively affect the accuracy of parameter estimates, but the
precision was noticeably improved for the larger sample size;
see Figures S4, S5, and S6.

The accuracy and precision of the estimates were broadly
comparable with the results obtained by (32) for the same
distribution. Based on the whole experiment, the parameters
A and B were well estimated in all cases, while the estimates
of g and k were poorer for smaller values of n and M . For
small n the estimates were more subject to the vagaries of
sampling variation, whereas for small M they were subject to
the influence of a smaller number of very large importance
weights. However, given the speed of ABCelcompared with
the competing ABC algorithms, it is feasible to use even larger
values of M than considered in this experiment, since there
is no requirement to simulate new datasets at each iteration.
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Fig. 1. True and fitted curves with a 95% credible region for a dataset of n = 100
observations from the g-and-k distribution, based on M = 103 simulations.
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Fig. 2. Comparison of ABC evaluations of posterior expectations (top, with
true values in dashed lines) and posterior variances (bottom) of the param-

eters (α0, α1) of the ARCH(1) model with 100 observations. The first two columns

correspond to two choices of summary statistics for the standard ABC algorithm (least

squares estimates and mean of the log yt’s plus autocorrelations of order 2 and 3,

respectively). The last two columns correspond to two sets of constraints for the

ABCel version (first three moments and second moment plus autocorrelation of order

1 plus correlation with previous observation for the reconstituted εt’s. All experiments

are based on the same reference table of 104 simulations, with the tolerance ε chosen

as the 1% quantile of the distances.

Moreover, this experiment is based on the very basic case
of sampling from the prior; the results would be further im-
proved by using an analogue of ABCel-AMIS or alternative
approaches similar to those proposed by (33) for traditional
ABC.

Dynamic models. In dynamic models, the difficulty with em-
pirical likelihood relates to the lack of independence in the
observed data (yt)1≤t≤T . Indeed, those models can most of-
ten be represented as transforms of unobserved iid sequences
(εt)1≤t≤T . The recovery of a converging empirical likelihood
representation thus requires the reconstitution of the εt’s as
transforms of the data y and of the parameter θ. The in-
dependence between the εt’s is then at least as important as
moment conditions.

For instance, consider a standard and simple dynamic
model, namely the ARCH(1) model:

yt = σtεt, εt ∼ N (0, 1) , σ2
t = α0 + α1y

2
t−1 ,

●

●

●

●

●

●

●

●●

●

●

ABC ABCel MLE

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

α0

●●

●

●

●

●

●

●
●

ABC ABCel MLE

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

α1

●

●

●

ABC ABCel MLE

0.
0

0.
2

0.
4

0.
6

0.
8

β1

Fig. 3. Comparison of ABC evaluations of posterior expectations (with true
values in dashed lines) of the parameters (α0, α1, β1) of the GARCH(1)

model with 250 observations. The first row corresponds to an optimal ABC algo-

rithm (using the MLE of the parameters as summary statistics and with the tolerance

ε chosen as the 5% quantile of the distances), the second row corresponds to the

ABCel algorithm based on the constraints derived in (36), and the third row corre-

sponds to the MLE derived by the R procedure garch when initialised at the true

value of the paramters.

with a uniform prior over the simplex, i.e., α0, α1 ≥ 0,
α0 + α1 ≤ 1. While this model can be handled by other
means, since the likelihood function is available, we will com-
pare here the behaviour of standard and empirical likelihood
ABC algorithms.

First, a natural empirical likelihood representation is
based on the reconstituted εt’s, defined as yt/σt when the
σt’s are derived recursively. Figure 2 shows the result of an
estimation of both parameters α0 and α1 when Algorihm ABC
uses as summary statistics either the least square estimates of
the parameters (directly obtained from the series (y2t )), which
we label “optimal ABC” in connection with (34), or the mean
of the series log(y2t ) supplemented by the two first autocor-
relations of the series (y2t )). The constraints in the empirical
likelihood are either based on the three first moments of the re-
constituted εt’s or on the variance of those εt’s complemented
by both the correlation between the yt−1’s and the εt’s and the
correlation between the εt−1’s and the εt’s. As seen from this
experiment, ABCel does as well as the optimal ABC for the
estimation of the parameters, but further brings a reduction
in the variability of those estimates, thanks to the importance
weights.

A much more complex dynamic model is the Garch(1, 1)
model of (35) that can be formalised as the observation of
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Fig. 4. Evolutionary scenarios of the two experiments in population genetics.
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model given in Scenario A, based on uniform priors on (log10(θ), log10(τ)) on

(−1, 1.5) × (−1, 1) and 104 particles.
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yt ∼ N (0, σ2
t ) when

