
Smooth particle filters for likelihood evaluation and maximisation

Michael Pitt

Department of Economics, University of Warwick, Coventry CV4 7AL

M.Pitt@warwick.ac.uk

September 20, 2001

1



Models:

General Form:

meas eqn: yt ∼ f(yt|αt)
trans eqn: αt+1 ∼ f(αt+1|αt), t = 1, ..., n

The task we are concerned is the estimation of the log-likelihood,

logL(θ) = log f(y1, ..., yn|θ)
= log f(y1|θ) +

n−1∑
t=0

log f(yt+1|θ;Ft),

via the prediction decomposition. Ft = (y′1, ..., y
′
t)
′.

In order to estimate the log-likelihood we exploit the relationship

f(yt+1|θ;Ft) =
∫
f(yt+1|αt+1; θ)f(αt+1|Ft; θ)dαt+1. (0·1)

for the prediction density.
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• We have a filtering device, the PF, which delivers samples from αk
t ∼

f(αt|Ft; θ), k = 1, ...,M.

• We can sample from the transition density f(αt+1|αt; θ).

• So can estimate estimate (0·1).

f̂(yt+1|Ft, θ) =
∫
f (yt+1|αt+1, θ)




1

M

M∑
k=1

f(αt+1|αk
t )


 dαt+1.
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Lots of alternative procedures for such latent models:

• MCMC: Bayesian inference, Carlin et al. (1992), Shephard (1996),Jacquier
et al. (1994)..allows us to get a strictly stationary sample form f(α, θ|y).

• Indirect Inference. Simulation based, can be inefficient, Gourieroux & Re-
nault (1993).

• Importance Sampling: see, for instance Durbin and Koopman (97, Biom),
(00, JRSSB). g() Gaussian.

f(y|θ) =
∫
f(y|α)g(α|θ)dα

=
∫ f(y|α)

g(y|α)
g(y|α)g(α|θ)dα.
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Setting

ω(α) =
f(y|α)

g(y|α)
, and observing g(y|α)g(α|θ) = g(α|θ, y)g(y|θ),

we get

f(y|θ) =
∫
f(y|α)g(α|θ)dα

= g(y|θ)
∫
ω(α)g(α|θ, y)dα.

So they estimate as

g(y|θ) 1

M

M∑
i=1

ω(αi),

where αi ∼ g(α|θ, y). Problems for high dimensions as the Variance of
ω(α) rises exponentially (may not be finte to begin with). So variability of
estimator rises exponentially with the number of observations over time.
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Geyer’s LR approach for general latent models:

f(y|θ)
f(y|θ) =

∫ f(α|θ)
f(α|θ)f(α|y; θ)dα.
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Examples:

• SDE observed with noise

y(τi) ∼ f(y(τi) | x(τi))

dx(t) = µ(x(t))dt + σ(x(t))dW (t).

e.g, interest rate model + noise. Can simulate (arbitrarily accurately) from
f(x(τi+1) | x(τi)) by exploiting Euler scheme.

Let δ = (τi+1 − τi)/M , z(0) = x(τi)

x(t + δ)|x(t) ∼ N(x(t) + µ(x(t))δ;σ2(x(t))δ), (0·2)
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• Full discrete time SV model, Shephard (1996)

yt = µ + βσγ
t + εtσtχt, (0·3)

(0·4)
log σ2

t+1 = (1 − φ)µ + φ log σ2
t + ηt, (0·5)

(0·6)
 εt
ηt


 ∼ NID


0,


 1

0 σ2
η





 (0·7)

χt ∼ Iga(ν, 1). (0·8)
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• GARCH + noise model,

yt|αt ∼ N(αt, σ
2),

αt|σ2
t ∼ N(0, σ2

t )

σ2
t+1 = β0 + β1α

2
t + β2σ

2
t .
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1. Likelihoods also used in Bayes factors,

f(y|M) =
f(y|θ)f(θ)

f(θ|y)

1 Efficient likelihood methods for general PFs:

general approach Pitt and Shephard(99). We then wish to sample from the
following target density

f(αt+1, k|Ft+1) ∝ f1(yt+1|αt+1)f2(αt+1|αk
t ), k = 1, ...,M (1·1)

	 g(k, αt+1) = g1(yt+1|αt+1, k)g2(αt+1|αk
t )

= g(yt+1|k)g(αt+1|k, yt+1) = C.g(k, αt+1).

So we now have a joint density g(k, αt+1),

g(yt+1|k) =
∫
g(k, αt+1)dαt+1, g(αt+1|k, yt+1) =

g(k, αt+1)

g(yt+1|k) ,
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and C =
∑M

i=1 g(yt+1|i). So for our joint density g(k, αt+1), we have

g(k) =
g(yt+1|k)∑M
i=1 g(yt+1|i), g(αt+1|k) = g(αt+1|k, yt+1). (1·2)

Sample from our joint proposal density g(k, αt+1), R times we then allocate

weights to the resulting samples
(
αj

t+1, k
j
)
, j = 1, ..., R,

ωj = ω(αj
t+1, k

j), πj =
ωj∑R
i=1 ωi

.

where

ω(αt+1, k) =
f1(yt+1|αt+1)f2(αt+1|αk

t )

g1(yt+1|αt+1, k)g2(αt+1|αk
t )
. (1·3)
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We require,

f̂ (yt+1|Ft) =
∫
f1(yt+1|αt+1)




M∑
k=1

f2(αt+1|αk
t )

1

M


 dαt+1. (1·4)

This integral cannot, in general, be evaluated directly and so needs to be esti-
mated.

Theorem 1:

f̂(yt|Ft−1, θ) =


 1

M

M∑
i=1

g(yt|i)

 E [ω(αt; k)]

where ω(αt; k) is given by (1·3) and the expectation is with respect to g(k, αt)
given by (1·2).
This above result is useful practically because it means we can take the sample
mean of the first stage weights and the sample mean of the second stage weights.
So the likelihood f̂ (yt|Ft−1, θ) is unbiassedly estimated as


 1

M

M∑
i=1

g(yt|i)




 1

R

R∑
j=1

ωj


 . (1·5)
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Clearly when the ωj have small variance (our criterion for an efficient particle
filter) our estimator will be efficient statistically. Indeed, when the variance
of the ωj is 0, corresponding to full adaption, see Section ??, then we will be
exactly evaluating (??).

Can be regarded as a free bi-product of our auxiliary sampling scheme.
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Example 1: AR(1) + noise model , GSSF, so use KF.

meas eqn: yt = αt + εt εt ∼ N(0, 4.9)
trans eqn: αt+1 = β + φ(αt − β) + ηt, ηt ∼ N(0, 0.02)

Do likelihood evaluation. t = 1, ..., n. n = 550, φ = 0.975, β = 0.5.
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Smooth Likelihood Estimation

It turns out that we may adjust the SIR procedure of GSS above quite easily
to produce an entirely continuous likelihood surface.

The problem is inherent in the discreteness of the resampling:

At the sample stage (3) we replace the discrete distribution. we define a region
i, Ri as follows: Ri = [xi, xi+1], k = 1, ..., R − 1. These regions form a
partition of the sample space for x. We have different densities g(x|i) within
each region i, Ri. We shall assign Pr(i) = 1

2(πi + πi+1), i = 2, ..., R − 2 and

Pr(1) = 1
2(2π1 + π2), Pr(R − 1) = 1

2(πR−1 + 2πR). Clearly, these probabilities
sum to 1. Within each region we shall define the conditional densities as follows,

g(x|i) =
1

(xi+1 − xi)
, x ∈ Ri, i = 2, ..., R− 2,

and
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Figure 1: Left: top is sample filter mean and true KF mean for AR(1) plus

noise example. Beneath is the error. Right: top is sample estimate of log

of prediction density. Beneath is error. T = 550, M = 3000, R = 4000.

Auxiliary particle filter with stratification used.

16



-1 -.5 0 .5 1 1.5 2 2.5

-30

-20

-10

0
(a) R=150, M=75

Estimate True

-1 0 1 2

-40

-30

-20

-10

0
(b) R=500, M=250

Estimate True

-1 0 1 2

-30

-20

-10

0
(c) R=1000, M=500

Estimate True

-1 0 1 2

-30

-20

-10

(d) R=3000, M=1500

Estimate True

Figure 2: Estimators of the relative log-likelihood computed via simulation

estimators of the prediction decomposition. The graphs plot the estimated

log-likelihood against the β, which means the true value is 0.5. Each value

of β is used as a strata.
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g(x|1) =




π1
2π1+π2

,

π1+π2
2π1+π2

1
(x2−x1)

,

x = x1

x ∈ R1

g(x|R− 1) =




πR
πR−1+2πR

,

πR−1+πR
πR−1+2πR

1
(xR−xR−1)

,

x = xR

x ∈ RR−1.
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Figure ?? shows a discrete cdf with the continuous interpolation for R = 8.
Note that the continuous cdf passes through the mid-point of each step in the
discrete cdf. As R becomes larger, the two cdfs become indistinguishable. The
validity of the resampling method for SIR is preserved. Denoting our continuous
cdf by F̃ and the discrete SIR cdf by F̂ , it can be seen that as R → ∞,

F̃ (z) → F̂ (z) → F (z),

where F (z) is the true cdf. The justification for the convergence of F̂ (z) to
F (z) is given rather succinctly by Smith & Gelfand (1992).