σ2
t = α0 + α1y

2
t−1 + β1σ

2
t−1 [5]

under the constraints α0, α1, β1 > 0 and α1 + β1 < 1, that
is, yt = σtεt. (Garch stands for generalised autoregressive
conditional heteroskedastic.) Given the constraints on the
parameters, a natural prior is to choose an exponential distri-
bution on α0, for instance an exponential Exp(1) distribution,
and a Dirichlet D3(1, 1, 1) on (α1, β1, 1 − α1 − β1). A stan-
dard ABC approach requires the choice of summary statistics,
which are necessarily non-sufficient since the model is a state-
space model. Following (34), we use the maximum likelihood
estimator as summary statistics, relying on the R function
garch for its derivation despite its lack of stability (the true
value of the parameters was used as initial value in the func-
tion). Since (36) derived natural score constraints for the
empirical likelihood associated with this model, we used their
constraints to build our ABCel algorithm. Fig. 3 provides
a comparison of both approaches with the MLE. It shows in
particular that the ABC algorithm is unable to produce ac-
ceptable inference in this case, even in the most favourable
case when it is initialised at a satisfactory maximum likeli-
hood estimate (as shown by the bottom row). The ABCel al-
gorithm is performing better, even though it fails to catch the
correct range of β1.

Population genetics. We compare our proposal with the reli-
able ABC-based estimates given by (3). We set up two toy
experiments that are designed to defeat ABC, using pseudo
observed data. The two evolutionary scenarios are given in
Figure 4. In all experiments, we only consider microsatellite
loci and assume that the effective population size is identical
over all populations of the scenario.

In the first experiment, we consider two populations hav-
ing diverged at time τ in the past, see Figure 4. Our pseudo
observed datasets are made of thirty diploid individuals per
population genotyped at hundred independent loci. We com-
pare the marginal posterior distributions of the two unknown
parameters θ and τ computed with the original ABC method
(using the DIY-ABC software of (37)) and with the ABCel-
AMIS sampler. In this case, results are improved when the
θ-component of the composite scores, namely ∂θ log `2(D|φ),
is restricted the sum over all pairs of genes lying in the same
population. Otherwise, ABCel systematically under-estimates
θ. This means that the information regarding θ in the part of
the (unobserved) gene genealogy that links both populations
is either too noisy, either becoming to much stressed or not
retrived by the pairwise composite approximation. Figure 5
shows the typical discrepency between both results: ABC and
ABCel agree on the mutation rate θ, but the ABCel estimation
of τ is more accurate, see also Table 1.

In the second experiment, we consider three populations,
see Figure 4: the last two populations diverged at time τ1
and their common ancestral population diverged from the first
population at time τ2. The sample is made of thirty diploid
individuals per population genotyped at hundred independant
loci. In constrast to the the first experiment, all components
of the composite scores are computed here by summing over
all pairs of genes whatever the population they belong to. The
results given in Table 1 shows that ABC and ABCel mainly
agree on both parameters θ and τ1, but ABCel is slightly more
accurate than genuine ABC on τ2.

It should be noticed also that, on a six core CPU, ABCel

takes about one minute (per dataset) to provide the re-
sults described above, whereas computing the many simu-
lated datasets (preliminary to any ABC analysis) on such large
datasets requires several hours of computation.

Discussion
Since its introduction by (1) and (6), ABC has been exten-
sively used in several areas involving complex likelihoods, pri-
marily in population genetics, both for point estimation and
testing of hypotheses. The experience gained for a long time
on summary statistics in population genetics has helped ABC
to become an efficient algorithm for parameter estimation.

In population genetics, when the dataset is composed of
large sets of markers, the summary statistics proposed in DIY-
ABC (which are means of some quantitative statistics over all
hundred loci) lose some information, while ABCel manages to
find much more information, more specifically to estimate the
dates of divergence on large datasets.

When compared with ABC, the significant time savings
provided by ABCel can certainly open new doors in popula-
tion genetics. The statistical study of large datasets or com-
plex models might be considered. For instance, genuine ABC
development is severely hindered by the time spent to simulate
a dataset when modelling isolation by distance in a continu-
ously distributed population, or when studying a large set of
SNP markers even on much simpler evolutionary scenarios.
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Table 1. Comparison of the original ABC and ABCel on 100 Monte Carlo replicates.
We use two point estimates of the parameters: (1) posterior mean and (2) posterior
median, and measured the error between the estimation and the “true” value used
to generate the observation with (1) the root mean square error in the case of the
posterior mean and (2) the median absolute deviation in the case of the posterior

median. We also compare credibility intervals (of probability 0.8) through the
proportion of Monte Carlo replicates in which the “true” value fall into this interval.

First experiment
Root Mean Square Error Median Absolute Deviation Coverage of the credibility

of posterior mean of posterior median interval of probability 0.8
ABC ABCel ABC ABCel ABC ABCel

θ 0.0971 0.0949 0.071 0.059 0.68 0.81
τ 0.315 0.117 0.272 0.077 1.0 0.80

Second experiment
Root Mean Square Error Median Absolute Deviation Coverage of the credibility

of posterior mean of posterior median interval of probability 0.8
ABC ABCel ABC ABCel ABC ABCel

θ 0.0593 0.0794 0.0484 0.0528 0.79 0.76
τ1 0.472 0.483 0.320 0.280 0.88 0.76
τ2 29.6 4.76 4.13 3.36 0.89 0.79

Footline Author PNAS Issue Date Volume Issue Number 7