The partitioning of the state space means that sampling from this continuous
density is very efficient. We simply select the region i with Pr(i) and sample
from g(x|i). The form of g(x|i) has been chosen to be linear. This ensures
continuity and allows very fast sampling but there is no reason why a quadratic
or cubic interpolation could not be used within each region. Indeed differentia-
bility could be achieved by using a higher order interpolation.
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Figure 3: cdf plot with 8.
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Figure 4: cdf plot with 200.

21



-1.25 -1 -.75 -.5 -.25 0 .25 .5 .75 1 1.25 1.5 1.75

-25

-20

-15

-10

-5

0

Figure 5: Plot of the true log-likelihood (solid line), and five simulated log-

likelihoods (symbols with lines) via the auxiliary particle mean trajectory

for AR(1) plus noise example. Log-likelihoods plotted against the mean, µ.

T = 550, M = 1500, R = 3000. Large scale left, medium scale right.
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Figure 6: Plot of the true log-likelihood (solid line), and five simulated log-

likelihoods (symbols with lines) via the auxiliary particle mean trajectory

for AR(1) plus noise example. Log-likelihoods plotted against the mean, µ.

T = 550, M = 1500, R = 3000. Large scale left, medium scale right.
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Figure 7: Plot of the true log-likelihood (solid line), and five simulated log-

likelihoods (symbols with lines) via the auxiliary particle mean trajectory

for AR(1) plus noise example. Log-likelihoods plotted against the mean, µ.

T = 550, M = 1500, R = 3000. Large scale left, medium scale right. Small

scale.
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Results: AR(1) + noise model

To assess the performance of the ASIR0 method we shall consider the AR(1)
plus noise model. This is a linear state space form model the likelihood for
which can be evaluated via the Kalman filter. The model is,

yt = αt + εt, εt ∼ N(0, σ2
ε)

αt+1 = µ + φ(αt − µ) + ηt, ηt ∼ N(0, σ2
η).

To mimic the stochastic volatility (SV) model, see Section ?? we have σ2
ε = 2,

σ2
η = 0.02, φ = 0.975 and µ = 0.5. The choice of σ2

η, φ and µ are chosen
as typical values for the SV model, φ representing the persistence in variance,
whilst σ2

ε is chosen from the curvature for the measurement density in the SV
model (the second derivative of log f(yt|αt) with respect to αt).

A Fair test.

Recorded in Table 1 are the results for T = 150, using varying values of M
and R. The average of the 50 simulated maximum likelihood estimates, the
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50 variance estimates and the mean squared error are displayed for each set of
M,R. The mean squared errors in Table 1 are small relative to the variation
in the data, and become smaller as M,R increase. In addition the variance-
covariance matrix is well estimated even for small M,R. These results are very
encouraging.

The results for the case T = 550, Table 3, gives an insight into how the method
might behave for the SV model for which the data is reasonably long.
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Kalman Filter

ML (ση, µ, φ)′ V ar (ση, µ, φ)′ × 103

0.07543
0.58276
0.96626

3.814 −1.112 −2.02
−1.112 40.31 1.273
−2.02 1.273 2.050

SIR Particle Filter; M = 300, R = 400, SIM = 50.

MLS V ar × 103 MSE(MLS) × 104

0.07574
0.58170
0.96610

3.155 −0.702 −1.661
−0.702 35.02 0.898
−1.85 0.898 1.846

0.182
2.217
0.103

SIR Particle Filter; M = 1000, R = 1300, SIM = 50.

MLS V ar × 103 MSE(MLS) × 104

0.07502
0.58360
0.96623

3.524 −0.934 −1.856
−0.934 35.75 1.129
−1.856 1.129 1.950

0.0628
0.5295
0.0450

SIRParticleFilter;M = 3000, R = 4000, SIM = 50

MLS V ar × 103 MSE(MLS) × 104

0.075200
0.58177
0.96629

3.693 −0.895 −1.937
−0.895 37.00 1.059
−1.937 1.059 1.988

0.0190
0.1495
0.0123

Table 1: Performance of standard smooth SIR particle filter for T = 150.

The model is AR(1) + noise with truw parameters φ = 0.975, ση =
√

0.02,

µ = 0.5. Additionally the measurement noise is fixed at σε =
√

2.
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Kalman Filter

ML (ση, µ, φ)′ V ar (ση, µ, φ)′ × 104

0.08080
0.45900
0.98398

7.670 1.113 −2.137
1.113 429.1 −0.8227
−2.137 −0.8227 1.223

SIR Particle Filter;M = 300, R = 400, SIM = 50.

MLS V ar × 104 MSE(MLS) × 104

0.080774
0.45380
0.98395

7.702 −0.203 −2.156
−0.203 450.8 −0.8182
−2.156 −0.8182 1.241

0.1347
4.666

0.02287

SIRParticleFilter;M = 1000, R = 1300, SIM = 50.

MLS V ar × 104 MSE(MLS) × 104

0.080752
0.45965
0.98398

7.754 0.377 −2.155
0.377 437.3 −0.452
−2.155 −0.452 1.224

0.0307
1.02

0.00439

SIRParticleFilter;M = 3000, R = 4000, SIM = 50

MLS V ar × 104 MSE(MLS) × 104

0.08061
0.45812
0.98405

7.459 0.7897 −2.050
0.7897 437.0 −0.813
−2.050 −0.813 1.1882

0.0101
0.3253
0.00150

Table 2: Performance of standard smooth SIR particle filter for T = 550.

The model is AR(1) + noise with truw parameters φ = 0.975, ση =
√

0.02,

µ = 0.5. Additionally the measurement noise is fixed at σε =
√

2.
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1. Stratified sampling:

This stratification scheme is briefly described in ?) and uses the suggestion of
?). Explicitly, at the resampling stage, we produce stratified uniforms ũ1, ..., ũR

by writing

ũk =
(k − 1) + u

R
, k = 1, ..., R where u iid∼ UID(0, 1).

That is we use a single uniform realisation to generate sorted stratified uniforms
on [0, 1]. An efficient method, see PS, for inverting the cdf is then used to pro-
duce the stratified sorted samples of our variables. ?) justify using stratification
ideas via sampling.

2. Bias correction:

Note that at present the log-likelihood will not be unbiassed. To correct this
to first order we use the usual Taylor expansion method. Abstracting from
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likelihoods we have the large sample result that our estimated likelihood, X is
unbiassed for the true likelihood, µ with and for large R we obtain,

X ∼ N


µ, σ

2

R


 .

We therefore have

E[logX ] = log µ− 1

2

σ2

Rµ2
.

Therefore we may bias correct by substituting µ as X , obtaining

̂log µ = logX +
1

2

σ̂2

RX
2 .
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2 Full Adaption:

• We can draw directly from f(αt+1|αt, yt+1).

• We can evaluate f(yt+1|αt).

In fact the empirical prediction density, (??) is exactly obtained as

f̂ (yt+1|Ft, θ) =
1

M

M∑
k=1

f1(yt+1|αk
t ),

where αk
t ∼ f(αt|Ft).

f(αk
t |yt+1,Ft) ∝ f(yt+1|αk

t ).

Then smoothly sample to yield αj
t ∼ f(αt|Ft+1). Then sample

f(αt+1|αt, yt+1) to yield

αj
t+1 ∼ f(αt+1|Ft+1).
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Example 1: ARCH with error

An example of full adaption is for the ARCH model observed with Gaussian
error. Consider the simplest Gaussian ARCH model (see, for example, Boller-
slev et al. (1994) for a review) observed with independent Gaussian error. So
we have

yt|αt ∼ N(αt, σ
2), αt+1|αt ∼ N(0, β0 + β1α

2
t ).

It has received a great deal of attention in the econometric literature as it
has some attractive multivariate generalizations: see the work by Diebold &
Nerlove (1989), Harvey et al. (1992) and King et al. (1994). This model is
exactly adaptable. It is clear to see that,

yt+1|αt ∼ N(0, β0 + β1α
2
t + σ2), αt+1|αt, yt+1 ∼ N(a, b2),

where

b2 =
σ2(β0 + β1α

2
t )

β0 + β1α2
t + σ2

, a = b2yt+1

σ2
.
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As far as we know no likelihood methods exist in the literature for the analysis
of this type of model (and its various generalizations) although a number of
very good approximations have been suggested.
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2·1 Example 2: Probit/Tobit models

yt =


 1, αt > 0

0, αt < 0

αt+1 = µ + φ(αt − µ) + ηt, ηt ∼ N(0, σ2
η).

We have marginally,

P r(yt = 1) = Φ


µ
σ




where σ2 =
σ2

η

1−φ2 . This can be fully adapted as if yt+1 = 1,

Pr(yt+1|αt) = Φ


µ + φ(αt − µ)

ση


,

f(αt+1|yt+1, αt) = TN>0(µ + φ(αt − µ);σ2
η).
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if yt+1 = 0,

Pr(yt+1|αt) = 1 − Φ


µ + φ(αt − µ)

ση


,

f(αt+1|yt+1, αt) = TN<0(µ + φ(αt − µ);σ2
η).
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2·2 Example 3: GARCH(1,1) +error (partial adaption)

We can write this model in the following form,

yt|αt ∼ N(αt, σ
2),

αt|σ2
t ∼ N(0, σ2

t )

σ2
t+1 = β0 + β1α

2
t + β2σ

2
t .

We can equivalently write the above model as

yt|σ2
t ∼ N(0, σ2 + σ2

t ),

αt|σ2
t , yt ∼ N


b

2yt
σ2

; b2


 ,

σ2
t+1 = β0 + β1α

2
t + β2σ

2
t ,
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where b2 = σ2σ2
t

σ2+σ2
t
.

This is may be thought of as the “semi-adaptable” form of the model.

• f(σ2
t+1|Yt). Via f(αt|yt, σ2

t ), given above, R times, then we have

R samples σ
2(i)
t+1, i = 1, ...,M from f(σ2

t+1|Yt).

• Regarding these as being sorted in ascending order

we now apply the smooth bootstrap method where we have weights ωi =

f(yt+1|σ2(i)
t+1), i = 1, ...,M .
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We illustrate this method by estimating the four parameters. We simulate
a time series of length 500 and perform 100 different ML estimation proce-
dures using the above method. The four parameters (β0, β1, β2, σ)′ are set to
(0.01, 0.2, 0.75, 0.1)′ in the single simulation. The procedure is then run 100
times with M = 500, R = 600. The results are shown in the table beneath:

– Variance of the simulated maximum likelihood are many hundreds of times
smaller than the variance obtained by inverting the matrix of second derivatives
at the mode.

—True values of the parameters lie well within thier 95% condidence limits.

—This suggests our approach is a fast, simple and reliable procedure for a
problem for which a likelihood solution is, in general, non-trivial.

— likelihood ratio tests can be routinely undertaken.
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GARCH plus noise model: M = 500, R = 600, SIM = 100, n = 500.

MLS(β0, β1, β2, σ)′ V ar × 104 SD(MLS)
0.01080
0.22563
0.71723
0.14436

0.23094 −1.3474 0.10968 −2.4609
−1.3474 49.540 −38.952 44.288
0.10968 −38.952 39.018 −34.417
−2.4609 44.288 −34.417 70.991

0.0002681
0.0039763
0.0028672
0.0060815

Table 3: Monte Carlo results for GARCH + error model.

39



GARCH (β0, β1, β2)
′ 01 02 81 –> 12 29 82, T=500.

Par ML Var × 10−4 Log-lik = −548.5982.

β0

β1

β2

0.00602
0.02703
0.96220

0.25517 0.16912 −0.65797
0.16912 1.1312 −1.3720
−0.65797 −1.3766 2.6044

GARCH+error (β0, β1, β2, σ)′ M=3000, 4000. Log-lik = −545.2613.

β0

β1

β2

σ

0.0006446
0.12874
0.86911
0.55315

0.0043743 −0.014907 0.00095946 −0.076571
−0.014907 7.7253 −7.6715 2.3985
0.00095946 −7.6715 7.6919 −2.1834
−0.076571 2.3985 −2.1834 7.2245

Table 4: Estimation results for the firearms homcide dataset.
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Levy processes in continuous time

Barndorff-Nielsen, Shephard(2001). Continous representations of marginal pro-
cesses

Without loss of generality, we restrict ourselves to the Γ(ν, 1) marginal.

We have EXPLICIT process: Walker (2000),

σ2(t) = exp(−λt)σ2(0) + exp(−λt)ε(λt),

where ε(λt) an independent rv,

ε(λt) ∼ Ga(z, 1), z ∼ PoGa
(
ν, 1

exp(λt)−1

)
,

We obtain Pr(ε(λt) = 0) = exp(−νλt). The conditional density of ε(λt), given
that it is greater than 0, is
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fε|ε>0(x) =
1

1 − exp(−νλt)

∞∑
z=1

Ga(x|z; 1)PoGa (z|ν; 1/(exp(λt) − 1)) .

We can illustrate by simulating a dataset of size 1550, M = 3000, R = 4200.

yn|σ2
n ∼ N


0,

σ2
n

b


 .

We take a unit sampling interval, b = 1, ν = 3 and λ = 0.02.
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Figure 8: SD and process of returns.
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Figure 9: Lambda, profile plot.
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Figure 10: a, profile plot.
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